R-Bot: An LLM-based Query Rewrite System

Zhaoyan Sun
Tsinghua University
szy22@mails.tsinghua.edu.cn

Xuanhe Zhou
Shanghai Jiao Tong University
zhouxh@cs.sjtu.edu.cn

Guoliang Li
Tsinghua University
liguoliang@tsinghua.edu.cn

Xiang Yu Jianhua Feng Yong Zhang
Huawei Company Tsinghua University Tsinghua University
yuxiang44@huawei.com fengjh@tsinghua.edu.cn zhangyong05@tsinghua.edu.cn

ABSTRACT Table 1: R-Bot v.s. Existing Query Rewrite Methods.
Query rewrite is essential for optimizing SQL queries to improve Method Heuristic | Heuristic | Traditional R-Bot
their execution efficiency without changing their results. Tradition- Fixed Order | Exploring | Learning | LLM&Evidence
ally, this task has been tackled through heuristic and learning-based Train No No Yes No
methods, each with its limitations in terms of inferior quality and #Rules High Low High High

low robustness. Recent advancements in LLMs offer a new paradigm Quality Low Low High High

by leveraging their superior natural language and code comprehen- Robust High High Low High

sion abilities. Despite their potential, directly applying LLMs like
GPT-4 has faced challenges due to problems such as hallucinations,
where the model might generate inaccurate or irrelevant results. To
address this, we propose R-Bot, an LLM-based query rewrite system
with a systematic approach. We first design a multi-source rewrite
evidence preparation pipeline to generate query rewrite evidences
for guiding LLMs to avoid hallucinations. We then propose a hybrid
structure-semantics retrieval method that combines structural and
semantic analysis to retrieve the most relevant rewrite evidences
for effectively answering an online query. We next propose a step-
by-step LLM rewrite method that iteratively leverages the retrieved
evidences to select and arrange rewrite rules with self-reflection.
We conduct comprehensive experiments on real-world datasets
and widely used benchmarks, and demonstrate the superior per-
formance of our system, R-Bot, surpassing state-of-the-art query
rewrite methods. The R-Bot system has been deployed at Huawei
and with real customers, and the results show that the proposed
R-Bot system achieves lower query latency.

PVLDB Reference Format:

Zhaoyan Sun, Xuanhe Zhou, Guoliang Li, Xiang Yu, Jianhua Feng,

and Yong Zhang. R-Bot: An LLM-based Query Rewrite System. PVLDB,
18(12): 5031 - 5044, 2025.

doi:10.14778/3750601.3750625

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/curtis-sun/LLM4Rewrite.

1 INTRODUCTION
Query rewrite is designed to transform an SQL query into a logically
equivalent version that is more efficient to execute, playing a crucial

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
do0i:10.14778/3750601.3750625

role in enhancing query performance in numerous practical sce-
narios. In Huawei’s real-world database deployments, slow queries
are regularly identified and optimized for improved performance.
For instance, while migrating an enterprise’s core application, we
rewrote 20 critical queries, leading to a 3.7x reduction in workload
latency. Despite its significance, the process of query rewrite is NP-
hard [61, 63], meaning there is a vast collection of possible rewrite
rules, and the number of potential rule combinations increases
exponentially. This complexity makes identifying an effective com-
bination of rules a challenging and laborious task. There are two
main paradigms for addressing this challenge.

Heuristic-based Methods. Some heuristic-based methods apply
the rules in a fixed order derived from practical experience (e.g.,
PostgreSQL [10]). However, they may not achieve optimal results
for queries requiring different rule orders, thereby risking the omis-
sion of essential rewrite sequences. Furthermore, other heuristic-
based methods (e.g., Volcano [25]) attempt to comprehensively
explore various rule orders through heuristic acceleration. Never-
theless, they might overlook dependencies among rules, such as
an initially inapplicable rule could be activated by another, leading
to the potential neglect of vital rewrite sequences. Thus, heuristic-
based approaches are often criticized for their inferior quality.

Learning-based Methods. To optimize query rewrite, learning-
based methods have been proposed [61, 63]. These methods employ
neural networks that are trained on historical query rewrites to
identify and apply the most advantageous rules for rewriting a
query. However, learning-based approaches face criticism for their
low robustness. For example, models trained through these methods
struggle to adapt to unseen database schemas without undergoing
additional training on new query rewrite examples (e.g., hundreds
of examples), which may not be readily available in real scenarios.

Recent advances in large language models (LLMs) have shown
superiority in understanding natural language and code, as well as
reasoning ability [13, 21, 22, 26, 28, 30, 33, 39, 43, 47, 48, 56, 58, 59].
As LLMs can capture the query rewrite capabilities by pre-training
from database forums and codes, encompassing both the direct
rewriting ability of applying a rule and the indirect rewriting ability
to draw inspiration from multiple dependent rules, we can leverage

https://doi.org/10.14778/3750601.3750625
https://github.com/curtis-sun/LLM4Rewrite
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750625

LLMs to guide the query rewrite, particularly for slow queries that
often remain as bottlenecks.

To realize this target, we aim to develop an LLM-based query
rewrite system with three main advantages: (1) High Quality. On
one hand, our system can figure out the potential rules that have
implicit relations with the query (e.g., ones that become applicable
only after applying other rules). On the other hand, our system
can understand the interrelations among rules and generate an
effective sequence of rules for holistic improvements. (2) Zero-Shot
Robustness. Unlike conventional learning-based approaches that
are limited to in-distribution data [61, 63], our system harnesses
LLMs, whose extensive pre-training empowers it to adapt to new
datasets seamlessly without the need for additional retraining. (3)
Executability and Equivalence. Our system ensures the rewritten
query is both executable and functionally equivalent to the original
one, as it performs query rewrite by selecting and ordering well-
crafted rewrite rules from established query optimization engines,
rather than directly rewriting the queries via LLMs.

However, directly utilizing LLMs for query rewrite proves to be
ineffective due to their tendency for hallucination [27]. For example,
despite being pre-trained on a vast corpus of query rewrite data
(e.g., Stack Overflow [12]), employing the advanced LLM GPT-4 to
directly rewrite queries in DSB benchmark [18] yielded only a 5.3%
success rate, which is significantly low. This highlights two primary
challenges associated with leveraging LLM for query rewrite.

C1: How to mitigate LLM’s factuality hallucination in query
rewrite? It’s common for LLM to encounter confusion during query
rewrite, suggesting an intuitive approach of guiding LLM with spe-
cific rewrite evidences (e.g., database Q&As, database manuals and
codes, forum, etc) closely related to the query. However, several
challenges arise from this approach. Firstly, LLM often struggles to
interpret the raw rewrite evidence due to difficulties in aggregat-
ing fragmented knowledge across various rewrite documents and
understanding complex query rewrite codes. Secondly, it’s crucial
to sift through and identify the most beneficial rewrite evidences
to serve as references for LLM, thereby steering it towards a more
efficient rule selection for query rewrite.

C2: How to mitigate LLM’s faithfulness hallucination in
query rewrite? LLM encounters challenges in accurately analyz-
ing complex queries, such as those containing multiple sub-queries,
and in fully leveraging detailed rewrite evidences. Thus, it becomes
essential to develop a multi-step LLM rewrite method that breaks
down the query rewrite process into more manageable segments,
thereby aligning with LLM’s capabilities for better performance.
To tackle the above challenges, we propose R-Bot, an LLM-based
query rewrite system designed with a systematic approach. First,
we gather and prepare rewrite evidences from diverse sources, in-
cluding integrated well-formatted rewrite rules aggregating from
rewrite documents and summarizing from the complex rule codes,
as well as high-quality Q&As from database forums (addressing
C1). Second, for an input SQL query, we propose a hybrid structure-
semantics method for retrieving pertinent evidences, including
rewrite rules by matching functions and rewrite Q&As with both
query structure and rewrite semantics similarities (addressing C1).
To enable LLM to comprehend the rewrite evidences, we synthesize

this information into rewrite recipes, which detail in natural lan-
guage how to utilize the Q&As and rewrite rules for rewriting an
SQL query, and we retrieve most relevant rewrite recipes to guide
LLMs for query rewrite (addressing C2). Third, we design a step-
by-step LLM rewrite algorithm, which guides LLM to iteratively
utilize the rewrite recipes to refine its rewrite rule selection and
ordering, possibly choosing a more promising rule sequence by
reflecting and self-improving the rewrite process (addressing C2).

Contributions. In summary, we make the following contributions.
(1) We develop an LLM-based query rewrite system, R-Bot, which
can select an effective rewrite rule sequence to guide query rewrite
engines to rewrite a query (see Section 3).

(2) We design a multi-source rewrite evidence preparation pipeline,
including clustering-based document reorganization and hierarchi-
cal code summarization for rewrite codes (see Section 4).

(3) We propose a hybrid structure-semantics retrieval method for
retrieving relevant rewrite evidences (see Section 5).

(4) We propose a step-by-step LLM rewrite method that iteratively
leverages the retrieved Q&As and rewrite recipes to select and
arrange rewrite rules with self-reflection (see Section 6).

(5) Our experimental results on real-world datasets and widely used
benchmarks demonstrate that R-Bot can significantly outperform
existing state-of-the-art query rewrite methods. We have deployed
R-Bot at Huawei with real customers, achieving much higher real-
world query rewrite performance (see Section 7).

2 PRELIMINARIES
2.1 Query Rewrite

Rewriting a query involves numerous query transformations, and
we typically identify and summarize common transformation pat-
terns into rewrite rules. For instance, a query rewrite rule could
involve replacing an outer join with an inner join when they are
equivalent. The composition of these rules offers the flexibility to
accommodate a wide range of query rewrite requirements.

Definition 2.1 (Rewrite Rule). A rewrite rule r is denoted as a
triplet (c, ¢, f), where c is the condition to use the rule, ¢ is the
transformation to be applied, and f is a matching function used for
evaluation. If a query q satisfies the condition c as determined by
the matching function f, then the transformation ¢ can be applied
to the query g, resulting an equivalent rewritten query q[’ 1

For example, Table 2 shows some query rewrite rules. Since
the column “comm” with condition “comm=100" in the SQL query
satisfies the condition “some ‘GROUP BY’ key is constant across
rows” of rule r3, we can apply the rule and remove the column
“comm” from the “GROUP BY” clause.

Numerous rewrite rules have been pragmatically incorporated
into database products, as evidenced in existing literature and prod-
ucts such as PostgreSQL [10], MySQL [9], Apache Calcite [15].
However, when applying the rules to rewrite a query, it is often
cumbersome to decide the best rule sequence for two primary rea-
sons. First, since a rewrite rule sometimes degrades the query (e.g.,
q[’ | with higher execution latency than q), we should examine
whether or not to use the rule. Second, it is also important to decide
the order of applying the rules. For instance, applying one rule may
render another rule obsolete. Thus query rewrite aims to find an
optimal rule sequence to rewrite a query in order to minimize the
execution cost of the rewritten query, which is formulated as below.

Table 2: Example Rewrite Rules.

