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ABSTRACT

Unstructured data comprises over 80% of today’s information, yet
no specialized system effectively supports its semantic analytics.
Traditional SQL-based approaches rely on predefined schemas, mak-
ing them unsuitable. While large language models (LLMs) enable
semantic analysis of unstructured data, manually orchestrating
execution plans remains inefficient. This raises a critical question:
how can we automate unstructured data analytics? In this demon-
stration, we present Unify, a system that automates unstructured
data analytics for natural language queries. Unify defines a set
of core operators for unstructured data processing, with both pre-
programmed and LLM-based implementations. It guides LLMs to
decompose queries into logical steps and map them to appropriate
operators for accurate execution. Our demonstration showcases
Unify by real-world scenarios, highlighting its ability to bridge the
gap between unstructured data and actionable analytics.
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1 INTRODUCTION

Organizations across diverse domains generate vast amounts of
unstructured data daily, holding immense potential for insights.
However, the lack of predefined schemas makes traditional analytics
methods ineffective — structured query languages like SQL are
unsuitable, and manual analysis is both time-consuming and error-
prone [4, 11-13]. Prior systems [5, 6] for unstructured data analytics
either rely on manual query planning or are limited to simple
retrieval tasks [3, 8].

To address these challenges, we present Unify [7, 9], an end-to-
end system that automates unstructured data analytics by integrat-
ing the semantic understanding capabilities of LLMs with efficient
query planning and execution strategies. Unlike existing systems,
Unify automates the entire analytics pipeline, from natural language
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query understanding to plan generation, optimization, and execution,
without requiring predefined schemas or user intervention.

At its core, Unify offers the following key functionalities:
Index Construction. Unify employs a set of predefined operators
commonly used in unstructured data analytics to orchestrate query
plans. To map natural language queries to these operators, Unify
builds embedding indexes over the usage of the operators described
in natural language. For unstructured data, sentences are trans-
formed into embedding vectors and indexed using structures such
as hierarchical navigable small world (HNSW) to enable efficient
retrieval.

Logical Plan Generation. Unify decomposes a natural language
query iteratively by matching it to a set of predefined semantic
operators, ultimately constructing a plan composed of these opera-
tors. By carefully selecting and combining these operators, Unify
ensures that the generated plan accurately represents the user’s
intent, and can be executed to produce the correct answer.
Physical Plan Optimization: Unify employs a cost model and a
semantic cardinality estimation method to convert logical plans into
efficient physical execution plans, improving execution efficiency.
Interactive Execution: To compute the final answer, Unify exe-
cutes operators of the plan in parallel when possible and dynami-
cally adjusts the plan at runtime based on intermediate results.

Unify stands out for its unique advantages:

1. User-Friendly Interaction. Unify provides a natural language in-

terface, enabling non-expert users to interact with Unify easily.

2. High Accuracy. By iteratively matching appropriate operators to

solve partial tasks, the logical plan ensures high accuracy.

3. High Efficiency. By leveraging optimized physical plans and par-

allel execution, Unify significantly reduces query processing time.
In summary, Unify is the first end-to-end system that automates

efficient unstructured data analytics for natural language queries,

delivering both efficiency and accuracy for real-world applications.

2 SYSTEM OVERVIEW

As shown in Figure 1, Unify consists of the following modules:
operator management, index construction, logical plan generation,
physical plan optimization and interactive plan execution.
Operators. Traditional relational operators are inadequate for un-
structured data analytics due to their lack of semantic processing
capabilities. To address this, as shown in Table 1, Unify defines
a set of common operators, including Filter, Extract, GroupBy,
and Compare, each with well-defined input-output specifications
and multiple execution implementations.

To enable accurate operator-query matching, Unify indexes op-
erators by the logical representations of their natural language
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Figure 1: Architecture of Unify.

Table 1: The logical operators, their inputs, outputs, and ex-
ample logical representations.
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‘ Operator ‘ Input ‘ Output ‘ Example Logical Representation ‘
Scan List List documents satisfy [Condition]
Filter List List [Entity] that [Condition]
Compare A, B, Condition A/B larger in [Entity] and [Entity]
GroupBy List List of List | aggregate [Entity] by [Attribute]
Count List Number number of documents [Condition]
Sum List Number the total sum of [Entity]
Max List Number the maximum of [Entity]
Min List Number the minimum of [Entity]
Average List Number the mean of [Entity]
Median List Number the median of [Entity]
Percentile List Number the k-th percentile for [Entity]
OrderBy List List Sort [Entity] [Condition]
Classify Text Class The type of [Entity]
Extract Text Text get [Entity] from documents
TopK List List the top [Number] [Entity]
Join List, List List [Entity] that also occurs in [Entity]
Union Set, Set Set set union of [Entity] and [Entity]
Intersection Set, Set Set in set [Entity] and in [Entity]
Complementary Set, Set Set in set [Entity] not in [Entity]
Compute List Number sum of squares of [Entity]
Generate Text Text explain the result

(NL) functionality descriptions. A logical representation is a struc-
tured template that abstracts semantic elements into placeholders,
such as Entity and Condition, each representing distinct semantic
roles. For instance, the Filter operator can be represented as "[En-
tity] that [Condition]", which can match with queries like "movies
that were made in 1990s".

