
The VLDB Journal (2024) 33:255–280
https://doi.org/10.1007/s00778-023-00807-y

REGULAR PAPER

Tabular data synthesis with generative adversarial networks: design
space and optimizations

Tongyu Liu1 · Ju Fan1 · Guoliang Li2 · Nan Tang3 · Xiaoyong Du1

Received: 30 August 2022 / Revised: 8 May 2023 / Accepted: 16 July 2023 / Published online: 15 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The proliferation of big data has brought an urgent demand for privacy-preserving data publishing. Traditional solutions to
this demand have limitations on effectively balancing the trade-off between privacy and utility of the released data. To address
this problem, the database community and machine learning community have recently studied a new problem of tabular
data synthesis using generative adversarial networks (GANs) and proposed various algorithms. However, a comprehensive
comparison between GAN-based methods and conventional approaches is still lacking, making it unclear why and how
GANs can outperform conventional approaches in synthesizing tabular data. Moreover, it is difficult for practitioners to
understand which components are necessary when building a GAN model for tabular data synthesis. To bridge this gap, we
conduct a comprehensive experimental study that investigates applying GAN to tabular data synthesis. We introduce a unified
GAN-based framework and define a space of design solutions for each component in the framework, including neural network
architectures and training strategies.We provide optimization techniques to handle difficulties in training GAN in practice.We
conduct extensive experiments to explore the design space, comparing with traditional data synthesis approaches. Through
extensive experiments, we find that GAN is very promising for tabular data synthesis and provide guidance for selecting
appropriate design choices. We also point out limitations of GAN and identify future research directions. We make all code
and datasets public for future research.

Keywords Tabular data synthesis · Generative adversarial networks · GAN optimizations · Data privacy

1 Introduction

The unprecedented scale of big data has become an indis-
pensable driving force of the remarkable development of data
science and machine learning in the past decades. However,
the tremendous amount of big data does not automatically

B Ju Fan
fanj@ruc.edu.cn

Tongyu Liu
ltyzzz@ruc.edu.cn

Guoliang Li
liguoliang@tsinghua.edu.cn

Nan Tang
nantang@hkust-gz.edu.cn

Xiaoyong Du
duyong@ruc.edu.cn

1 Renmin University of China, Beijing 100872, China

2 Tsinghua University, Beijing 100084, China

3 HKUST (GZ), Guangzhou 511455, China

lead to easy access. The difficulty in data access is still one
of the top barriers ofmany data scientists [35]. In fact, organi-
zations, such as governments and companies, have intention
to publish data to the public or share data to partners in many
cases, but they are usually restricted by regulations and pri-
vacy concerns. For example, a hospital wants to share its
electronic health records (EHRs) to a university for research
purpose, e.g., predicting unexpected readmission to reduce
operation cost [48]. However, the data sharing must be care-
fully reviewedby its legal department and institutional review
boards to avoid disclosure of patient privacy, which usually
takes months without guarantee of approval [34].

To address the difficulties, privacy-preserving data pub-
lishing has been extensively studied to provide a safer way
for data sharing [3, 10, 20, 46, 80, 81]. However, existing
solutions suffer from limitations on effectively balancing pri-
vacy and utility of the released data [57]. Therefore, efforts
have been made in the database and machine learning com-
munities to apply generative adversarial networks (GANs)
to tabular data synthesis [6, 13, 15, 51, 57, 73, 74]. The

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00807-y&domain=pdf
http://orcid.org/0000-0003-4729-9903

256 T. Liu et al.

main advantages of GAN are as follows. First, different from
the conventional methods [3, 10, 46, 80] that inject noise to
the original data, GAN utilizes neural networks to generate
“fake” data directly from noise. Thus, there is no one-to-one
relationship between real and synthetic data, which reduces
the risk of re-identification attacks [57].Moreover, the adver-
sarial learningmechanism of GAN enables the synthetic data
to effectively preserve utility of the original data for sup-
porting downstream applications, such as classification and
clustering.