Rule Condition

Transformation Matching Function

r1 | FILTER_SUB_QUERY TO JOIN

Scalar, “IN”, or “EXISTS” sub-
query in “WHERE” clause.

Transformed to join on
the correlated column.

b -> b.operand(Filter.class)
.predicate(containsSubQuery);

rz | FILTER_INTO_JOIN from one join side.

Filter condition with column

Push down condition to
filter non-nullable side.

b -> b.operand(Filter.class)
.onelnput(Join.class);

r3 | AGGREGATE_PULL_UP_CONSTANTS

Some “GROUP BY” key is
constant across rows.

Remove constant key.
Constant may project.

b -> b.operand(Aggregate.class)
.predicate(hasConstantExps);

Rule Specification Rule Spec Recipe

[r3]

Input Query

N
|

1

SELECT empno 1
FROM emp |
WHERE \
|

1

|

|

|

1

1

|

|

- Matching Function:

E !
FROM bonus. SELECT
HERE

Rewrite Q&A

- Question: s

ename = emp.ename

Q&A Recipe

" Jasarerieval
Figure 1: Query Rewrite Example: the sequence of rewrite

rules [r1, 72, 73] is found by R-Bot based on retrieved rewrite
rule specifications and rewrite Q&As.

et t P L

Table 3: Rewrite Rule Specification v.s. Rewrite Rule.

Rule Specification Rewrite Rule
Mapping | Single/Multiple Rules Single Rule
Source Document/Code Code in Single Engine
Clarity LLM-Readable Compiler-Readable
Selection Match Function LLM&Match Function

Definition 2.2 (Rule-based Query Rewrite). Consider a query q
and a set of rewrite rules R. Assume «a is a sequence of certain
rewrite rules selected from R. Let g* denote the rewritten query
by sequentially applying the rules in a to rewrite g. Query rewrite
aims to obtain an optimal rule sequence a*, such that the execution
cost of g% is minimized among all possible rewritten queries of g.

The query rewrite problem has been proven to be NP-hard [61].
Traditional methods cannot select high-quality rules. To address
this limitation, we advocate for utilizing LLM to select rewrite rules.
To address the hallucination problem of LLMs [27], we perform an
offline stage to extract query rewrite evidences, including rewrite
Q&As and rewrite rule specifications, and store them as Q&A repos-
itory and rewrite rule specification repository respectively. During
the online phase, given a SQL query, we retrieve relevant Q&As
and rule specifications, and generate rewrite recipes, which outline
how to rewrite a query using rewrite Q&As and rule specifications,
assisting LLMs in comprehending the rewrite evidences. With the
assistance of the rewrite recipe, LLMs are then guided through a
step-by-step process to judiciously select and apply rewrite rules
to the query. Next we formally define these notations.

Definition 2.3 (Rewrite Q&A). A rewrite Q&A includes a query
rewrite question and a rewrite answer on how to rewrite the query
in natural language.

Definition 2.4 (Rewrite Rule Specification). A rewrite rule spec-
ification is used to describe a rewrite rule (c,t, f) using natural
language, which is also a triplet (nc, nt, f), where nc describes the
condition and nt describes how to apply the transformation in
natural language.

For example, Figure 1 shows a rewrite rule specification derived
from Calcite code of rule “AGGREGATE_PULL_UP_CONSTANTS”,

MAX(sal) AS "EXPRSO",

Execution: > 5 min — 1.67 s

which explains the condition and transformation in natural lan-
guage. Besides, the rule specification will be retrieved as evidence
in this example, and we can use this evidence to rewrite the query.

Based on the general concepts, we further introduce definitions
related to particular query rewrite, including rewrite Q&A recipe
and rewrite rule specification recipe.

Definition 2.5 (Rewrite Q&A Recipe). Given a query g and a Q&A,
a Q&A recipe provides instructions in natural language on how to
utilize the Q&A to rewrite the query q.

Definition 2.6 (Rewrite Rule Specification Recipe). Given a query
q and a rewrite rule specification, a rewrite rule specification recipe
describes how to use the rewrite rule specification to rewrite the
query q in natural language.

For instance, Figure 1 shows examples of rule specification recipe
and Q&A recipe. Note that the rewrite Q&A may elaborate on
application of multiple rules, and thus Q&A recipes can assist in
guiding rule selection by considering the interrelations among
these rules. Besides, rule specification recipes, derived from various
sources like documents and codes, provide complementary insights
to support query rewrite, as illustrated in Table 3.

In this paper, we focus on how to prepare the Q&A repository
and rewrite rule specification repository (see Section 4), how to
generate Q&A recipe and rule specification recipe (see Section 5),
and how to use them to rewrite a query (see Section 6).

2.2 Large Language Models

Since LLMs have hallucinations [27], retrieval-augmented genera-
tion (RAG) has been proposed to mitigate this issue by indexing task-
specific knowledge, retrieving relevant content for a given query,
and generating answers based on the retrieved context [23, 35, 52,
53]. However, existing RAG techniques face limitations when ap-
plied directly to query rewrite for two primary reasons. First, there
is absence of embedding methods capable of accurately evaluating
the similarity between Q&As and the input query. For example, the
conventional RAG technique relies on text embeddings for both the
Q&A and the query, capturing only their semantic similarity while
neglecting structural information pertinent to query rewrite. To
address this gap, we propose a hybrid structure-semantics approach
for retrieving relevant Q&As, as detailed in Section 5. Second, the
multitude of rules presents a significant challenge for LLMs, as
directly arranging these rules can lead to serious hallucination
problems. This necessitates the development of a task-specific, step-
by-step LLM algorithm that breaks down the query rewrite process
into simpler, more manageable stages, as elaborated in Section 6.

3 THE OVERVIEW OF R-BOT

R-Bot includes an offline stage and an online stage (see Figure 2).
Offline Rewrite Evidence Preparation. This stage aims to ex-
tract rewrite Q&As from the Web and rewrite rule specifications
from rewrite codes and database documents, subsequently storing

Online | Offline

&% R-Bot Rewrite Structure-Semantics Evidence Retrieval Rewrite Evidence Preparation
* Rewritten Query: ... =] Rule Spec Input SQLin Question F=—] Q&A Rewrite ||| ® Sec xx Clustering-based
s s cuerr 0 o | (@) repostory | gy | @ Bdrepostory | || 077 L " bocumen
X - - Rule 2 Reorganization
y . Match Rewrite in Answer . Structure-Semantics | (Rule |4 g
- Rewrite Recipe: Function ! Embedding Index | Specs, | ‘poc ony
- (Rule Spec) Eliminate correlated sub- Generate Q&As)
query calculating “MIN(price)” with join. ¢ FILTER_INTO_JOIN
- (Q&A) Perform “GROUP BY” before join. Q am®iE 8— Q) <:| join_fiters = Cluster 10
Rule Spec Structure Semantics Structure-Semantics 2 conjunctions(join.condition) “Rule | @
Retrieval Embedding Embedding Q&A Retrieval (Secx9)
Input Query b 7’- —————————————————————— Rule Code] Z“/g"
: . . . ec yy,
OY- . Y- Hierarchical Code
1 PP @ _Generate £} Retrieved ’4 _Generate, L) Summarization G
——— "~ Retrieved & Rule Spec Results Retrieved @ Q&A Summarize
Q Evidence Rule Specs Recipe Q&As Recipe |
Retriever — & FILTER_INTO_JOIN Rewrite
.l . Jjoin_filters =
Retrieved Input — = RlcjlliASQ:)lZf::)n u’J Soore: 07 Z uj‘ g’?oks !/l Join conditions with “AND". R_u_le Spec
Results Query © o ®, Score: 0.5 g 0. 2 conjunctions(join.condition) - Condition
and Ordering Retrieved & Select (Initial) &[s - - Transformation
iti. N ummarize
Complete (& LLM | continue (';'“a'_) ' R:'e Sez s[_asas Peoner Rule Seq [summarize | ° Match Function
Rewrite | 4] Rewriter | Rewrite g ecipe-bass N
— ~. Rule Selection - Step role: <Instruction> | | | [~~~ -~~~ "~ "TTTTTTTTTTT .
. S~k and Ordering p role: =ins L ! .
Reorder | | Rewrite ~ v ~ - Follow <Rewrite Recipe>1} ©«@ QaAFitter Rewrite
Rules Process Output|__Rewrite S~ | - Selectiorder <Rules>] @ High Quality Q&A
- Query] ", | @® Related to Rewrite|| - Question
& Rewrite " (Refined) Step-by-Step Website
N . Q8&As - Answer
@ Reflection Rule Seq LLM Rewrite

Figure 2: Overview of R-Bot.

them in Q&A repository and rule specification repository, respec-
tively. Rewrite rule specifications are general and apply to multiple
SQL queries, while rewrite Q&As are specific and pertain to indi-
vidual queries. These resources assist in rewriting an online SQL
query by guiding LLM-based selection of rewrite rules, without
compromising the SQL equivalence inherently ensured by the rules.

We extract rewrite rule specifications from two types of re-
sources. (i) Database menus and documents. Given that query
rewrite evidence is often dispersed across various documents, sec-
tions, and paragraphs, it becomes necessary to aggregate these
evidences from diverse sources through semantic clustering and
distill them into a coherent rewrite rule; (ii) Rule codes. Consider-
ing the complexity of the code, characterized by its intricate nested
calls, we employ a hierarchical strategy to streamline the code from
simple to complex. This approach involves initially summarizing
straightforward functions, followed by recursively summarizing
more complex functions. In this process, symbol references are
clarified using functions that have already been summarized. Ul-
timately, this method results in a concise summary of the overall
rule code, effectively condensing the rule into a simplified format.

We extract Q&As from website Q&As (e.g., Stack Overflow [12]).
Given the wide range of topics and variable quality of these website
Q&As, we filter out high-quality Q&As related to query rewrite, by
SQL selections (e.g., on question tags) and LLM filtering.

Besides, we construct efficient indexes to enhance the perfor-
mance of Q&A and rule specification retrieval. We will discuss the
detailed techniques in Section 4.

Online LLM-Guided Query Rewrite. Given an online SQL query,
this stage retrieves pertinent Q&As and rule specifications, lever-
ages them to rewrite the query, and offers reflections that not only
complete the rewrite process but facilitate its further refinement.
While LLM may have encountered data resembling rewrite evi-
dences during pre-training, their sparse density often leads to hal-
lucination in query rewrite. To address this, we guide LLM rewrite
using the pertinent rewrite evidences prepared in a concise format.

(1) Structure-Semantics Evidence Retrieval. For an online SQL
query, we retrieve relevant evidences from rewrite rule specification
repository and Q&A repository.

