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ABSTRACT

Large language models (LLMs) are powering a new wave of language-
based applications, including database applications, leading to new
techniques and systems for dealing with the enormous compute
and memory needs of LLMs, coupled with advances in computing
hardware. In this tutorial, we review how these techniques lower in-
ference costs by managing uncertain request lifecycles, exploiting
specialized hardware, and scaling over distributed inference de-
vices and machines. We present these techniques from the database
perspective of request processing, model execution and optimiza-
tion, and memory management. Following these discussion, we
review how inference systems combine these techniques in diverse
architectures to achieve application or performance objectives.
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1 INTRODUCTION

Large language models (LLMs) have revolutionized natural lan-
guage processing and are now powering a new wave of language-
based applications, including database applications such as Text-
to-SQL, lake analytics, database maintenance, and visualization
[14]. But LLMs come at a high cost. They require huge amounts
of compute and memory to process a single request and addition-
ally suffer confabulations that are disastrous for mission-critical
applications. Model execution is made complicated by the unpre-
dictable resource needs of each request. Meanwhile, the desire to
use specialized hardware, along with distributed inference devices
and machines, adds to system design complexity.

The original transformer-based LLM relies on a series of dense
attention mechanisms, combined with large feed-forward networks
(FFNs), to turn natural-language prompts into high-dimensional
contextualized embedding vectors that are then used to generate
semantically consistent textual sequence continuations through a
number of model execution rounds [17]. Recently developed opera-
tor designs, such as sparse, grouped, and shared attention [2, 4, 20],
and sequence generation techniques, such as beam search, graph of
thoughts, and self-consistency [3, 7, 18], aim to reduce the funda-
mental cost of model execution while increasing the quality of gen-
erated sequences. Meanwhile, specialized kernel implementations,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750703

Guoliang Li
liguoliang@tsinghua.edu.cn
Tsinghua University
Beijing, China

Inference Runtime
(d) Load Balancer

i = T
5 Queue Monitor ’:> Balancer
C{ t{‘ Execution Warker (PD Node / P-Only / D-Only)
{e) Scheduler
Batch Job Local Load
Controller Prioritizer Balancer

(f) Operators

Attention FFN
(MHA, GQA, Sparse, Shared) (MoE)

Token Token Non-Linear
(g] Storage

Block Manager Block Index
Model We\ghrs
(Raw / Quantized) KV Cache Blocks (Raw / Quantized)

(h) Hardware
PCle Accelerator (GPU / NPU / TPU)

LLM-Powered Apps

Chatbot ~ Coding Al Agent 3
E Assistant |

— Inference Frontend —
(a) User Interface

Language Declarative
Exts. Modules / Actors

(b) 1/O Interpreter

Prompt Creator | Constraint
/ Optimizer Checker

(c) Seq. Generation

Stream Structured
(e.g. CoT) {e.g. Beam, GoT, TaT)

| Tokenizer

Runtime & Tool Interfaces

é Fused | oy Gemm | Non-Linear
------- External Tools - & At Act.
r 3 {-EL -
- 8 Model Weights Local KV
32 (Full / Partial) Cache Blocks

xDBMS Web 3rd Party
Search  Apps /Tools |

3
T2E  Execution Units DRAM /
3g= (e.g. SM Units) SRAM

o
[ HostCPU_ || Host DRAM / SRAM ‘

Figure 1: The LLM inference stack.

such as FlashAttention [6] and PagedAttention [12], combined with
techniques for request batching, scheduling, and memory manage-
ment, have been developed to take advantage of hardware accel-
erators while managing dynamic resource needs. Alongside these
techniques are various application objectives that have led to a
variety of inference systems, such as frontend-runtime co-designed
systems like SGLang [20] that aim to provide low-latency inference
for structured output applications, scalable disaggregated systems
like Mooncake [16] that aim to provide high throughput inference,
and serverless systems like DeepFlow [9] that are designed to fully
leverage existing Al infrastructure.

In this tutorial, we review LLM inference from a database perspec-
tive, as shown in Figure 1, examining the new challenges for request
processing, optimization and execution, and memory management
that these techniques and systems aim to solve. We conclude with
remaining challenges and open problems.

Tutorial Outline. This tutorial is intended to last 1.5 hours, divided
into five parts.