However, compared with the success of using GAN for
image generation [52], GAN-based tabular data synthesis is
still in its infancy stage. Despite some very recent attempts
[6, 13, 15, 51, 57, 73, 74], as far as we know, a comprehensive
comparison between GAN-based methods and conventional
approaches is still lacking, making it unclear why and how
GANs can outperform conventional approaches in synthesiz-
ing tabular data. Moreover, it is difficult for practitioners to
understand which components are necessary when building
a GAN model for tabular data synthesis.

To address this problem, in this paper,we conduct a bench-
marking study that aims to provide guidance on constructing
GAN models for tabular data synthesis and evaluating their
effectiveness compared to conventional approaches. To this
end, we first introduce a general framework that unifies exist-
ing solutions for GAN-based tabular data synthesis to help
practitioners understand which components are necessary.
We categorize existing design solutions for different compo-
nents within this framework and compare solutions proposed
by different works under the same framework. Based on this,
we conduct extensive experiments to systemically investigate
the following key questions.

First, it remains an unresolved question on how to effec-
tively design GAN for tabular data synthesis. It is worth
noting that tabular data has its own characteristics that make
the design very challenging. (i) Tabular data have mixed data
types, including categorical and numerical attributes. (ii) Dif-
ferent attributes have correlations. Thus, the state-of-the-art
GAN design for image synthesis (e.g., DCGAN [62]) may
not perform well for tabular data. We review existing solu-
tions that realize GAN, including neural network design and
data transformation, and define a design space by provid-
ing a categorization of existing solutions. Through exploring
the design space, we systemically evaluate the solutions on
datasetswith various types and provide insightful experimen-
tal findings.

The second question is how to develop effective GAN
training algorithms. Real-world tabular data synthesis sce-
narios are very complex that posemany difficulties in training
a GAN model. First, a well-recognized obstacle in GAN
training is mode collapse such that the generator produces
records with limited varieties. Second, the performance of
GAN heavily relies on the quality and diversity of the real

data, and it is challenging to train GAN with limited data.
Third, many real-world datasets have highly imbalanced data
distribution, which increases the difficulty of data synthesis,
especially for records with minority labels. To tackle these
difficulties, we study optimization techniques, which are par-
ticularly designed for tabular data synthesis, e.g., avoiding
mode collapse, data augmentation for limited data, and con-
ditional GAN for tabular data synthesis with imbalanced
distributions.

The third question is whether GAN is more helpful
than other existing approaches for tabular data synthesis.
To answer this question, we consider various baselines,
including a representative deep generative model, varia-
tional auto-encoder (VAE) [41, 64], and the state-of-the-art
data synthesis approach using statistical models [80, 81]. To
provide a comprehensive comparison, we evaluate their per-
formance on both privacy and the utility of the synthetic data.
Moreover, we also examine whether GAN can support prov-
able privacy protection, i.e., differential privacy [22]. Based
on the comparison, we analyze the benefits and limitations
of applying GAN to tabular data synthesis.

To summarize, we make the following contributions.

(1) We conduct an experimental study for applying GAN to
tabular data synthesis. We formally define the problem
and review existing approaches (Sect. 3). We introduce a
unified framework and define a design space that sum-
marizes the solutions for realizing GAN (Sect. 4), which
can help practitioners to easily understand how to design
GAN for tabular data synthesis. We develop optimiza-
tion techniques to handle difficulties in training GAN for
real-world tabular data (Sect. 5).

(2) We empirically conduct a thorough evaluation to explore
thedesign space and comparewith thebaseline approaches
(Sect. 6). We make all code and datasets in our exper-
iments public at Github.1 We provide extensive exper-
imental findings and reveal insights on strength and
robustness of various solutions, which provide guidance
for an effective design of GAN.

(3) We find that GAN is highly promising for tabular data
synthesis, as it empirically provides better trade-off
between synthetic data utility and privacy. We point out
the limitations of GAN-based data synthesis and identify
future research directions (Sect. 8).