(i) Rule specification retrieval. As the rule specification has
matching conditions and matching functions, we can easily re-
trieve the relevant rule specifications whose matching functions
are satisfied by the input SQL query;

(ii) Q&A retrieval. There are two types of Q&As potentially
relevant to the SQL query. First, the SQL questioned in Q&A struc-
turally matches the input SQL query. We require a structure-aware
matching method to retrieve such Q&As. To this end, we propose
a query structure embedding composed of (i) the query template
embedded by pre-trained embedding, and (ii) one-hot embedding
which represents the query’s matched rule specifications to assess
the structural similarities. Second, Q&A semantically matches the
input SQL query, such as the rewrite explanations provided in the
answer section of the Q&A. However, SQL usually has no natural
language rewrite explanations. To this end, we can leverage the
retrieved rule specification to identify relevant Q&As based on
their semantics. We propose a semantics embedding method to
embed the rule specification and Q&A, and then assess their simi-
larities based on a similarity function (e.g., L%-distance [3]). Lastly,
to retrieve Q&As relevant to the input query both structurally and
semantically, we merge the query’s structural embedding with its
semantic embedding into a unified representation. We then build an
embedding index for Q&A repository offline. For an online query,
we utilize this index to efficiently retrieve top-k relevant Q&As.

For retrieved rule specification and Q&A of the input SQL query,
we leverage LLM to generate SQL-aware rule specification recipe
and Q&A recipe that describe how to utilize them to rewrite this
SQL query. We will discuss the technical details in Section 5.

The retrieved rule specification recipe and Q&A recipe will be
used to reformulate the SQL query in the following steps.

(2) Step-by-Step LLM Rewrite. Given the rewrite rules sup-
ported by the query rewrite engine (e.g., Apache Calcite [2]), we
direct LLM to select pertinent rules to rewrite. As there are many
rules, if we directly instruct LLM to arrange a rule sequence, LLM

can encounter serious hallucination problem. To mitigate this prob-
lem, we propose a step-by-step LLM rewrite method that decom-
poses rule-based query rewrite into several simpler steps.

(i) Q&A-based rule selection and ordering. Given the rewrite
rules and a sorted sequence of Q&As retrieved from the previous
step, ranked by the relevance score, we select and rank the rules.
We first initialize the score of each rule as 0. Then for each pair of a
rule and a Q&A, we use LLM to evaluate whether they are relevant,
i.e., whether the rule is applicable in light of the Q&A. If applicable,
we increase the score of the rule by the score of this Q&A. Then
by enumerating all the pairs of rules and Q&As, we can get the
final score of each rule and rank the rules based on the final score.
Since the relevance can be evaluated by LLM offline, this step can
be efficiently executed by algorithms.

(ii) Recipe-based rule selection and ordering. Building on the
preliminary rule sequence established in the previous step, we
utilize LLM to sift through and exclude any rules that do not align
with the recipe. A straightforward way is to enumerate each pair
of recipes returned by step (1) and rules returned by step (2.i), and
ask LLM to evaluate their relevance and rank the rules. However,
there are two limitations. First, it may overlook the rule relevance,
since a recipe may encompass multiple rules. Second, since the
recipe is generated from queries and cannot be evaluated offline,
assessing each pair with LLM becomes costly. To address this issue,
we propose a filtering method to efficiently select the rules.

(iii) Rule-based rewrite. Based on the selected rules, we input
them to the query rewrite engine to rewrite the query.

We will discuss the technical details in Section 6.

(3) Rewrite Reflection. It provides rewrite reflections to either
further refine the query or to finalize the rewrite process. It has
two reflection resources. The first involves getting the cost of the
rewritten query from databases, comparing it with the cost of the
query prior to its rewrite, and returning complete if the cost of
the rewritten query is smaller; continue otherwise. ! The second
involves asking LLMs to check whether or not all the rewrite recipes
are realized by the query rewrite in this step, and returning complete
if yes; continue otherwise. So there are four possible reflections.

(i) complete, complete: It finalizes the rewrite process and returns
the rewritten query.

(ii) complete, continue: It further rewrites the query by jump-
ing to step (1) with the previously rewritten query as the input.
Specifically, it starts a new round of LLM-guided query rewrite,
where new rewrite evidences can be retrieved and new rules can
be selected based on the previously rewritten query.

(iii) continue, complete: It further refines the query by jumping
to step (2.ii), focusing on reordering the existing set of rules. Specif-
ically, besides the recipes and the rules, we further input the rules
actually used in the previous rewrite process, and instruct LLM to
prioritize the unused rules.

(iv) continue, continue: This approach integrates elements from
branches (3.ii) and (3.iii). Initially, it defaults to branch (3.iii)
unless this path is revisited excessively, surpassing a predefined
threshold. Under these circumstances, given that branch (3.iii) has

!Database statistics play a crucial role in query optimization. However, LLM often
struggles to directly understand complex database structures and intricate statistical
data. To address this, we leverage the statistics indirectly through query costs, utilizing
these costs to guide the LLM reflection mechanism.

exhaustively explored the rules for the current query, the process
transitions to branch (3.ii). This shift initiates a new cycle, aiming
to further refine the query.

Deployment at Huawei. We have deployed R-Bot at Huawei
database GaussDB [32, 34]. Initially, GaussDB identifies slow SQL
queries, such as those with execution time exceeding one minute.
Then, GaussDB utilizes R-Bot to rewrite the detected query. Next,
if the version rewritten by R-Bot proves to be more efficient than
the one rewritten by GaussDB, the system caches the query pattern
using its domain-specific language (DSL). This pattern is integrated
into GaussDB non-intrusively via a SQL-like plugin, which acti-
vates instantly without requiring database version updates or code
changes, ensuring a seamless experience for front-end applica-
tions. During runtime, if a new query matches the cached pattern,
GaussDB transparently invokes R-Bot to rewrite the query and
apply the optimization. Furthermore, R-Bot has been widely used
to address slow SQLs at Huawei. We have also validated R-Bot on a
real-world dataset from China’s largest bank (ICBC) (see Section
7.5). The results demonstrate that R-Bot effectively optimizes real
queries, significantly improving latency of 14 critical slow queries
and reducing overall latency from 9.23 hours to 4.37 hours.

4 REWRITE EVIDENCE PREPARATION

We discuss how to extract and standardize rewrite evidences from
diverse rewrite sources. This evidence is crucial for crafting a com-
prehensive rewrite recipe that guides the LLM rewrite process. We
explain respectively how to prepare rewrite rule specifications (see
Section 4.1) and rewrite Q&As (see Section 4.2).

4.1 Rewrite Rule Specification Preparation

The rewrite rule specification clearly outlines, in natural language,
the condition for use, the query transformation operations to be
executed, and the matching function used for evaluation. It contains
three key components. (i) “condition”: a prerequisite that a query
must fulfill to utilize the rule; (ii) “transformation”: detailed steps
for transforming the query into an equivalent form that is opti-
mized for more efficient execution; and (iii) “matching function™
an executable function that outputs ‘1’ if the input query matches
the rule; and ‘0’ otherwise.

Generating rewrite rule specifications is challenging due to the
considerable effort needed to distill and synthesize information
from various sources into a concise format. This process includes
summarizing extensive rewrite codes, which may span thousands
of lines and feature complex structures, as discussed in Section 4.1.1.
Additionally, it integrates crucial but scattered information from
documents on rewrite rules, as outlined in Section 4.1.2.

4.1.1 Transforming Rule Code into Rule Specification. Given that
some query rewrite engines, such as Apache Calcite [2], are not ac-
companied by comprehensive documentation, we are compelled to
decipher the rewrite rules directly from the raw code. This process
involves navigating through complex code structures that include
intricate nested calls. To address this challenge, we introduce a hier-
archical rule code summarization method, as illustrated in Figure 3.
Our approach begins with the construction of a rule code structure
tree, emanating from the rule’s main function. In this tree, each
node represents a symbol declaration (e.g., functions, variables,
classes), while each edge denotes a symbol reference relationship.

Progressing through the structure, we methodically summarize the
declaration code, moving from simple to more complex elements
and clarifying symbol references using previously summarized sym-
bols. With the summary of the root node at our disposal, we guide
LLM to convert this into a standardized rewrite rule specification.

Rule Code Structure Analysis. Given the symbol references of
the rule code, it is crucial to clarify the symbol declarations before
summarizing the rule code. We first build a root node representing
the main function. Then, we use code analysis tools (e.g., JavaSym-
bolSolver [1]) to associate the symbols with their corresponding
declarations, which are children nodes of the root node. If the decla-
ration of some nodes also accesses other unseen symbols, we further
resolve its symbol references. We recursively expand the nodes un-
til reaching built-in symbols. In this way, we obtain a rule code
structure tree, where each node represents a symbol declaration
and each edge represents a symbol reference relationship.

Hierarchical Rule Code Summarization. The complex rule code
structure poses two challenges for LLM summarization. First, due to
the relevance of nearly every declaration in the code, if we directly
input them to LLM, the long context can greatly degrade LLM
performance [31, 38]. Second, the substantial width and depth of
the code structure (e.g., tens of nodes) further increase the reasoning
burden. To address these issues, we propose a hierarchical rule code
summarization method. First, if a node declaration already has
detailed comments, summarization is unnecessary. Second, leaf
node without comments can be directly summarized by LLM due
to the simple code and absence of unfamiliar symbols. Third, for
the non-leaf node whose children are already summarized, the
symbol references in the declaration code can be clarified by its
children summaries. Specifically, we insert the symbol summaries
as comments into the declaration code, which enables accurate LLM
summarization. This process is repeated recursively until the root
node is summarized, yielding a summary of the entire rule code.

Rule Specification Regularization. To facilitate LLM understand-
ing, we regularize the rule code as a standard rewrite rule spec-
ification. Specifically, we use LLM to extract the condition and
transformation of the rule, using the prompt pyey =“Given a rewrite
rule code summary, your task is to extract the rewrite rule that explains
completely and detailedly the condition and transformation.”.

4.1.2 Transforming Rewrite Document into Rule Specification. Con-
sidering the variety of rewrite documents, such as those for Post-
greSQL and MySQL, note that sections within a single document
may cover rewrite rules that bear weak relation to one another. For
example, optimizations for the “WHERE” clause might discuss both
constant folding and index utilization without clear interrelation.
Additionally, components complementary to a rule can be dispersed
across different documents. For instance, while a MySQL document
might detail conditions conducive to acceleration via index utiliza-
tion, a separate PostgreSQL document could highlight how certain
column transformations might inhibit the use of indexes. Together,
these insights from disparate sources can contribute to forming a
comprehensive rewrite rule specification.

To address this, we propose a clustering-based document re-
organization method. First, we use LLM to extract rewrite rules
from rewrite documents. Second, for extracted rules, we cluster the
correlated ones together into one group, where we evaluate their

@ Rule Code @ Hierarchical Rule
Structure Analysis Code Summarization

List<Node> inferJoinConditions(=
List<Node> rexNodes, Join join) { | | * Enum of join types.
/

Declaration

- Name: ConditionFromEqualSets(
perform join, equalSets)); }

result.addAll(public enum JoinRelType {

7/ Tnner join.
INNER,

X // Summary:
- Type: // Tt deduces additional equality

; /7 conditions not stated in the
\(Mam) Function 7/ original join conditions.. '

// Full-outer join.
FULL,

Call Access Function @ Variable
Function } Variable Summary Comment
; : void perform(RelOptRuleCall call,
|Declarat|on| |Declarat|on| Filter filter, Join join) {
List<Node> joinFilters =
Vs
- Name: - Name: Rel0ptUtil.conjunctions(
. o j .getCondit H
inferJoinConditions FULL o Join-getCondition())
if (joinType != JoinRelType.FULL) {
- Type: - Type: joinFilters = inferJoinConditions(
Function Variable joinFilters, join); }
\. Call.transformTo(relBuilder.build()); }

.gn . - . Main Functic
® Rule Specification Regularization @¢ e

Name: FILTER INTO_JOIN
Condition: Filter conditions apply to the result set of join.