Each logical operator can be realized through one or more phys-
ical implementations, which are categorized into two types: (1)
Pre-programmed Implementations, which leverage predefined
algorithms similar to traditional database operators, and (2) LLM-
based Implementations, which employ LLMs for tasks requir-
ing deeper semantic reasoning. For example, the Filter operator
can be implemented either by keyword-matching functions or by
prompting an LLM to evaluate whether a document satisfies the fil-
tering criteria. Most logical operators support both types, allowing
Unify to balance efficiency and semantic comprehension.
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F;gure 2: An example plan generation process in Unify.

If existing operators are insufficient, users can extend Unify by
defining custom logical representations for planning and corre-
sponding physical implementations for execution.

Index Construction. Before query processing, Unify conducts
offline preprocessing to organize operators and data for efficient
online planning and execution (Figure 1): Unify first employs a
text embedding model to convert unstructured data into vector
representations. These vectors are organized using a vector index,
enabling efficient retrieval of required data during query execution.
The logical representations of operators are also computed and
indexed by their semantic embeddings for efficient matching.
Logical Plan Generation. Upon receiving an NL query, Unify
decomposes it into smaller, manageable sub-queries by iteratively
matching segments of the query with the predefined operators. As
illustrated in Figure 2, this involves:

Operator Matching. The first step in logical planning is selecting the
most relevant operator for a segment of the query. Relying solely
on LLMs for operator selection using prompts can be inefficient
and error-prone due to the large LLM token consumption and the
large number of possible operators [10]. To mitigate this, Unify
minimizes LLM involvement, using it only when necessary.

The main challenge in operator matching is to accurately in-
terpret the intent of the query. To address this, Unify converts
the query into a logical representation by replacing concrete values
with semantic elements like Condition, Entity, through a few-shot
prompt. This abstraction reduces the query to its logical essence
independent of specific values, thus enabling a clearer focus on its
logical structure. For example, in step @ of Figure 2, the original



question "Compare the number of documents related to boxing and
swimming among documents with views larger than 10000; return the
sport with the smaller count" can be parsed as "Compare the number
of documents related to [Entity] and [Entity] among documents with
[Condition]; return the sport with the smaller count".

Our key insight is that an operator is relevant if its logical
representation closely matches the query’s. Based on this, we lever-
age semantic similarity as a coarse-grained metric, comparing the
query’s logical representation embeddings with those of the opera-
tors and only selecting the operators with the highest similarities.
This approach significantly improves both accuracy and efficiency
by rapidly eliminating operators that are unlikely to solve any part
of the query. For example, in step @ of Figure 2, after selecting only
the operators with highest similarities, the number of candidate
operators is greatly reduced.

Operator Re-ranking. After identifying candidate operators, Unify

employs the LLM to re-rank them based on their applicability to the
query. Specifically, Unify maintains text descriptions of processed
data, and only those operators whose inputs match these available
variables are considered. In this phase, the LLM evaluates each oper-
ator’s applicability by determining whether its inputs are available
and whether it can address part of the query, categorizing operators
as fully solving, partially solving, or not applicable. Operators are
then ranked primarily by their ability to resolve the query, with
semantic similarity serving as a secondary consideration. For exam-
ple, in step @ of Figure 2, after re-ranking, the Filter operator is
prioritized despite not having the highest semantic similarity. This
is because it is the only operator that can be directly applied to the
raw data (i.e, filtering by views larger than 10,000).

Query Reduction. Once an appropriate operator is selected, the LLM
applies it to reduce the matched segment of the query. For example,
in step ® of Figure 2, the original query is first reduced by removing
"with views larger than 10000" and transformed into "Compare the
number of documents related to boxing and swimming; return the
sport with the smaller count.", applying the Filter operator. Instead
of relying on rigid keyword-based matching and replacement, the
reduction is conducted flexibly by the LLM with a few-shot prompt
that incorporates placeholders for the query, the operator informa-
tion, and the expected output of the operator. After each reduction
step, the LLM verifies whether the query has been fully reduced to
determine if further reduction is needed.

Iterative Query Decomposition. The above process is repeated until

the query is fully decomposed. In each iteration, Unify selects an
operator, verifies its applicability, and applies it to reduce the query
further. The resulting plan is represented as a directed acyclic graph
(DAG), where nodes correspond to selected operators and edges
represent dependencies between operators.