This article extends our conference version [25], where the
main extensions are summarized as follows.

• We introduce new optimization methods to address two
common challenges faced while training GAN models

1 https://github.com/ruc-datalab/Daisy.

123

https://github.com/ruc-datalab/Daisy

Tabular data synthesis with generative adversarial networks: design space and optimizations 257

on tabular data: (1) mode collapse that results in nearly
duplicated records and (2) limited training data that leads
to overfitting of the models. Section5 presents the meth-
ods, and Sect. 7.2 reports the experimental results.

• We add additional experiments to explore the design
space of GAN-based tabular data synthesis, such as
adding deep learning classifiers to make results of data
utility more comprehensive, evaluating data transforma-
tion and model efficiency to consider more evaluation
aspects, and comparing Vanilla GAN and DPGAN to
understand GAN training (Sect. 7.1). Moreover, we pro-
vide more detailed information of the real datasets used
in the paper (Sect. 6).

• We improve the presentation by re-organizing the paper
for readability and adding detailed design of different
neural networks of various GAN training algorithms
(Sect. 4).

2 Related work

2.1 Synthetic data generation

Tabular data synthesis has been extensively studied in the last
decades, and the existing approaches can be broadly classi-
fied into statistical model and neural model. The statistical
approach aims at modeling a joint multivariate distribution
for a dataset and then generating fake data by sampling from
the distribution. To effectively capture dependence between
varieties, existing works utilize copulas [44, 59], Bayesian
networks [80, 81], Gibbs sampling [58] and Fourier decom-
position [7]. Synopses-based approaches, such as wavelets
and multi-dimensional sketches, build compact data sum-
mary for massive data [17, 71], which can be then used for
estimating joint distribution.

As the statistical models may have limitations on effec-
tively balancing privacy and data utility, neural models have
been recently emerging to synthesize tabular data. Existing
works aim to use deep generative models to approximate
the distribution of an original dataset. To this end, some
studies devise deep de-noising autoencoders [26] and vari-
ational autoencoders (VAEs) [70], while more attentions
are paid on generative adversarial networks (GANs) [6,
13, 15, 38, 43, 50, 51, 57, 73–75]. However, despite the
aforementioned attempts on GAN-based tabular data syn-
thesis, existing works have not systemically explored the
design space, as mentioned previously. Thus, this paper con-
ducts an experimental study to systemically investigate the
design choices and compare with the state-of-the-art statis-
tical approaches for tabular data synthesis.

Recently, some studies introduce diffusion-based genera-
tive models for tabular data synthesis [39, 40, 42], and these
models also show good performance. Like GANs, diffusion
models aim to transform random noise into data that follows
the real data distribution. However, diffusion models differ
in that they first define a Markov process to construct a map-
ping from the real data distribution to the noise distribution
and then learn a model to approximate the reverse process.

2.2 Generative adversarial networks (GANs)

Generative adversarial networks (GANs) [27, 52], are a
kind of deep generative models, which have achieved break-
throughs inmany areas, such as image generation [14, 55, 62]
and sequence generation [76, 78]. Typically, GAN consists
of a generator G and a discriminator D, which are compet-
ing in an adversarial process. The generator G(z; θg) takes
as input a random noise z ∈ R

z and generates synthetic sam-
ples G(z) ∈ R

d , while the discriminator D(t; θd) determines
the probability that a given sample comes from the real data
instead of being generated by G. Intuitively, the optimal D
could distinguish real samples from fake ones, and the opti-
mal G could generate indistinguishable fake samples which
make D to randomly guess. Formally, G and D play a min-
max game with value function V (G, D), i.e.,

min
G

max
D

V (G, D) =Et∈pdata(t)
[
log D(t)

]

+ Ez∈pz(z)
[
log (1 − D(G(z)))