Transformation: if some filter conditions are associated only with columns from
one side of “INNER JOIN”, move them as “ON” clause or “WHERE” clause on
respective side. Besides, it may infer more equal conditions for join condition...
Matching Function: ...

Figure 3: Transforming Rule Code into Rule Specification.

semantics similarities by their text embeddings (e.g., SBERT [41]).
Third, we use LLM to summarize each rule cluster, and transform
each cluster summary as a regularized rewrite rule specification.

Rule Extraction. We use LLM to extract rewrite rules from the
rewrite documents in two steps. First, if we directly input all the
documents to LLM, it often overlooks important details in the mid-
dle of the extremely long context (e.g., 100k) [31, 38]. We thus split
the documents into structured blocks (e.g., sections, sub-sections)
that each can be effectively processed by LLM. Second, we instruct
LLM to extract rewrite rules from the split blocks. To mitigate the
hallucination problem [27], we require LLM to locate supporting
content in the source document. If no such content can be found,
we can deem the extraction low quality and repeat LLM extraction.

Rule Clustering. To identify pertinent rules among documents
(e.g., condition push-down involved in both PostgreSQL and MySQL
documents), we cluster the rules based on rule semantics. Specifi-
cally, we embed each rule into vectors (e.g., using multi-qa-mpnet-
base-cos-v1 [11, 41]), and cluster them using Gaussian Mixture
Models [42]. To enhance clustering in high-dimensional space, we
apply Uniform Manifold Approximation and Projection for dimen-
sionality reduction by approximating local data manifold [40].

Rule Specification Regularization. We use LLM to obtain stan-
dardized rule specifications from rule clusters. First, we summarize
each cluster using LLM with prompt psymm = “Given rewrite rule
components, your task is to summarize them into one paragraph, and
your summary should include as many details as possible.” Then,
we use LLM to transform the summary to regularized rewrite rule
specification, by extracting rule condition and transformation.

4.2 Rewrite Q&A Preparation

The rewrite Q&A showcases how to rewrite a particular SQL query
to an optimized one, which is composed of two parts: (i) “question”
that denotes a query rewrite request; (ii) “answer” that provides
the query transformations for the question. There are plenty of
rewrite Q&As within online database community forums (e.g., mil-
lions at Stack Overflow [12]), often covering practical cases beyond
standard rewrite rules. To filter high-quality rewrite Q&As from

SQL Query Embedding
IQuew Matched Rule SpecsI (Gen) Rule Spec Recipe]

[Query Template

Rewrite Q&A Embedding

Query Template Query Matched Rule Specs
of Qi ion SQL of Q ion SQL

Structure Embedding Semantics Embedding
Figure 4: Structure-Semantics Embeddings in Q&A Retrieval.

Rewrite Explanation
from Answer

these mixed sources, we use a hybrid method: first selecting by
question tags (e.g., “query-optimization”) and community feedback
(e.g., Stack Overflow score higher than 3), and then using LLM to
verify their relevance to query rewrite.

5 STRUCTURE-SEMANTICS RETRIEVAL

Considering the existence of vast repositories of rule specifications
and Q&As, only a minimal fraction of these resources is pertinent
to an online SQL query. Thus, there is a need to identify the relevant
ones both effectively and efficiently. In this section, we introduce
how to retrieve relevant rewrite evidences (including rule specifica-
tions and Q&As). First, we retrieve relevant rule specifications using
a function-based rule retrieval method (see Section 5.1). Second, we
retrieve relevant rewrite Q&As using a hybrid structure-semantics
method, with both query structures and rewrite semantics aligned
with the input query (see Section 5.2). Lastly, we generate tailored
rewrite recipes for the input query by leveraging both the retrieved
rule specifications and Q&As (see Section 5.3).

5.1 Rewrite Rule Specification Retrieval

Given an input SQL query g, we examine each rule specification
and apply its associated matching function to get a boolean value
which indicates whether the condition of the rule is satisfied. If the
result is true, the corresponding rule specification rs is retrieved.
Then, we use LLM to generate a rule specification recipe, using a
prompt pryule spec_recipe = Given an SQL query ‘q’ and a rewrite
rule specification rs’, your task is to explain concisely and detailedly
how the rule applies to the query, by specifying (1) the SQL segments
matched by the condition, and (2) the transformation of the rule.”

5.2 Rewrite Q&A Retrieval

There are two types of Q&As that could potentially enhance the
query rewrite. Firstly, the questions within Q&As exhibit a high
structural similarity to the input query, indicating that the answers
of Q&As have the potential to assist in rewriting the query. Second,
the answers within Q&As demonstrate a high semantic similarity
to the input query. This suggests that the Q&As are capable of
addressing similar issues or bottlenecks present in the input query,
such as those involving a sub-query with an aggregate function.

Structure-Semantics Embeddings. To effectively identify these
two types of Q&As, we propose structure-semantics embeddings for
both SQL queries and Q&As (see Figure 4). (1) SOL Query Embedding.
First, we introduce a structure-aware query embedding strategy,
including (i) generating query templates embedded by pre-trained
embedding (e.g., text-embedding-3-small [8]), and (ii) generating a
one-hot embedding to indicate which rule specifications match the
SQL query. The two embeddings capture the essential structural
features to query rewrite (see Section 5.2.1). Second, we propose
a semantic matching method designed to discern the semantic
similarity between the SQL query and Q&As. However SQL may
not encapsulate sufficient semantic information. Fortunately, the

retrieved rule specification recipe of SQL in Section 5.1 encompasses
these semantics, enabling us to derive an embedding from it. Third,
we concatenate the structural and semantic embeddings to obtain
a combined structure-semantics embedding. Given the possibility
of retrieving multiple rule specification recipes, each SQL query
has the potential to generate multiple embeddings. (2) Rewrite Q&A
Embedding. Similarly, we generate embeddings of Q&As. For each
Q&A, its embedding includes a structure-aware embedding of its
query in the question part and a semantic embedding of its answer
part. These embeddings allow us to identify Q&As that exhibit a
high similarity to the input query in terms of their embeddings.

Structure-Semantics Q&A Retrieval. To optimize performance
for structure-semantics Q&A retrieval, a unified structure-semantics
embedding index (e.g., HNWS [3]) is constructed for Q&As offline.
Given an SQL query, we generate its structure-semantics embed-
ding and retrieve relevant Q&As using the index (see Section 5.2.2).

5.2.1 Structure-Aware SQL Query Embedding. Existing query em-
bedding models [8, 46, 54, 55] cannot be directly applied for em-
bedding query structure for query rewrite due to two key limita-
tions. On one hand, the query-specific embeddings mostly adopt
small-scale neural networks (e.g., lower than 0.1B) fine-tuned on
narrow datasets [54, 55] or workloads [46], limiting their generaliz-
ability. On the other hand, the general text embeddings (e.g., text-
embedding-3-small [8]) fail to effectively represent query structure,
as they are sensitive to irrelevant information: (i) The identifiers
(e.g., table/column names) and literals in the query often disrupt
characterization of query structure. For example, while renaming
the schema in a query can maintain the integrity of the query
rewrites, this action results in a version with significantly altered
semantics and it generates an embedding distinctly different from
that of the original query; (ii) Since query rewrites typically focus
on transforming only certain parts of the query (e.g., a sub-query),
disregarding other irrelevant parts can help clarify the query struc-
ture; (iii) The text embedding models cannot guarantee commuta-
tive invariance, implying they may generate dissimilar embeddings
for expressions such as “p; AND py” and “p2 AND p1”. These can
be addressed through carefully designed textual transformations.

To address the aforementioned challenges, we propose a structure-
aware query embedding method, where each SQL query embedding
is composed of two parts. The first part distills the core query struc-
ture as query templates, and uses pre-trained text embedding to
embed them. The second part employs a one-hot encoding strategy
to indicate whether the query matches a rule specification, with ‘1’
representing a match and ‘0’ indicating no match. The width of this
embedding corresponds to the total number of rule specifications.
When comparing the two query structure embeddings, the first
one captures a more global representation of the query structure,
whereas the second focuses on more local expressions.

Dataflow Based Query Template Embedding. To capture the
essential SQL features for query rewrite, we initially reformulate
the SQL query into composite dataflows that detail operations on
the involved identifiers. Specifically, given a query g, a dataflow
d is a list of SQL operations sequentially performed on one or
multiple tables or columns in the query, which corresponds to
an SQL segment of the query, e.g., logical expression, mathemat-
ical expression, “WHERE” clause, “GROUP BY” clause, “FROM”

clause, “JOIN” clause, “SELECT” list, sub-query, etc. For instance, we
show sample dataflows for the input query in Figure 1, concentrat-
ing on the column “bonus.sal”: {sal, SELECT MAX (sal), emp.sal =
ANY (SELECT MAX (sal) ...)} where “sal” is first input from “bonus”
table, projected with an aggregate function “MAX(+)”, and then
compared with the column “emp.sal” from the outer query.

Since we focus on logical query rewrite, dataflows can be con-
sidered independent if they do not involve common identifiers.
Then, if we examine the rewrite rule from dataflow perspective,
the condition must restrict the pattern of certain dataflows asso-
ciated with a specific identifier. Otherwise, there are scarcely any
potential query rewrites within a set of independent dataflows.
Consequently, we can generate query templates that concentrate
on the SQL operations related to each particular identifier.

To ensure query templates are robust to schema renaming, we
propose an isolated masking method. If a query template involves
multiple identifiers, swapping any two identifiers alters its seman-
tics and disrupts the embedding. Thus, we derive multiple query
templates from the query, with each template preserving only one
identifier while masking the others. We then refine the templates
in three steps. First, to limit the number of templates derived from
complex queries, we retain only those where the SQL operations
associated with the identifier are likely to match certain rewrite
rules. Second, we simplify the query template by eliminating SQL
operations that do not involve the key identifier. Third, for the com-
mutative SQL operands, we sort them lexically, thereby rendering
the template invariant to operand order.

Step 1: Potential Identifier Selection. Considering the SQL op-
erations associated with the identifier, we observe that multiple
appearances of the same identifier in mutually exclusive dataflows
may prompt query rewrites by leveraging operation correlations.
For instance, the twice appearance of column “a” in “a < b” and
“a = 5” can indicate constant folding, replacing “a < b” with “5 < b”.
Then, given an SQL query, we propose two ways to measure identi-
fier frequency: (i) Column appearances: By traversing the query,
we count how often each column appears. Note that columns ap-
pearing as direct projections (e.g., “SELECT a") are not counted, as
this does not involve any meaningful SQL operations. (ii) Table ap-
pearances: We count the appearances of the table which is utilized
either in the “FROM” clause or within a “JOIN” operation. With
the frequency of tables and columns, we focus on identifiers that
appear more than once within the query. We then select their cor-
responding query templates as representative, ensuring we capture
the most significant patterns for query rewrite.

