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Figure 1: An Overview of the Tutorial: The Lifecycle of the NL2SQL Task (https://github.com/HKUSTDial/NL2SQL_Handbook).

ABSTRACT

Translating users’ natural language queries (NL) into SQL queries
(i.e., NL2sQL) can significantly reduce barriers to accessing relational
databases and support various commercial applications. The perfor-
mance of NL2sQL has been greatly improved with the emergence of
large language models (LLMs). In this context, it is crucial to assess
our current position, determine the NL2sQL solutions that should
be adopted for specific scenarios by practitioners, and identify the
research topics that researchers should explore next.

In this tutorial, we will provide a comprehensive overview of
NL2sQL techniques, covering every aspect of its lifecycle, from the
collection and synthesis of training data, recent advancements in
NL2sQL translation techniques using LLMs and agents, debugging
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NL2sQL processes, to multi-angle and scenario-based evaluation of
NL2sQL methods. We conclude by highlighting the research chal-
lenges and open problems in NL2sQL.
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1 INTRODUCTION

Natural Language to SQL (i.e.,NL2sQL), which translates natural lan-
guage queries (NL) into executable sQL queries, significantly lowers
the barriers for users to access relational databases [6, 15, 18, 39, 42—
44, 49, 62]. Recent advances in language models have notably ex-
panded the capabilities and adoption of NL2sQL techniques, prompt-
ing database vendors to integrate NL2sQL solutions as essential
offerings [40]. Thus, understanding the core methods, recent inno-
vations, and practical challenges of NL2sQL has become increasingly
critical.

In this tutorial, we will systematically review recent NL2sQL tech-
niques through a new framework, as shown in Figure 1. We will
first review four major categories of representative methods in
the past decade (see Figure 1(a)). We then zoom in on the recent
advances of tunable pre-trained language models (PLMs) and large
language models (LLMs) for the NL2sQL translation. Then, the per-
formance of learning-based N12sQL models is highly dependent
on the quality of the training data. Therefore, we will summarize
available benchmarks and discuss how to collect and synthesize
high-quality training data (see Figure 1(b)). In addition, NL2sQL
model evaluation is crucial for optimizing and selecting models. We
will discuss multi-angle evaluation and scenario-based evaluation
for the NL2sQL task (see Figure 1(c)). Furthermore, the NL2sQL model
may generate incorrect SQL queries that are not equivalent to the NL
queries, such as selecting the wrong columns in the SELECT clause.
As shown in Figure 1(d), we analyze common NL2sQL errors and
categorize them into seven types of sQL errors and annotation er-
rors in benchmarks (e.g., BIRD). Undoubtedly, it is crucial to detect
whether the generated sQL are correct, to trace back to the reasons
if they are incorrect, and then to correct them, as this can enhance
the trustworthiness of the N12sQL solution. We will introduce the
NL2sQL debugging problem and preliminary solutions.

1.1 Tutorial Overview

We will give a 3-hour lecture-style tutorial.

Part I: Problem Definition and Preliminaries.

(i) Problem and Challenges: We will begin by introducing the moti-
vation and problem definition of NL2sQL. Next, we will elaborate
on the key challenges faced by researchers and practitioners.

(ii) Literature Review on PLMs, LLMs, and Agents: We will provide an
in-depth review of the literature on PLMs, LLMs and LLM Agents.
We will examine their evolution, capabilities, and applications in
NL2sQL and related tasks, highlighting their potential to address
existing challenges and advance the state of the art [57, 64, 68, 71].
Part II: NL2SQL Solutions with PLMs and LLM Agents

(i) PLM-based NL2SQL Solutions:. We then elaborate on PLM-based
NL2sQL architectures and methods. Specifically, we will elaborate
on data-centric approaches, including high-quality training data
synthesis [19, 45, 65, 69], and model-centric methods, focusing on
the model design perspective [18, 33, 36, 54].