(1) Request Processing (10 min.) The first part introduces the request
processing workflow and discusses operator design along with se-
quence generation. Executing an LLM consists of executing several
operators one after another. The compute-intensive prefill phase
and memory-intensive decode phase motivates more efficient oper-
ator designs [2, 4, 20], while the risk of confabulations motivates
new approaches to sequence generation [3, 7, 18].
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(2) Model Optimization and Execution (30 min.) The second part
describes techniques for optimizing model execution. Along with
large resource needs, fundamental uncertainty regarding decoding
rounds motivates techniques for batching and scheduling [1, 19], in-
cluding job prioritization and load balancing [11]. At the same time,
the desire to exploit GPUs and other hardware devices motivate
efficient operator kernels [6, 12].

(3) Memory Management (30 min.) The third part discusses tech-
niques for memory management. The dynamic nature of the key-
value (KV) vector byproducts generated during request process-
ing require flexible memory management frameworks, such as
PagedAttention [12], to avoid waste and overhead from under and
overallocation. Memory eviction and offloading techniques aim to
support large contexts that stretch beyond device memory, while
quantization and durable cache persistence techniques [8, 15] aim
to reduce the overall memory burden.

(4) Inference Systems (15 min.) The fourth part discusses inference
systems. An inference system comprises a frontend, which allows
programmatic prompting, in addition to a backend runtime, which
manages the various aspects of LLM execution. Centralized sys-
tems, such as vLLM [12] and SGLang [20], are aimed at deploying
on a single server, although they can be deployed across clusters
but require an external load balancer. These systems are aimed at
providing fast inference while consuming low memory. Distributed
systems, such as Mooncake [16] and DeepFlow [9], aim to increase
scalability, achieved through hardware disaggregation which allows
flexibly adapting to the different needs of prefill and decode.

(5) Open Problems (5 min.) We conclude the tutorial with a discussion
of open problems.

Intended Audience. This tutorial is intended for researchers and
practitioners that are interested in the techniques and designs of
LLM inference systems. The topics will be presented in a manner
that requires no prior background on LLMs.

Related Tutorials. A recently proposed tutorial aims to discuss
techniques for improving LLM trustworthiness and quality, with
applications to database systems [10], while also discussing LLM
efficiency at a high level. To complement this effort, here we elabo-
rate on the fundamental techniques for speeding up inference as
well as provide a more comprehensive analysis of LLM inference
system design from a database perspective.

2 TUTORIAL
2.1 Request Processing

Transformer-based LLMs introduce new resource-intensive opera-
tors compared to relational operators. The fundamental costs de-
pend on the logical designs of the operators. Parallelism, sparse
sampling, and speculative techniques have been used to develop
faster attention, FFN, and token sampling mechanisms, while vari-
ous probabalistic and structured generation techniques have been
proposed to improve output quality.

Operator Design. The complexity of the attention operator de-
pends on the amount of cached KV vectors, used for contextualizing
input embeddings. Physical execution time can be reduced via par-
allelized multi-head attention [17], while the fundamental memory
and compute costs can be reduced via grouped, sparse, and shared

attention [2, 4, 20], which aim to reduce the number or size of ma-
trix multiplications. Likewise, the fundamental compute costs for
the FFN can be reduced by adopting a mixture of experts (MoE)
that replaces the large FFN with several smaller ones, only some
of which are used during model execution. For the token sampler,
speculative decoding [13] increases token throughput by using
smaller models to quickly generate potential output tokens while
using the full model to verify them in a single execution cycle.

Sequence Generation. To increase output quality, various to-
ken sampling strategies, including temperature-based probabalistic
sampling, top-k sampling, and nucleus sampling can be used to
increase the exploration of the token space, while structured gener-
ation techniques, such as beam search [7], graph-of-thoughts [3],
and self consistency [18], can be used to expand and refine the set
of output candidates, thereby increasing the chance of producing a
high-quality output.

2.2 Model Optimization and Execution

Like GPU-based DBMSs, inference systems take advantage of hard-
ware accelerators to reduce execution latency. These devices require
specialized kernels to fully exploit the expanded processing capa-
bilities. Likewise, the extreme data parallelism motivates batching
techniques that aim to serve multiple requests within a single execu-
tion cycle. At the same time, inference machines often contain mul-
tiple accelerator devices, moreover distributed inference systems
increase throughput by exploiting multiple inference machines, sim-
ilar to distributed DBMSs. Effectively using these resources while
dealing with unpredictable request lifecycles requires specialized
scheduling techniques for job ordering and load balancing.