Step 2: Query Template Reduction. Given the single identifier pre-
served in the query template, we standardize it as “table” for table
and “column” for column. Moreover, to remove irrelevant query
information, we mask other identifiers with “ ” and the literals with
“?”. We make a distinction between identifier mask and literal mask,
since they indicate different query rewrite potentials. For instance,
we can preserve the constant folding pattern in the query template
with “column < _ AND column =?”, which means the constant
equality can be transferred to other conditions involving “column”.
Then, we further simplify the query template following three steps.
(i) If any dataflow in the query template involves only masked
literals “?”, no identifiers, and no non-deterministic functions, the
dataflow can be regarded as a literal and replaced with literal mask

“?”. (ii) If any dataflow involves some identifiers but no explicit
identifiers, we replace it with identifier mask “_”, as it is indepen-
dent to the potential identifier. (iii) For the dataflow of clause like
“t1 JOIN t, ON ¢, if the join condition “c” and a join table (e.g., “t2”)
are both masked with “ ", we replace the clause with “#;” to remove
irrelevant details. These steps are repeated to streamline the query
template until it cannot be further matched, leaving a structure that
retains only the essential core related to the potential identifier.

Step 3: Commutative Invariance Guarantee. We further trans-
form the query template for commutative invariance. Specifically,
we search for commutative operators in the query template (e.g.,
addition, set intersection), and sort their operands lexically (e.g.,
“column < _” before “column =?”). Equipped with the refined query
templates, we then obtain query template embeddings with pre-
trained text embedding (e.g., text-embedding-3-small [8]).

One-Hot Embedding for Matched Rule Specifications. Given
an SQL query, its matched rule specifications also reflect query
structure. For instance, queries matching “SUB_QUERY_TO_JOIN”
rule likely exhibit similar structures around sub-queries. As shown
in Section 5.1, we first examine the rule specifications with their as-
sociated matching functions. Following this, we construct a one-hot
encoding from the rule matching results, where each position cor-
responds to a rule specification. If a rule specification matches the
query, its corresponding position is ‘1’; ‘0’ otherwise. The one-hot
embedding for matched rule specifications can capture local struc-
tural information indicated by the rule condition, complementary
to the global structures captured by query template embedding.

5.2.2 Structure-Semantics Q&A Retrieval. First, we build a structure-
semantics embedding index for Q&A repository in three steps. (i)

We extract the queries in the Q&As, generate query templates, and

embed them with pre-trained text embedding (e.g., text-embedding-
3-small [8]). We also match the queries with rule specifications to

build one-hot embedding for matched rule specifications. (ii) We

refine the Q&A by preserving the semantics of query rewrite and

eliminating irrelevant text with the help of LLM, then embedding

the streamlined information using a pre-trained text embedding

model (e.g., text-embedding-3-small [8]). (iii) We normalize the

three embeddings as unit vectors, concatenate them to form a holis-
tic embedding, and insert them into the index. Next, for an online

SQL query, we similarly generate its embedding and identify the

most relevant Q&As with top-k embedding similarities.

Every SQL query may be associated with multiple templates, lead-
ing to multiple structural embeddings. Similarly, each SQL query
encompasses multiple specification recipes, resulting in multiple
semantic embeddings. We concatenate these embeddings for all
possible combinations and, for each concatenated embedding, we
utilize the index to identify top-k Q&As with the highest similari-
ties. To combine the retrieved results from multiple embeddings, we
adopt the Reciprocal Rank Fusion (RRF) method [17]. Specifically,
for each retrieved list corresponding to an embedding, we assign a
score to the i-th Q&A in the ranked list as, s(qa;) = #, where o
is 60 by default. The RRF score of a Q&A across all the retrieved
lists is calculated by summing its scores from each list (assigning
a score of 0 if the Q&A is absent in a list). We then identify the
Q&As with highest top-k RRF scores as the final selection, which
comprehensively captures the structure and semantics relevance.

5.3 Rewrite Recipe Generation

For an input SQL query g, since the retrieved Q&A qa is used to
rewrite similar but different queries, we first use LLM to generate
rewrite recipes describing how to rewrite the input query inspired
by the Q&A, using the prompt pgq_recipe = Given an SQL query q’
and a rewrite Q&A ‘qa’, your task is to propose some strategies on
rewriting the query, by (1) transferring the Q&A strategy to the query,
and (2) explaining the strategy detailedly.” Second, to integrate both
rule specification recipes (see Section 5.1) and Q&A recipes, we
condense those that are closely related and eliminate any duplicates.
Thus, we utilize LLM to cluster them by their semantic similarity,
and summarize each recipe cluster concisely into a single recipe.

6 STEP-BY-STEP LLM REWRITE

Given a rule-based query rewrite engine (e.g., Apache Calcite [2]),
we utilize the retrieved Q&As and derived rewrite recipes to as-
sist LLM in selecting appropriate rewrite rules from the engine
to rewrite the input SQL query. Given that the number of possi-
ble rule sequences grows exponentially with the number of rules,
LLMs are susceptible to errors when choosing from a vast array of
rules. To address this challenge, we introduce a step-by-step filter-
refinement method designed to meticulously select high-quality
rules. Specifically, we start with a filtering step by employing an
efficient Q&A-based method for rule selection and ordering, allow-
ing us to preliminarily arrange the rules. Next, we instruct LLM
to select the rules and arrange the order according to the recipes.
Then, we feed the selected rules into the query rewrite engine to
rewrite the query with the rules. Lastly, we evaluate the outcomes
of the rewrite process to determine whether further refinement is
needed or if the query rewrite can be considered complete.

Step 1: Q&A-based Rule Selection and Ordering. Given the
rewrite rules and the input query, we filter the rules and arrange
the order in three steps. First, we select the rules directly matched
by the query, and assign them a relevance score according to their
transformation to the query. Second, we select the rules indirectly
relevant to the query using the retrieved Q&As. Based on the re-
trieval scores of the Q&As, we assign each indirectly relevant rule
with a relevance score. Third, we rank the rules by their relevance
scores in a descendent order, which serves as an initial order.

(i) We first filter rules whose matching functions are satisfied
by the input query. However, the matched rules vary in relevance
based on their actual transformation. Specifically, the rules of the
query rewrite engine can be classified into two types of transfor-
mations: the normalization rule (e.g., “SUB_QUERY_TO_JOIN”),
which nearly always reduces query cost; and the exploration rule
(e.g., “AGGREGATE_JOIN_TRANSPOSE”), which transforms the
query but does not consistently result in cost reduction [45]. We
classify the rules based on expert experience, and assign relevance
scores to the matched rules based on their transformation types.
Initially, every rule has a score of —co. Then, the matched normal-
ization rules are assigned +oco as closely relevant, and the matched
exploration rules are assigned 0 as weakly relevant.

(ii) Besides the directly relevant rules, we also detect indirectly
relevant rules using the retrieved Q&As. Specifically, for each pair
of rule and Q&A, we leverage LLM to evaluate whether the rule
can be applied in the context of the Q&A. If applicable, the rule’s
score is incremented by the Q&A similarity score to the input

query. Note that if the rule has a score of —co, we first initialize it
as 0 before increment. Enumerating all the pairs of rules and the
retrieved Q&As, we obtain the final score of each rule r. Note that
the relevance can be performed by LLM offline for each possible pair
of rule and Q&A, thus not affecting the algorithm’s efficiency.

(iii) Given the rules with relevance scores, we first filter out
those with —oo as irrelevant. Then, we order the remaining rules by
prioritizing the rules with higher scores, which comprehensively
reflect their direct and indirect relevance to the input query.

Step 2: Recipe-based Rule Selection and Ordering. Derived
recipes offer more detailed guidance for rewriting the input query
compared to the basic rule specifications and Q&As. Therefore, we
refine the initially arranged rule sequence to align it more closely
with these recipes. This process is divided into three sub-steps.

(i) We first refine rule selection with recipes. A straightforward
method is to assess the relevance between each rule and each recipe,
excluding those rules deemed irrelevant. However, this method
faces two significant drawbacks. Firstly, it overlooks rule dependen-
cies, consequently excluding indirectly utilized rules that become
relevant only after another rule is applied. Secondly, this method
incurs high costs, especially since it lies on the critical path for
online query rewrite. To address these limitations, we propose a
batch filtering method. Specifically, we first feed the rewrite recipe
and a batch of rules to LLM, and require LLM to select the most
appropriate rules aligned with the rewrite recipe, using the prompt
Pselect rule = Given the input query and rewrite rules, you should
evaluate whether the rules can be applied to rewrite the query in the
context of the recipe.” Next, we feed the previously selected rules
along with the next batch of rules into LLM for further selection. We
continue this process iteratively until all rules have been evaluated.
In this way, we not only accelerate the LLM selection process, but
also consider the rule dependency within the selected rules.

(ii) Next, we methodically refine the rule order according to
rewrite recipe. First, taking into account the inter-dependence of
the selected rules, we categorize them into groups wherein each
group pertains to the same SQL operator (e.g., join). We then instruct
LLM to arrange them following the rewrite recipe, emphasizing the
alignment of closely related rules. Second, leveraging the grouped
rule ordering as a basis, we instruct LLM to refine the overall rule
ordering to optimally align with the rewrite recipe.

(iii) We input the refined rule sequence to the query rewrite
engine, and rewrite the input query with the rules.

Step 3: Rewrite Reflection. With regards to the unstable perfor-
mance of LLM in complex tasks like rule arrangement [50, 51], we
reflect the rewrite process to determine whether to finalize or refine
the rewrite as discussed in Section 3.

7 EXPERIMENTS

7.1 Experiment Setting

We implement our system R-Bot using the rules in an open-sourced
query engine Apache Calcite [15]. We execute SQL queries in Post-
greSQL v14 on a machine with 128 GB RAM and 3.1GHz CPU.
Datasets. To verify the effectiveness of R-Bot on different scenar-
ios, we conduct experiments on three types of datasets. (i) TPC-H
is a standard OLAP benchmark, which contains 62 columns and
44 queries. We separately test R-Bot on different data sizes, i.e.,

Table 4: Comparison of Query Latency.