]
, (1)

where pdata is the distribution of the real samples transformed
from our tabular table T and pz is the distribution of the
input noise z. Minibatch stochastic gradient descent algo-
rithms can be applied to optimizing parameters θg and θd

in G and D, respectively. Over the past few years, many
variants of GAN architectures have been proposed. Rad-
ford et al. propose deep convolutional generative adversarial
networks [62], introducing convolutional networks (CNNs)
to the framework. Mirza and Osindero add extra informa-
tion to GANs by feeding conditions to both generator and
the discriminator, which improves GAN’s ability to model
complex data distribution [55]. Chen et al. introduce inter-
pretable representation learning by proposing information
maximizing GANs [14]. Lee et al. combine flow-based mod-
els with GANs to create an invertible generator [43]. Kim et
al. enhance data utility by designing the generator and dis-
criminator based on neural ordinary differential equations
[38]. While a full survey of the approaches to realizing GAN
is beyond the scope of this paper, we refer the reader to a
very recent survey [52].

123

258 T. Liu et al.

Fig. 1 An example of tabular data, with a numerical attribute age,
three categorical attributes gender, education and occupation
and a label income

3 Tabular data synthesis with GAN

3.1 Tabular data synthesis

This paper focuses on a tabular data T of n records, i.e.,
T = {t1, t2, . . . , tn}. We use T[j] to denote the j-th attribute
(column) of table T and t[j] to denote the value of record
t’s j-th attribute. In particular, we consider both categori-
cal (nominal) and numerical (either discrete or continuous)
attributes in this paper.We study the problem of synthesizing
a “fake” table T′ from the original T, with the objective of
preserving data utility and protecting privacy.
(1) Data utility highly depends on the specific need of
the synthetic data for downstream applications. This paper
focuses on the specific need on using fake tables to train
machine learning (ML) models, which is commonly con-
sidered by recent works [6, 13, 15, 23, 51, 57, 73, 74].
This means that an ML model trained on the fake table
should achieve similar performance as that trained on T.
For simplicity, this paper considers classification models.
We represent the original table as T = [X; Y], where each
xi ∈ X and each yi ∈ Y , respectively, represent features
and label of the corresponding record ti . We use T to train
a classifier f : X → Y that maps xi ∈ X to its pre-
dicted label f (xi). Then, we evaluate the performance of
f on a test set Ttest = [Xtest; Ytest] using a specific
metricEval(f |Ttest). Some representativemetrics include
F1 score and area under the ROC curve (AUC). Similarly,
inspired by the TSTR [23] method, we can train a classifier
f ′ on the synthetic table T′ and evaluate the classifier on the
same Ttest to obtain its performance Eval(f ′|Ttest). The
utility of T′ is measured by the difference between these two
classifiers’ performance metrics as:

Diff(T, T′) =| Eval(f |Ttest) − Eval(f ′|Ttest) | . (2)

Example 1 (Synthetic Data Utility) Consider an example
table T in Fig. 1, where label income has two unique val-

ues: 0 (income ≤ 50K) and 1 (income > 50K). We use
T to train a synthesizer G and generate a fake table T′ via G.
We train models f and f ′ to predict income on T and T′,
respectively, and evaluate these models on a test table Ttest.
We measure the performance difference of these two models
as Diff(T, T′) between the original T and synthetic table T′.
Intuitively, the lower the difference Diff(T, T′) is, the better
the synthetic table preserves the data utility.

(2) Privacy risk evaluation for synthetic table T′ is also an
independent research problem. In this paper, we employ two
commonly used attacks: membership inference attack [67]
and re-identification attack [58]. To perform membership
inference attack, we train an attackmodel to classify whether
a given instance is used in the GAN model training. We use
the F1-score of the attack model as a metric to evaluate the
attack performance. For re-identification attack, we evaluate
the attack performance by measuring the likelihood that the
original data records can be re-identified by the attacker from
the synthetic data. Here we use hitting rate and distance to
the closest record (DCR) that have been widely used in the
existing works [51, 53, 58] as the metrics.
Remarks Real-world practice in tabular data synthesis may
have various needs onpreserving data utility.Besides classifi-
cation, this paper also considers data utility for the following
two applications.
(1) Data utility for clustering We consider the need on using
synthetic data to evaluate a clustering algorithm. For exam-
ple, suppose that a hospital wants to ask a CS team to
develop a clustering algorithm that discovers groups of simi-
lar patients. It can first share the synthetic data to the team for
ease of algorithm development. Then, it deploys the devel-
oped algorithm in the hospital to discover groups on the
original data. In this case, the data utility is that a cluster-
ing algorithm should achieve similar performance on both
original table T and fake table T′. Let C = {c1, c2, . . . , ck}
and C′ = {c′