Kernels. Hardware kernels are carefully designed to provide paral-
lelized operators that maximize core utilization while minimizing
overhead, including memory I/O costs on the device as well as
kernel invocation overhead. Blockwise attention kernels, such as
FlashAttention! [6], FlashDecoding2 and Lean Attention>, rely on
tiled matrix multiplication and online softmax to avoid I/O and
storage costs related to intermediate product materialization as
well as reducing kernel invocations via operator fusion. Distributed
attention kernels, such as Ring Attention?, take advantage of mul-
tiple devices to increase parallelism farther, useful for supporting
large contexts that require memory capacity beyond a single device.
Specialized kernels have also been developed for sparse attention
in addition to non-GeMM operators. Automatic kernel compilation
via computation graph optimization has also been explored.

Request Batching. Multiple requests can be served at once by
concatenating their token embeddings and processing the batched
input matric in a single execution cycle. But due to differences
in input lengths as well as KV cache sizes, batching can lead to
ragged tensors during the attention computation. Batch formation
techniques, such as TurboTransformers®, aim to minimize tensor
sparsity in order to maximize core utilization, while byte packing

Uhttp://arxiv.org/abs/2407.08608
Zhttp://arxiv.org/abs/2311.01282
Shttp://arxiv.org/abs/2405.10480
“http://arxiv.org/abs/2310.01889
Shttp://arxiv.org/pdf/2010.05680


http://arxiv.org/abs/2407.08608
http://arxiv.org/abs/2311.01282
http://arxiv.org/abs/2405.10480
http://arxiv.org/abs/2310.01889
http://arxiv.org/pdf/2010.05680

techniques, such as ByteTransformer®, try to repack ragged ten-
sors in order to reduce wasted computation due to tensor sparsity.
Meanwhile, the autoregressive nature of LLM sequence generation
allows requests to be periodically rebatched as a means of balancing
TTFT and TBT. This has led to techniques for continuous batching
[19], including chunked prefills [1].

Job Prioritization. The order that requests are served can affect
mean latency and total throughput across the workload. Requests
can be prioritized by completion time, so that long-running requests
do not stall short requests. This requires estimating the completion
time, which can be based on various cost models [11]. On the other
hand, SGLang prioritizes requests by amount of reusable cache
in order to avoid cache thrashing [20]. Dynamic promotion and
demotion mechanisms can also be used to avoid request starvation.

Load Balancing. Systems like Mooncake [16] and DeepFlow [9]
are designed to support multiple inference machines, requiring load
balancing mechanisms to evenly distribute request processing costs
across the machines. But uncertain request lifetimes, combined
with uncertainty about future loads, makes it difficult to select the
latency-minimizing worker for a given request. As a result, most
systems resort to greedily assigning requests to workers based on
local least-load heuristics [11] or based on cache availability in the
case of persisted caches.

2.3 Memory Management

Processing a request creates volatile KV memory byproducts, resem-
bling in-memory OLTP workloads. Except for length-constrained
generation, the final size of the KV cache is not knowable, posing
a challenge for memory management. Static preallocation risks
issues caused by under or over allocation, leading to techniques for
dynamic paged-based blockwise allocation. Eviction and offloading
techniques, in addition to quantization techniques, aim to reduce
the overall memory burden. In some scenarios, it may be possible
to share certain KV cache entries across multiple requests, leading
to techniques for durable cache persistence and reuse.

Paged-Based Memory Allocation. Dynamic paged-based block-
wise memory allocation can lead to non-contiguous cache storage,
requiring a memory manager to coordinate logical memory pages
and their physical blocks. Both vLLM [12] and vAttention’ intro-
duce memory managers targeted at GPU systems for handling page
creation, deletion, and lookup, but with different implementation
approaches. The vLLM approach performs memory management
on the host machine and requires a specialized page-aware kernel
to operate over non-contiguous cache storage whereas vAttention
exploits native CUDA GPU memory management capabilities, al-
lowing the use of non-paged kernels. Blockwise memory allows
for block sharing, in which the same physical block is mapped to
multiple LLM inference processes, when these processes share a
common prefix. These situations arise under e.g. shared system
prompts, or when one request yields multiple output sequences via
beam search or tree-of-thoughts.

Eviction and Offloading. Unneeded cache entries can be perma-
nently removed via eviction or temporarily removed via offloading
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onto a secondary memory container (e.g. from GPU memory to
host DRAM). Both eviction and offloading can be used to support
longer contexts beyond primary memory capacity and as a way to
handle preempted requests, but require techniques for identifying
which entries to remove, taking into account potential recovery
costs. For long contexts, eviction techniques identify least important
cache entries via an importance score, which can be position-based,
attention-based, or usage-based [20]. For handling preempted re-
quests, the cache entries of a preempted request can be directly
evicted or offloaded and reloaded upon resumption, depending on
the recovery cost [12]. For offloaded requests, techniques include
layer-wise and model-wise offloading, with pre-fetch recovery.