TPC-H 10x DSB 10x Calcite (uni)
Query Latency (s) Average Median po0 Average Median P90 Average Median P90

Origin 104.86 10.60 300.00 37.76 5.28 300.00 109.73 56.35 300.00
LearnedRewrite 69.60 (133.6%) 12.26 (T15.7%) 300.00 ([0.0%) 30.47 ([19.3%) 5.28 (10.0%) 55.02 (]81.7%) 79.07 (127.9%) 5.24 (190.7%) 300.00 (10.0%)
GPT-3.5 85.98 (| 18.0%) 10.60 (10.0%) 300.00 (0.0%) 37.75 (10.0%) 5.36 (11.5%) 300.00 (10.0%) 55.41(]49.5%) 22.74(]59.6%) 230.99 (]23.0%)
GPT-4 67.10 (1 36.0%) 10.60 (10.0%) 300.00 (0.0%) 37.77 (10.0%) 4.92 (16.8%) 300.00 (]0.0%) 60.86 (144.5%) 20.06 (1 64.4%) 300.00 (]0.0%)
R-Bot (GPT-3.5) 55.71(]46.9%) 1041 (J1.8%) 300.00 (J0.0%) 26.19 (]30.6%) 4.61([12.7%) 35.25 (]88.2%) 37.71 (1 65.6%) 8.37 (185.1%) 65.67 (178.1%)
R-Bot (GPT-4) 57.60 (145.1%) 1037 (|2.2%) 300.00 (10.0%) 25.35(]32.9%) 4.58 (|13.2%) 17.17(|94.3%) 12.45(]88.6%) 5.04(]91.0%) 48.30 (|83.9%)

.
[L
-g Rule Doc Q&A 1500 5
S 401 B Rule Code 3
= I I I 1000 g
1°]
2 20+ [| z
2 l 500 &
i
S — - — B ©
x 0 T T T T T 0
RO & & R & o
o NS & O 9 O o y
N Q Q@\ Aa _\,\\6 c}’}' < (/)\‘9

Figure 5: Distribution of Rewrite Evidences.

m Rewrite Latency Query Latency

~

Overall Latency (h)
(NS
Overall Latency (h)

3

- .
Origin Learned GPT-35 GPT-4 R-Bot R-Bot
Rewrite)

3

Origin Learned GPT-3.5 GPT-4 R-Bot R-Bot
(GPT-3.5) (GPT- Rewrite (GPT-3.5) (GPT-4)
(a) TPC-H 50x. (b) DSB 50x.

Figure 6: Comparison of Overall Latency.
TPC-H 10x (~10G) and TPC-H 50x (~50G). (ii) DSB is a more com-
plex OLAP benchmark adapted from TPC-DS [18], which contains
429 columns and 76 queries. We also test R-Bot on datasets DSB
10x (~10G) and DSB 50x (~50G). (iii) Calcite is constructed from
Apache Calcite’s rewrite rule test suites [2], which is widely used in
evaluating query rewrite capabilities [14, 20, 49]. In our experiment,
we select 44 representative queries with great rewrite potentials on
a schema of 43 columns. 2 Additionally, we evaluate R-Bot with a
10G data size across distinct data distributions, namely Calcite (uni)
for uniform distribution and Calcite (zipf) for Zipfian distribution.
Rewrite Evidences. Our prepared rewrite evidences are shown
in Figure 5, including 67 expert-verified rewrite rule specifications
(30 from 80k+ tokens of documents, 37 from 30k+ lines of code),
and 2091 filtered rewrite Q&As from millions of website Q&As.
Together, they cover diverse SQL operations (e.g., joins, sub-queries)
and support a wide range of rewrite scenarios.
LLMs. We use the state-of-the-art LLM gpt-4o, and alternatively
cheaper gpt-3.5-turbo-0125 [8]. We use the default temperature of
0.1, in balance of reproduction and LLM performance [7].
Evaluation Metrics. We evaluate R-Bot using two metrics. (i)
Query Latency, which measures the execution time of the rewritten
query. (ii) Overall Latency, which captures the total time spent on
both rewriting and executing the query. For each query, we conduct
five executions and calculate the average, excluding the highest
and lowest values. For each metric, we evaluate performance based
on the average, median, and 90th percentile (p90).
Evaluated Methods. The evaluated methods include: (i) R-Bot
(GPT-4) is R-Bot using gpt-4o. (ii) R-Bot (GPT-3.5) is R-Bot using
gpt-3.5-turbo-0125. (iii) LearnedRewrite employs Monte Carlo Tree
Search (MCTS) to explore the optimal sequence of rewrite rules [61].
It estimates the performance improvements of the rewritten queries
with query cost models, which guides the search process. ® (iv)

ZFor efficiency, we chose Calcite test queries with top 11% performance gains under Cal-
cite rewrite. Additional experiments on full queries confirmed that R-Bot consistently
reduces query latency and outperforms baseline methods.

3Learning-based query rewrite methods, including LLM-based approaches that require
model training [36], are generally unsuitable for our tests due to the absence of a

GPT-4 without using techniques in R-Bot, which inputs the SQL
query and the rewrite rules, and outputs the arranged rule sequence.
(v) GPT-3.5 similarly without using techniques in R-Bot.

7.2 Performance Comparison
We compare R-Bot with two types of baselines, including learning-
based methods (LearnedRewrite), and origin LLMs (GPT-4, GPT-3.5).

Query Latency Reduction. Table 4 shows the query latency of
rewritten queries. R-Bot outperforms the other query rewrite meth-
ods across all the datasets and metrics. The reasons are two-fold.
First, R-Bot can judiciously retrieve relevant rule specifications
and Q&As to figure out the rewrite rules pertinent to the input
query. For instance, R-Bot can apply the exploration rule “AGGRE-
GATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN” weakly re-
lated to the input query, using retrieved evidences to achieve a
5.6x optimization. However, the other methods fail to identify this
critical rule without guidance from rewrite evidences. Besides, we
find that GPT-4 and GPT-3.5 tend to select only a small number
of rules (e.g., 1), which is often sub-optimal. That is because, they
exhibit hallucination without rewrite evidences, and thus miss the
intricate correlations between rewrite rules and the input query.
Second, R-Bot adopts a step-by-step LLM rewrite method, which
can leverage rewrite evidences to understand the interrelations
among the rewrite rules during rule arrangement. For instance,
R-Bot can accurately select and arrange multiple rewrite rules (e.g.,
6) from analysis of retrieved evidences, so that they can co-operate
together to rewrite the input query to an execution-efficient form
(e.g., 4.6x accelerated). On the contrary, since LearnedRewrite relies
on blind exhaustive search, it can hardly find the optimal rule se-
quence among tremendous possibilities (e.g., only 4.3x accelerated).

Overall Latency Reduction. We also evaluate overall latency
on larger TPC-H 50x and DSB 50x datasets. As shown in Fig-
ure 6, R-Bot achieves the best latency, demonstrating improve-
ments of 1.82x and 1.68x respectively. The reasons are three-fold.
First, R-Bot can still optimize the query latency by finding better
plans, thus outperforming other methods. Second, R-Bot takes some
time (e.g., average around 1 min) to retrieve beneficial evidences
and iteratively instruct LLM to select and arrange rewrite rules.
Thus it can steadily identify the critical rewrite rules (e.g., “FIL-
TER_SUB_QUERY_TO_JOIN”) with much higher query latency
reduction. Instead, other methods do not spend efforts understand-
ing rewrite evidences, which often causes sub-optimal rewritten
queries. Third, compared with results of TPC-H 10x and DSB 10x
(see Table 4), we find that R-Bot remains similar rewrite latency but
demonstrates higher query latency reduction proportional to data
scale, which both results in superior overall latency.

Query Improvement Ratio. Table 5 shows the query-level latency

reduction ratio by different query rewrite methods, with R-Bot rang-
ing from about 21.0% to 88.6%. We find that R-Bot still outperforms

train-test dataset split. As for LearnedRewrite, we use the authoritative version [6],
integrating query cost models approximated using query plan statistics.

Table 5: Comparison of Query Improvement Ratio.

Improve (#Queries)

TPC-H 10x

DSB 10x

Calcite (uni)

LearnedRewrite 7/44 (15.9%) 4/76 (5.3%) 29/44 (63.6%)
GPT-3.5 3/44 (6.8%) 4/76 (5.3%) 16/44 (36.4%)
GPT4 6/44 (13.6%) 4/76 (5.3%) 21/44 (47.7%)
R-Bot (GPT-3.5) 21/44 (47.7%) 16/76 (21.0%) 31/44 (70.4%)

R-Bot (GPT-4)

17/44 (38.6%)

18/76 (23.7%)

39/44 (88.6%)

Table 6: Comparison of Query Latency on Calcite (zipf).

Query Latency (s) Average Median p90
Origin 106.31 37.91 300.00
LearnedRewrite 71.24 (133.0%) 5.04 ({86.7%) 300.00 (10.0%)
GPT-3.5 5833 (145.1%) 20.04 (|47.1%) 300.00 (10.0%)
GPT-4 61.80 (141.9%) 14.15 (|62.7%) 300.00 (10.0%)
R-Bot (GPT-3.5) 32.44 (169.5%) 6.58 (|82.6%) 57.40 (180.9%)
R-Bot (GPT-4) 7.56 (192.9%) 4.96 (|86.9%) 18.08 (|94.0%)

the other methods on the three datasets. That is because R-Bot
can discover targeted beneficial rule arrangements using relevant
evidences, while the other methods have difficulty specifying the
optimal arrangement among tremendous search space.

Zero-Shot Robustness. First, as shown in Table 4, R-Bot outper-
forms the other query write methods on different datasets with-
out any re-training. This is because the generalizability of pre-
trained LLM enables R-Bot to automatically adapt to unseen data-
base schema and workload. Besides, Table 6 further demonstrates
the robustness of query rewrite methods on data distribution, which
transfers the Calcite dataset from uniform distribution to zipf dis-
tribution. Compared with Calcite (uni) (see Table 4), we find that
the performance of R-Bot remains consistent. R-Bot still achieves
the lowest average, median, and p90 of query latency among the
methods. That is because the rewrite evidences can cover different
query rewrite scenarios, and R-Bot can adaptively decide among
potential rule arrangements with feedbacks of database query cost.

Evaluation Across Various LLMs. As shown in Table 4, on most
metrics, R-Bot (GPT-3.5) performs worse than R-Bot (GPT-4), but still
outperforms the other query rewrite methods. That is because R-Bot
decomposes complex tasks into simpler stages, both in evidence
retrieval and step-by-step LLM rewrite, where each stage can be
still manageable even with less advanced LLMs like GPT-3.5.

7.3 Ablation Study

7.3.1 Rewrite Evidence Preparation. We evaluate the essence of
rewrite evidence by comparing GPT-4 with naive RAG. As shown
in Table 7, naive RAG equipped with evidences can outperform
GPT-4 across all the metrics, because naive RAG can retrieve rewrite
evidences that are somewhat relevant to the input query, which
provides beneficial guidance in rewrite rule selection and ordering.

7.3.2 Structure-Semantics Evidence Retrieval. To evaluate the effec-
tiveness of hybrid structure-semantics Q&A retrieval, we evaluate
R-Bot separately with semantics-only and structure-only retrieval.
As indicated in Table 8 , both methods exhibit a decline in perfor-
mance compared to R-Bot. This reduction is due to their inabil-
ity to identify Q&As beneficial for query rewrite from a holistic
perspective, as they either overlook query semantics or structure
information. For example, compared with R-Bot, they may miss
key evidence, leading to the omission of critical rules like “AGGRE-
GATE_EXPAND_DISTINCT_AGGREGATES” in arrangement.