(ii) LLM-based N1.2sQL Solutions: We will cover how to harness the
LLMs for the NL2sQL task using prompt engineering techniques [9,

16, 49]. We will then introduce how to further improve LLM-based
NL2sQL by leveraging the supervised fine-tuning [16, 30], multi-
agent framework [60], and agentic workflow [31].

(iii) Modularized N1L2sQL Solutions: Modularized NL2sQL solutions
use distinct modules for specific sub-tasks (e.g., schema linking),
offering better flexibility, adaptability, and error handling [30, 46].
We will introduce the key designs of these solutions [17, 30] and
examine how LLM agents can augment them [48, 56].

Part III. Benchmarks and Evaluation.

(i) Benchmarks: We will categorize available benchmarks and high-
light their limitations [8, 28, 35, 41].

(ii) Multi-angle and Scenario-based Evaluations: We will first review
existing evaluation methods [13]. Then, we will discuss the impor-
tance of multi-angle, scenario-based evaluation for model selection
and training data synthesis [7, 30, 45, 69].

(iii) Training Data Synthesis: We will also discuss how to auto-
matically synthesize high-quality training data to enhance model
training and facilitate domain adaptation [32].

Part IV. Debugging and Open Problems.

(i) NL2sQL Debugging: We will first introduce the NL2sQL debugging
problem. Next, we will discuss the design goals, choices, and current
progress toward a robust NL2sQL debugger [40, 41].

(ii) Open Problems: We will discuss key research opportunities.

1.2 Our Distinction

Differences from Existing Tutorials. Our tutorial distinguishes
itself from existing tutorials [23, 24, 37, 47] in three aspects.

(1) Comprehensive Lifecycle Review. We systematically review the
entire lifecycle of NL2sQL problem, as shown in Figure 1. This life-
cycle includes training data collection and synthesis methods (Fig-
ure 1(b)), various NL2sQL translation methodologies (Figure 1(a)),
highlighting the importance of evaluating NL2sQL methods through
a multifaceted approach (Figure 1(c)), and NL2sQL debugging tech-
niques (Figure 1(d)).

(2) Focus on LLM-based and Modularized Solutions. We explore LLM-
based methods, discuss the design of modularized solutions, and
emphasize the latest advancements in LLM agents for NL2sQL.

(3) Introducing the NL2SQL Debugging Problem. We highlight the
emerging NL2sQL debugging problem and its challenges.

Target Audience. This tutorial is designed for a diverse group of
VLDB attendees, including researchers, developers, practitioners,
and students. Researchers will derive insights from the pros and
cons of existing NL2sQL techniques and explore new topics and
research problems. Developers and practitioners will deepen their
understanding of the core techniques behind N12sQL solutions,
enabling them to select or enhance NL2sQL systems that are best
suited to their specific applications and business needs. Students will
be introduced to essential techniques and research topics within
the N1L2sQL field, laying a solid foundation for their research. The
tutorial will be self-contained, but we assume some familiarity with
SQL, database, and language models terminology.

2 TUTORIAL OUTLINE
2.1 Background

Problem Description. Given a natural language query (NL) and
a database consisting of tables {Ti,...,T,}, the goal of NL2SQL
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Figure 2: The Evolution of NL2SQL Solutions from the Perspective of Language Models.

(a.k.a. Text-to-SQL) is to generate an SQL query that accurately
represents the semantics of the original NL.
NL2SQL Task Challenges. There are several key challenges:

(NL Challenges) Ambiguous or Underspecified NL Queries. Natu-
ral language queries may lack sufficient detail or contain ambigui-
ties, making it difficult to infer the precise intent.

(DB Challenges) Complex and Ambiguous Database Schemas.
Real-world databases often feature complex structures and ambigu-
ous relationships. In addition, incomplete, inconsistent, or noisy
data further increases the difficulty of aligning NL queries with the
underlying database content.