Quantization. Model weights, layer activations, and KV cache
entries are typically represented by floating-point numbers, but
their byte sizes can be reduced by quantizing them into low-bit
integers [15]. For weights and activations, the quantizer aims to
minimize compression error, and techniques include whole-tensor
quantization as well as group-based quantization. For KV cache en-
tries, the quantizer aims to be similarity-preserving, and techniques
include importance weighting and outlier tracking.

Cache Persistence. Persisting KV cache entries instead of discard-
ing them after request completion allows them to be potentially
reused for future requests, avoiding the need for recomputation.
But under standard attention, KV values in the inner transformer
layers are position-dependent. Prefix sharing aims to quickly iden-
tify the longest shareable token sequence between a request and the
persisted entries using techniques such as brute-force scanning and
radix tree lookup [20]. On the other hand, selective reconstruction
techniques aim to reuse all entries for matching tokens, even if the
token positions are non-matching, by selectively recomputing KV
values for entries that cause greatest quality loss [8].

2.4 Inference Systems

Various inference systems have been developed to support diverse
needs, adopting different architectures and techniques. Some focus
on particular application scenarios, leading to frontend and runtime
co-design, while others focus on providing high-performance infer-
ence over general LLM workloads. Centralized systems focus on
low-latency inference while distributed systems aim to provide high
throughput via scalable disaggregated and serverless architectures.
Additionally, frontend-only systems aim to facilitate development
of LLM-based programs.

Centralized Systems. SGLang [20] offers a co-designed frontend
and runtime and is aimed at fast structured output generation. It
exploits frequent prefix sharing opportunities by using a radix tree
to quickly retrieve shareable KV entries, along with a cache-aware
scheduler and a prefill interleaving technique for fast template
completion. As another example, vLLM [12] is aimed at providing
low latency but for generic workloads. It adopts chunked prefills,
continuous batching, and distributed attention across GPUs while
minimizing memory usage via prefix sharing and paged attention.
As it targets single server deployment, it lacks an internal load
balancer but can be scaled via third-party tools.

Distributed Systems. Mooncake [16] is aimed at low latency and

high throughput via scalable P/D disaggregated architecture. To
minimize memory usage, it adopts a distributed blocked KV cache.
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To reduce latency, it uses a greedy load balancer based on a latency
estimation model that considers cache availability, cache transfer
time, worker load, and other factors. It also supports hot cache
block replicas, prefill and decode prefetch, continuous batching,
and chunked prefills. DeepFlow [9] is another example of a dis-
tributed system but aimed at deployment over shared hardware
via serverless architecture. Model inference is decomposed into
logical task executors that perform P/D-only, mixed, expert-only, or
attention-only operations, allowing for fine-grained load balancing
and resource scaling based on the workload.

Frontends. Frontends allow for programmatic prompting, where
the full prompting logic is provided upfront, in a form resembling
a traditional program. This makes it easier to implement complex
prompting workflows, such as beam search, tree-of-thoughts, RAG,
tool use, and so on. An LLM frontend typically also supports au-
tomatic prompt generation, taking advantage of prompt engineer-
ing techniques to reduce latency (e.g. prefill interleaving) or im-
prove output quality (e.g. chain-of-thought, few-shot prompting).
Most frontends also include mechanisms for constrained generation
based on simple rules (e.g. output value) or complex patterns (e.g.
regular expressions), giving users more control over sequence gen-
eration termination conditions as well as allowing for structured
outputs. These features are achieved by extending common pro-
gramming languages with new imperative commands (e.g. SGLang
[20], Guidance®, LangChain®) or declarative modules (e.g. DSPy'?,
LMQL!! that serve as an interface to the underlying LLM.

2.5 Open Problems

Existing techniques for batching and scheduling rely on heuris-
tics, such as simple load equations and request lifetime estimates,
to inform batch formation, job prioritization, and load balancing.
Developing more accurate cost estimates is needed to make these
techniques more effective. On the other hand, developing adaptive
techniques that can respond to uncertain request lifetimes, such as
more sophisticated load balancing techniques, can improve system
performance in the absence of accurate cost estimates. Finally, the
rapidly expanding LLM ecosystem demands new benchmarks, like
[5], for systematically evaluating inference systems.
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