Table 7: Ablation Study of Rewrite Evidence on Calcite (uni).

Query Latency (s) Average Median p90
Naive RAG 39.13 14.88 98.15
GPT-4 60.86 20.06 300.00
Table 8: Ablation Study of Evidence Retrieval on Calcite (uni).
Query Latency (s) Average Median p90
Structure-Semantics Retrieval ~ 12.45 5.04 48.30
Structure-Only Retrieval 31.96 5.30 56.40
Semantics-Only Retrieval 39.45 8.37 65.67
Naive RAG 39.13 14.88 98.15

11
mmm Rewrite Latency

14

Query Latency

Bm Rewrite Latency

Query Latency
z13
12
11
1.0
Soo

o

Il Latency

Overall Latency (h)
o
©

3os
0.74 Without With
1 2 5 10 20 Reflection Reflection

Figure 7: Impact of Retrieval Figure 8: Impact of Rewrite
Top-k on Calcite (uni). Reflection on Calcite (uni).
Table 9: Ablation Study of LLM Rewrite on Calcite (uni).

o
®

Query Latency (s) Average Median p90
Step-by-Step LLM Rewrite ~ 12.45 5.04 48.30
One-Step LLM Rewrite 36.47 13.83 69.43

Retrieval Top-k. We also evaluate the impact of retrieval top-k,
which decides the number of retrieved Q&As. As shown in Figure 7,
we have two observations. First, rewrite latency grows with k,
because R-Bot tends to generate more recipes with a greater number
of retrieved Q&As. Consequently, as the recipes compose longer
LLM contexts, each invocation of LLM requires additional time
to process the extended context. Second, query latency decreases
when k increases from 1 to 10, but rises again beyond 10. The
reasons are two-fold. (i) When k is small, the additional retrieved
Q&As are more likely to cover essential evidence, allowing R-Bot to
select critical rules (e.g., “AGGREGATE_JOIN_TRANSPOSE”). (ii)
For large k, it is likely to already cover the essential evidence in the
retrieved Q&As, making further increase unnecessary as it may not
provide additional information. Besides, increasing k too much may
introduce noisy contexts, which may impair performance of LLM
in query rewrite. Therefore, we set k = 10 for the other experiments.
Meanwhile, we achieve a Precision@10 of 19.8%, indicating that on
average at least one relevant Q&A is successfully retrieved.

7.3.3 Step-by-Step LLM Rewrite. We compare our step-by-step
LLM rewrite with one-step LLM rewrite that instructs LLM to
arrange the rules in one step using retrieved evidences, and evaluate
the performance. As shown in Table 9, we find that one-step LLM
rewrite often selects a smaller number of rules, which results in sub-
optimal rule arrangements. That is because, given the extremely
long context of retrieved evidences and available rewrite rules, LLM
tends to produce short-cut solutions overlooking many critical
details, and thus only selects the rules explicitly related to the
input query. Instead, R-Bot employs a step-by-step LLM rewrite for
reasoning, enabling the selection of higher-quality rules.

7.3.4 Rewrite Reflection. We also evaluate the impact of rewrite
reflection in R-Bot. As shown in Figure 8, we have two observations.
First, the rewrite latency increases due to the additional overhead
introduced by rewrite reflection and LLM self-correction. Second,

Query081 of DSB 10x

Query: WITH customer_total_return AS (SELECT ..., ca_state AS ctr_state, SUM(cr_return_amt_inc_tax) AS ctr_total_return
FROM catalog_returns, ..., customer_address WHERE ... GROUP BY ...)

SELECT ... FROM customer_total_return ctr1, customer_address, ...

WHERE ctri.ctr_total_return > (SELECT AVG(ctr_total_return)*1.2 FROM customer_total_return ctr2 WHERE ctri.ctr_state =

ctr2.ctr_state) AND ca_state = 'MI' AND ... ORDER BY ... LIMIT 100;

Latency: 300.00 s

Method Used Rewrite Rules Query Latency (s)

FILTER_SUB_QUERY_TO_JOIN, AGGREGATE_PROJECT_MERGE,

LeamedRewrite | ;- GREGATE REDUCE_FUNCTIONS, AGGREGATE_JOIN_TRANSPOSE, ...

19.46 (193.5%)

GPT-4 None 300.00 (10.0%)

FILTER_INTO_JOIN, FILTER_SUB_QUERY_TO_JOIN,
AGGREGATE_PROJECT_MERGE

R-Bot (GPT-4) 2.83 (199.0%)

TestJoinConditionPushé of Calcite (uni)

Query: SELECT * FROM emp e RIGHT JOIN dept d ON e.deptno = d.deptno AND e.empno = d.deptno;
Latency: 15.50 s

Method Used Rewrite Rules Query Latency (s)

LearnedRewrite | PROJECT_REMOVE 15.50 (40.0%)

GPT-4 None 15.50 (10.0%)

R-Bot (GPT-4) JOIN_CONDITION_PUSH 1.66 (189.3%)

Figure 9: Example Query Rewrite Results.

the query latency decreases with further rewrite reflection, leading
to an overall latency reduction. That is because rewrite reflection
helps mitigate the hallucination issue in LLMs by exploring multiple
rewrite rule arrangements to find the most beneficial query rewrite.

7.4 Case Study

We provide some representative examples to illustrate the query
rewrite results. As shown in Figure 9, R-Bot outperforms other meth-
ods by accurately identifying critical rules “FILTER_INTO_JOIN”
and “FILTER_SUB_QUERY_TO_JOIN” in the first case study, which
pushes down conditions involving only one join table and removes
the time-consuming sub-queries in the query. On the contrary, GPT-
4 selects no useful rewrite rules due to absence of rewrite evidences
and dedicated LLM algorithm design. Besides, LearnedRewrite tends
to select an excessive number of rewrite rules under erroneous
guidance, leading to a less efficient rewritten query. In the second
case study, R-Bot also demonstrates superior performance by se-
lecting the rewrite rule “JOIN_CONDITION_PUSH”, which derives
an additional condition “e.deptno = e.empno”. This condition can
be pushed down into the sub-query involving the table “emp”, a
refinement overlooked by other query rewrite methods. However
other methods cannot detect this rule.

7.5 Deployment at Huawei with Real Customers
We have also deployed R-Bot at Huawei, which is empowered by
open-sourced LLM DeepSeek-R1-Distill-Qwen-32B [4] and embed-
ding model gte-Qwen2-1.5B-instruct [5]. We verify its effectiveness
using a real-world dataset on the largest bank in China, containing
190 columns and 74GB data, as well as 20 real-world slow queries
with 7 joined tables and 3 sub-queries on average. As shown in
Figure 10, we find that R-Bot can effectively optimize these queries,
i.e., improving the latency of 70% queries and reducing the overall
latency from 9.23 hours to 4.37 hours. Notably, R-Bot remains ef-
fective even when (i) the tested queries are absent from the LLM
pre-training corpus (not publicly available) and (ii) open-sourced
32B LLM and embedding model are used as the backend.

8 RELATED WORK

Query Rewrite. Existing query rewrite methods mainly adopt two
paradigms. (1) Heuristic-based methods [9, 10, 15, 24, 25]. Some
methods (e.g., PostgreSQL [10]) apply rewrite rules in a fixed or-
der, which often overlook better orders in different scenarios. Be-
sides, other heuristic-based methods (e.g., Volcano [25]) attempt
to explore different rule orders with the aid of heuristic accelera-
tion. However, by neglecting inter-dependencies among the rules,

mmm Origin
R-Bot

Query Latency (min)

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Figure 10: Performance of R-Bot on Real Dataset.

these methods perform a blind search, often failing to identify the
optimal orders within reasonable time. (2) Learning-based meth-
ods [36, 61]. LearnedRewrite decides the rule order using Monte
Carlo Tree Search guided by learned cost models. However, the
learned model cannot be transferred to unseen database schema
without additional retraining, which is often impractical. Hence, it
calls for a query rewrite system capable of reliably identifying an
appropriate sequence of rewrite rules to optimize query rewrite. A
recent LLM-based query rewrite method addresses hallucination
by incorporating query rewrite examples into the context for LLM
to emulate [36]. However, it still lacks robustness, as it depends on
an example pool generated from the training dataset and utilizes a
trained model to select examples based on SQL query similarity.

Automatic Rewrite Rule Discovery. Given the tedious effort re-
quired to curate a large number of high-quality rewrite rules, some
methods have been recently proposed to automate the process of
rule discovery [19, 20, 49]. WeTune [49] first represents the condi-
tion and transformation of rewrite rule with operators and symbols.
Then it enumerates potential rewrite rules and verifies rule equiva-
lence using SMT-solvers [16, 57]. SlabCity [20] discovers possible
query rewrites for a specific query by recursively applying various
transformations to the original query. Complementary to the above
works, R-Bot retrieves highly relevant evidences to instruct LLM,
effectively arranges newly discovered rules, and achieves superior
adaptability and robustness in rule selection and ordering.

LLM for Database. There are also many studies to use LLMs to
optimize databases [13, 22, 29, 37, 39, 44, 60, 62, 64]. For instance,
GPTuner [29] enhances database knob tuning using LLM by leverag-
ing domain knowledge to identify and tune knobs. D-Bot [44, 62] is
an LLM-based database diagnosis system. Unlike these approaches,
R-Bot is a novel query rewrite system powered by LLM.

9 CONCLUSION

We proposed an LLM-based query rewrite system. First, we pre-
pared rewrite evidences from diverse sources, including rewrite
rule specifications and rewrite Q&As. Next, we proposed a hybrid
structure-semantics retrieval method to retrieve relevant rewrite
evidences, based on which we generated rewrite recipes to instruct
LLM for query rewrite. Then, we proposed a step-by-step LLM
method, which iteratively utilized the retrieved Q&As and rewrite
recipes to select and arrange rewrite rules with self-reflection. Ex-
perimental results demonstrated that R-Bot achieved remarkable
improvements over existing methods. Moreover, R-Bot deployed at
Huawei and with real customers showed the effectiveness of R-Bot.

ACKNOWLEDGMENTS

This paper was supported by National Key R&D Program of China
(2023YFB4503600), NSF of China (62525202, 62232009), Shenzhen
Project (CJGJZD20230724093403007), Zhongguancun Lab, Huawei,
and Beijing National Research Center for Information Science and
Technology (BNRist). Guoliang Li is the corresponding author.