(NL2SQL Translation Challenges) Intent Alignment and Gen-
erating Semantically Equivalent SQL. Unlike flexible NL queries, sQL
queries must follow strict syntax, demanding precise translations
for executable queries. A single NL query can map to multiple valid
SQL queries, creating ambiguity in determining the most appro-
priate output. Furthermore, NL2sQL translation must account for
schema dependencies, as variations in schema design can produce
different sQL queries for the same NL query, requiring models to
generalize across diverse real-world schemas effectively.
Difficulty Levels vs. The Evolution of NL2SQL Solutions. We
categorize the challenges of NL2sQL into five distinct levels, as
depicted in Figure 2(a). The first three levels include challenges
that have been resolved or are actively being tackled, showcasing
the steady progress in NL2sQL capabilities. The fourth level focuses
on current challenges addressed by LLM-based solutions, while
the fifth level outlines future challenges, reflecting our vision for
advancing NL2sQL over the next five years [40]. As depicted in
Figure 2(b), NL2SQL solutions have evolved significantly over time.

2.2 PLM-based NL2SQL Methods

With the introduction of Transformer [59] [66] around 2017, pre-
trained language models (PLMs) such as T5 significantly advanced
NL2sQL capabilities [33, 36, 54].

Recent works primarily focus on two aspects: (i) developing new
model architectures and learning strategies [2, 14, 18, 22, 26, 33,
36, 51, 54, 61], such as SC-Prompt’s divide-and-conquer approach
with hybrid prompt-tuning [18]; and (ii) acquiring high-quality
training data through automatic or semi-automatic synthesis and

augmentation methods, aiming at improving model performance,
robustness, and domain adaptability [19, 21, 45, 65, 69].

2.3 LLM-based NL2SQL Methods

Recently, the emergence of large language models like ChatGPT
and GPT-4 has triggered a new wave of solutions. These LLM-based
NL2sQL methods have become the most representative solutions in
the current N1L2sQL landscape [3, 4, 27, 30, 53, 55, 67, 70].
Prompting-based Methods. We will first show how prompt en-
gineering techniques can harness the capabilities of LLMs for the
NL2sQL task [16, 49]. We then highlight their challenges in han-
dling large and complex database schemas and incur significant
monetary costs when relying on closed-source LLMs. Finally, we
will share insights into developing cost-effective NL2sQL solutions,
such as EllieSQL [72], which employs complexity-aware routing to
enhance cost-efficiency by assigning queries to suitable generators.
Supervised Fine-tuning Methods. We will then take a close look
at how to leverage the supervised fine-tuning technique to further
enhance LLM-based N12sQL methods, which involves training the
LLM on a curated dataset of (NL, SQL) pairs to improve its accuracy
and reliability in specific scenarios [16, 30, 34].

LLM Agents for NL2SQL. Finally, we discuss the integration
of LLM agents into the NL2sQL pipeline, examining how these
agents leverage advanced reasoning, multi-step problem-solving,
and decision-making capabilities to handle complex queries across
diverse domains [7, 31, 48, 56].

2.4 Modularized NL2SQL Solutions

Recent studies are exploring the decomposition of end-to-end
NL2sQL into several steps, aiming to define the design space for
modularized NL2sQL solutions [10, 17, 30, 33, 50, 52, 60].

Key Modules in NL2SQL Solutions. Recent NL2sQL methods
typically rely on language models (e.g., GPT-40, LLaMA) as their
backbone for interpreting natural language queries and database
schemas. A crucial step is schema linking, which explicitly maps
elements of the NL query to database schema components [29, 33].
Additionally, incorporating database content further improves
schema understanding and query accuracy. During SQL genera-
tion, most methods adopt output refinement strategies, such as



constrained decoding (e.g., PICARD [54]) and heuristic prompting
techniques such as Self-Consistency [11, 38, 63].