Physical Plan Optimization. Once a logical plan is generated,
Unify converts it into an optimized physical plan by selecting
the most efficient physical implementation for each operator and
determining the optimal operator execution order. This relies on a
semantic cost model and a semantic cardinality estimation method
to estimate execution time and intermediate result sizes [9].

Cost Model. Unlike relational databases, where operator costs are
dominated by I/O factors, Unify focuses on computational costs
due to the frequent involvement of resource-intensive LLMs. To
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Figure 3: Unstructured data management in Unify.

facilitate plan optimization, Unify constructs a unified cost model
that estimates the execution time of different physical operators.
Semantic Cardinality Estimation. Operator costs are directly deter-

mined by cardinality. Existing methods estimate cardinality for
semantic predicates using uniform sampling [5], which can be in-
accurate and may mislead optimization decisions. Instead, Unify
employs an importance sampling approach that selects data points
based on their embedding distance to the query [9]. By prioritizing
samples with smaller embedding distances, Unify better captures
relevant data that are more likely to satisfy the query, significantly
improving the overall estimation accuracy.

Plan Execution. Unify efficiently executes the plan through:
Parallel Topological Execution. In a DAG-structured plan, indepen-

dent operators are executed in parallel whenever possible. Execu-
tion follows the plan’s topological order, ensuring that an operator
runs once all dependencies are satisfied. For example, in Figure 2, af-
ter the first Filter operator, the two subsequent paths can proceed
concurrently, as they have no interdependencies. This parallelism
improves resource utilization and reduces execution time.

Dynamic Plan Adjustment. During execution, intermediate results

are used to adapt the plan dynamically. For instance, if an operator
fails to yield the expected output, Unify dynamically replans from
the failed query to adjust the execution plan. This allows Unify to
adapt the plan based on intermediate results throughout execution,
thus obtaining higher robustness.

3 DEMONSTRATION SCENARIOS

Datasets. By default, Unify provides datasets from Wikipedia [2]
and Stack Exchange [1].

Scenario. Consider a data analyst seeking to analyze social media
data to identify trends and patterns, which are crucial for data-
driven decision-making. Given the large volume and unstructured
nature of web data, answering such queries directly is challenging
due to the absence of structured metadata.

However, with Unify, users can perform automated data ana-
lytics easily through natural language queries. Prior to analytics,
users can manage datasets within Unify (Figure 3), e.g., modify-
ing them by adding or removing entries related to Sports Stack
Exchange. Additionally, Unify allows users to configure the LLM
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Figure 4: Model management in Unify.

and embedding model for semantic analytics, such as setting hyper-
parameters such as temperature (Figure 4). The LLM can be locally
deployed or cloud-based and the embedding model for semantic
data representation is also customizable.

After configuration, users can submit natural language queries.
For example, the data analyst may issue the query: Compare the
number of documents for boxing and swimming among those with
more than 10,000 views; return the sport with fewer documents. Unify
generates a logical plan (Figure 2) that sequentially filters doc-
uments by view count, identifies boxing-related and swimming-
related questions, counts occurrences for each sport, and compares
the counts to identify the sport with fewer related documents.

As shown in Figure 2, Unify visualizes the generated plan and
provides an interactive interface to examine the plan orchestration
process. Each operator in the plan is explained with details about
how it is selected. For instance, the first Filter operator is selected
via: (1) a coarse-grained operator matching step, where the logical
representation of the query is first computed and the semantic sim-
ilarity is computed based on the embedding distance between the
logical representations of the query and operators, returning the
top-4 relevant operators with the highest semantic similarities (step
®); and (2) a fine-grained operator re-ranking step, where LLM
verifies input availability and operator feasibility of the top-4 candi-
date operators, ultimately selecting Filter as the most appropriate
operator (step ®). The query is then progressively reduced with
the selected operator (step @), and this iterative process continues
until the query is fully decomposed into an executable plan.

During plan execution, Unify provides real-time visualizations.
For example, Figure 5 illustrates the execution of the last few opera-
tors in Figure 2, displaying the executed physical implementations
and intermediate results. These details allow users to verify cor-
rectness and understand the applied physical execution strategy.

In summary, Unify provides an intuitive interface and an auto-
mated framework for data analytics over unstructured datasets. It
enables users to issue natural language queries, observe the process
of transforming queries into executable plans, and track execution
details to ensure accuracy in deriving insights.

4 CONCLUSION

In this paper, we propose Unify, which supports automatic un-
structured data analytics, bridging the gap between complex un-
structured data and actionable insights. By automating the entire
analytics pipeline, Unify empowers users to derive meaningful
insights from unstructured data with minimal technical expertise.
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