REFERENCES

(1]

[10]

[11

[12]

[13

[14]

(15

[16]

(17

[18]

[19]

[20

[21]

[22]

[23]

[25

[26]

[27]

[28]

[29

[30]

2018. JavaSymbolSolver. Retrieved October 17, 2024 from https://github.com/
javaparser/javasymbolsolver

2024. Apache Calcite. Retrieved September 23, 2024 from https://github.com/
apache/calcite

2024. Chroma. Retrieved October 17, 2024 from https://www.trychroma.com
2024. DeepSeek-R1. Retrieved December 24, 2024 from https://github.com/
deepseek-ai/DeepSeek-R1

2024. gte-Qwen2-1.5B-instruct. Retrieved December 24, 2024 from https://
huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct

2024. LearnedRewrite: An online logical query rewrite demo (schema+sql only)!
Retrieved December 24, 2024 from https://github.com/zhouxh19/LearnedRewrite/
tree/main

2024. Llamalndex, Data Framework for LLM Applications. Retrieved October 17,
2024 from https://www.llamaindex.ai/

2024. Models - OpenAI APL. Retrieved October 17, 2024 from https://platform.
openai.com/docs/models

2024. MySQL. Retrieved October 17, 2024 from https://www.mysgl.com/

2024. PostgreSQL: The world’s most advanced open source database. Retrieved
October 17, 2024 from https://www.postgresql.org/

2024. sentence-transformers/multi-qa-mpnet-base-cos-v1 - Hugging Face. Retrieved
October 17, 2024 from https://huggingface.co/sentence- transformers/multi-qa-
mpnet-base-cos-v1

2024. Stack Overflow - Where Developers Learn, Share, & Build Careers. Retrieved
October 17, 2024 from https://stackoverflow.com

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv:2303.08774 (2023).

Qiushi Bai, Sadeem Alsudais, and Chen Li. 2023. QueryBooster: Improving SQL
Performance Using Middleware Services for Human-Centered Query Rewriting.
Proceedings of the VLDB Endowment 16, 11 (2023), 2911-2924.

Edmon Begoli, Jestis Camacho-Rodriguez, Julian Hyde, Michael J Mior, and
Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized
query processing over heterogeneous data sources. In SIGMOD. 221-230.
Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.
Cosette: An Automated Prover for SQL.. In CIDR. 1-7.

Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. 2009. Reciprocal
rank fusion outperforms condorcet and individual rank learning methods. In
SIGIR. 758-759.

Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek Narasayya. 2021.
DSB: A decision support benchmark for workload-driven and traditional database
systems. Proceedings of the VLDB Endowment 14, 13 (2021), 3376-3388.

Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo
Chen, Ruzica Piskac, and Jinyang Li. 2023. Proving query equivalence using
linear integer arithmetic. SIGMOD 1, 4 (2023), 1-26.

Rui Dong, Jie Liu, Yuxuan Zhu, Cong Yan, Barzan Mozafari, and Xinyu Wang.
2023. SlabCity: Whole-Query Optimization Using Program Synthesis. Proceedings
of the VLDB Endowment 16, 11 (2023), 3151-3164.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating large
language models in class-level code generation. In ICSE. 1-13.

Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li,
Samuel Madden, Xiaoyong Du, and Nan Tang. 2024. Combining Small Language
Models and Large Language Models for Zero-Shot NL2SQL. VLDB 17, 11 (2024),
2750-2763.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18,3 (1995), 19-29.

Goetz Graefe and William J McKenna. 1993. The volcano optimizer generator:
Extensibility and efficient search. In ICDE. IEEE, 209-218.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi
Zheng, Yewei Fang, Yuxiang Huang, Weilin Zhao, et al. 2024. Minicpm: Unveiling
the potential of small language models with scalable training strategies. arXiv
preprint arXiv:2404.06395 (2024).

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Hao-
tian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al.
2023. A survey on hallucination in large language models: Principles, taxonomy,
challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023).

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. Mathprompter: Mathemat-
ical reasoning using large language models. arXiv:2303.05398 (2023).

Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2024. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization. Pro-

ceedings of the VLDB Endowment 17, 8 (2024), 1939-1952.
Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The

Dawn of Natural Language to SQL: Are We Fully Ready? Proceedings of the VLDB

[31

(32

[33

&
=)

[35

[36

[37

[38

[40

[41]

[42

[43]

[44

[45

[46

[47

(48]

[49]

(51]

[52

(53

[54]

[55

[56

[57

Endowment 17, 11 (2024), 3318-3331.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez,
Ton Stoica, Xuezhe Ma, and Hao Zhang. 2023. How Long Can Context Length
of Open-Source LLMs truly Promise?. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following.

Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen Grosman, Zongchao Liu, and
Sihao Li. 2024. GaussDB: A Cloud-Native Multi-Primary Database with Compute-
Memory-Storage Disaggregation. VLDB 17, 12 (2024), 3786-3798.

Guoliang Li, Jiayi Wang, Chenyang Zhang, and Jiannan Wang. 2025. Data+ Al:
LLM4Data and Data4dLLM. In Companion of the 2025 International Conference on
Management of Data. 837-843.

Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li,
Tianging Wang, and Shifu Li. 2021. opengauss: An autonomous database system.
Proceedings of the VLDB Endowment 14, 12 (2021), 3028-3042.

Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. 2024. LLM for Data Management.
Proceedings of the VLDB Endowment 17, 12 (2024), 4213-4216.

Zhaodonghui Li, Haitao Yuan, Huiming Wang, Gao Cong, and Lidong Bing. 2024.
LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System for
Boosting! ery Eff iciency. Proceedings of the VLDB Endowment 18, 1 (2024), 53-65.
Jie Liu and Barzan Mozafari. 2024. Query Rewriting via Large Language Models.
arXiv preprint arXiv:2403.09060 (2024).

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. ACL 11 (2024), 157-173.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin
Zhang, Ju Fan, Guoliang Li, and Nan Tang. 2024. A Survey of NL2SQL with
Large Language Models: Where are we, and where are we going? arXiv preprint
arXiv:2408.05109 (2024).

Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP. 3982-3992.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and
Christopher D Manning. 2024. RAPTOR: Recursive Abstractive Processing for
Tree-Organized Retrieval. In ICLR.

Zhaoyan Sun, Jiayi Wang, Xinyang Zhao, Jiachi Wang, and Guoliang Li. 2025.
Data Agent: A Holistic Architecture for Orchestrating Data+ AI Ecosystems.
arXiv preprint arXiv:2507.01599 (2025).

Zhaoyan Sun, Xuanhe Zhou, Jianming Wu, Wei Zhou, and Guoliang Li. 2025.
D-Bot: An LLM-Powered DBA Copilot. In Companion of the 2025 International
Conference on Management of Data. 235-238.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed sql database. In SIGMOD. 1493-1509.
Xiu Tang, Sai Wu, Mingli Song, Shanshan Ying, Feifei Li, and Gang Chen. 2022.
PreQR: pre-training representation for SQL understanding. In SIGMOD. 204-216.
Jiayi Wang and Guoliang Li. 2025. Aop: Automated and interactive llm pipeline
orchestration for answering complex queries. CIDR.

Jiayi Wang, Guoliang Li, and Jianhua Feng. 2025. iDataLake: An LLM-Powered
Analytics System on Data Lakes. IEEE Data Eng. Bull. 49, 1 (2025), 57-69.
Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,
Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. Wetune: Automatic discovery
and verification of query rewrite rules. In SIGMOD. 94-107.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. NeulPS 35 (2022), 24824-24837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
large language models. NeulPS 36 (2024).

Jintao Zhang, Guoliang Li, and Jinyang Su. 2025. SAGE: A Framework of Precise
Retrieval for RAG. In ICDE. IEEE Computer Society, 1388-1401.

Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2024. Chat2data: An interactive
data analysis system with rag, vector databases and llms. Proceedings of the
VLDB Endowment 17, 12 (2024), 4481-4484.

Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. Queryformer: A
tree transformer model for query plan representation. Proceedings of the VLDB
Endowment 15, 8 (2022), 1658—-1670.

Yue Zhao, Zhaodonghui Li, and Gao Cong. 2023. A Comparative Study and Com-
ponent Analysis of Query Plan Representation Techniques in ML4DB Studies.
VLDB 17, 4 (2023), 823-835.

Yihang Zheng, Bo Li, Zhenghao Lin, Yi Luo, Xuanhe Zhou, Chen Lin, Jinsong
Su, Guoliang Li, and Shifu Li. 2024. Revolutionizing Database Q&A with Large
Language Models: Comprehensive Benchmark and Evaluation. arXiv preprint
arXiv:2409.04475 (2024).

Qi Zhou, Joy Arulraj, Shamkant B Navathe, William Harris, and Jinpeng Wu. 2022.
SPES: A symbolic approach to proving query equivalence under bag semantics.
In ICDE. IEEE, 2735-2748.

https://github.com/javaparser/javasymbolsolver
https://github.com/javaparser/javasymbolsolver
https://github.com/apache/calcite
https://github.com/apache/calcite
https://www.trychroma.com
https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://github.com/zhouxh19/LearnedRewrite/tree/main
https://github.com/zhouxh19/LearnedRewrite/tree/main
https://www.llamaindex.ai/
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://www.mysql.com/
https://www.postgresql.org/
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1
https://stackoverflow.com

[58]

[59]

[60]

Wei Zhou, Yuyang Gao, Xuanhe Zhou, and Guoliang Li. 2025. Cracking SQL
Barriers: An LLM-based Dialect Translation System. SIGMOD 3, 3 (2025), 1-26.

Wei Zhou, Yuyang Gao, Xuanhe Zhou, and Guoliang Li. 2025. CrackSQL: A
Hybrid SQL Dialect Translation System Powered by Large Language Models.
arXiv preprint arXiv:2504.00882 (2025).

Xuanhe Zhou, Junxuan He, Wei Zhou, Haodong Chen, Zirui Tang, Haoyu Zhao,
Xin Tong, Guoliang Li, Youmin Chen, Jun Zhou, et al. 2025. A Survey of LLM X
DATA. arXiv preprint arXiv:2505.18458 (2025).

[61]

(62]

[63]

[64]

Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A learned
query rewrite system using monte carlo tree search. VLDB 15, 1 (2021), 46-58.
Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming
W, Jiesi Liu, Ruohang Feng, and Guoyang Zeng. 2024. D-bot: Database diagnosis
system using large language models. VLDB 17, 10 (2024), 2514-2527.

Xuanhe Zhou, Guoliang Li, Jianming Wu, Jiesi Liu, Zhaoyan Sun, and Xinning
Zhang. 2023. A learned query rewrite system. VLDB 16, 12 (2023), 4110-4113.
Xuanhe Zhou, Zhaoyan Sun, and Guoliang Li. 2024. Db-gpt: Large language
model meets database. Data Science and Engineering 9, 1 (2024), 102-111.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Query Rewrite
	2.2 Large Language Models

	3 The Overview of R-Bot
	4 Rewrite Evidence Preparation
	4.1 Rewrite Rule Specification Preparation
	4.2 Rewrite Q&A Preparation

	5 Structure-Semantics Retrieval
	5.1 Rewrite Rule Specification Retrieval
	5.2 Rewrite Q&A Retrieval
	5.3 Rewrite Recipe Generation

	6 Step-by-Step LLM Rewrite
	7 Experiments
	7.1 Experiment Setting
	7.2 Performance Comparison
	7.3 Ablation Study
	7.4 Case Study
	7.5 Deployment at Huawei with Real Customers

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