Multi-Agent Framework for NL2SQL. We have already discussed
how to decompose NL2sQL tasks into subtasks. Intuitively, we can
deploy LLM agents to specifically tackle various sub-tasks, thereby
enhancing the overall performance of NL2sQL tasks. The key chal-
lenges of this framework lie in defining appropriate sub-tasks, cus-
tomizing different LLM-based agents for each specific task, and
ensuring effective collaboration among them [60]. A prominent
example is Alpha-SQL [58], which proposes a planning-centric au-
tonomous agent framework that combines LLMs with Monte Carlo
Tree Search (MCTS). This agent dynamically selects and activates
appropriate modules, such as schema linking and SQL generation,
based on contextual reasoning and execution-based feedback.

2.5 Benchmarks and Multi-Angle Evaluations

Benchmarks. With advancements in NL2sSQL, various datasets
have been developed to address the evolving challenges in the field.
Key benchmarks include BIRD [35], Spider [66], Dr.Spider [5], Am-
biQT [1], ScienceBenchmark [69], among others [8, 25, 28]. These
can be used to train and evaluate NL2sQL models, including assess-
ing robustness (Dr.Spider) and the ability to handle ambiguous NL
(AmbiQT). There is also a line of work emphasizing the critical role
of synthesized training data in the NL2sQL task [20, 21].

Metrics. Typical metrics for evaluating NL2sQL effectiveness in-
clude Execution Accuracy and Exact Match Accuracy [66]. Recently,
SuperSQL proposed Query Variance Testing [30] to further assess
model robustness under variations in natural language queries.
Evaluation Toolkits. Effectively evaluating NL2sQL methods and
guiding users toward suitable models for specific scenarios remains
challenging [12]. We briefly summarize existing benchmarks and
metrics for NL2sQL evaluation, followed by recent tools enabling
fine-grained evaluation and model comparison [30].

2.6 NL2SQL Results Debugging

NL2sQL solutions can definitely produce incorrect sQL queries. De-
tecting and repairing these sQL queries is crucial for developing a
trustworthy NL2sQL solution. To this end, NL2sQL results debugging
is an option. The key task is to detect whether the generated sQL
queries are semantically equivalent to the NL query [40].

To understand the types of errors present in sQL queries gen-
erated by existing NL2sQL methods, NL2SQL-BUGs [41] adopts a
two-level taxonomy to systematically classify semantic errors, cov-
ering 9 main categories and 31 subcategories. NL2SQL-BUGs also
proposes a benchmark for semantic error detection and uses it
to test current LLMs. This analysis can help in building a robust
NL2sQL results debugger. We will also discuss the design choices
and current progress toward a robust NL2sQL results debugger.

2.7 Research Opportunities

We summarize open problems to further advance NL2sQL methods:
Multi-Database NL2SQL Problem. Real-world applications often
require queries that span multiple databases with heterogeneous
schemas. Key challenges include how to dynamically select relevant
databases, accurately integrate their diverse schemas, effectively
aggregate query results, and adapt queries across domains.

Trustworthy and Interpretable NL2SQL. Existing NL2sQL meth-
ods often produce inaccurate or unreliable queries due to ambiguous
natural language inputs and inconsistent schemas, hindering user
trust. Key challenges include how to automatically clarify ambigu-
ous queries, transparently interpret SQL query logic, and provide
interactive debugging support to improve overall reliability.
Interactive NL2SQL Systems. Complex database tasks often re-
quire expert construction of sophisticated SQL queries. Key chal-
lenges include how to enable users to interactively and incremen-
tally build queries, combining automatic SQL generation with
expert-driven adjustments seamlessly.

Cost-effective NL2SQL Solutions. Although powerful, LLM-
based N1L2sQL approaches incur substantial computational costs
and inference delays due to extensive token consumption. Key chal-
lenges include how to reduce inference expenses through modular-
ized designs, multi-agent collaboration, and adaptive training-data
generation driven by model feedback.
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