1, c′
2, . . . , c′

k}, respectively, denote the sets of
clusters discovered by a clustering algorithm on T and T′.
We can use a standard evaluation metric for clustering, such
as normalized mutual information (NMI), to examine the
quality of C and C′. Then, the utility of T′ for clustering
is measured by the difference between these two metrics,
i.e., DiffCST(T, T′) =| Eval(C|T) − Eval(C′|T′) |, where
Eval(C|T) (Eval(C′|T′)) is the evaluation metric for clus-
ters C (C′) from original table T (fake table T′). Intuitively,
we prefer a smaller DiffCST for preserving the utility.
(2) Data utility for answering queries We examine the need
on using synthetic data to support approximate query pro-
cessing (AQP) [12, 70]. For example, suppose that a user
wants to perform data exploration or visualization on a large
dataset. To reduce latency, some work [70] introduces a
lightweight approach that utilizes synthetic data in the client
to quickly answer aggregate queries, without communicat-

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 259

Fig. 2 Overview of data synthesis using GAN. (1) It transforms each
record in a tabular data into a sample t ∈ R

d . (2) It takes the samples as
input to train a deep generative model G using the adversarial training
framework in GAN. (3) It utilizes the trained G to generate a set of
synthetic samples, which are then transformed back into fake records

ing with the server. To support this, the synthetic data should
preserve the utility that answers aggregate queries as accu-
rate as possible to the original data T. To formally measure
the data utility, we adopt the relative error difference [70], as
defined as below. For each aggregate query q, we compute
the relative error e′ over the synthetic table T′, and the relative
error e over a fixed size sample obtained from T. Then, we
compute the relative error difference as the absolute differ-
ence between these two errors,DiffAQP(T, T′|q) =| e−e′ |.
Given a workload with a set Q of queries, we compute the
average DiffAQP(T, T′) = ∑

q∈Q DiffAQP(T, T′|q)/|Q|.

3.2 TDGAN: a GAN-based synthesis framework

We introduce a framework TDGAN that unifies the exist-
ing solutions for applying GAN to tabular data synthesis, as
shown in Fig. 2. TDGAN takes a relational table T as input
and generates a table T′ of synthetic data in three phases.
Phase I—Data Transformation. Tabular data has mixed
data types, including numerical and categorical attributes.
However, GAN models each data tuple as a sample t ∈ R

d

of numerical values. Thus, this phase is to transform a record
into such a sample.2 Specifically, it transforms each record
t ∈ T with mixed attribute types into a sample t ∈ R

d of
numerical values, which can be then fed into neural networks
in GAN.

2 We use t and t to, respectively, denote a record in T and the d-
dimension sample transformed from record t in the paper.

Fig. 3 Categorization of design solutions for components in TDGAN:
Data Transformation, Neural Networks and GAN Training

Phase II—GAN Model Training. Attributes in tabular data
usually have correlations. It remains challenging to enable the
generator to capture such correlations. To this end, this phase
aims at training a deep generative model G. Specifically, G
takes as input a random noise z ∈ R

z and generates synthetic
sample t ′ = G(z) ∈ R

d . Meanwhile, a Sampler picks a
sample ti from the data prepared by the previous phase. Then,
fed with both real and synthetic samples, our discriminator
D determines the probability that a given sample is real.
By iteratively applying minibath stochastic gradient descent,
parameters of both G and D are optimized, and thus, G could
be improved towards generating indistinguishable samples
that fool D. The key technical issue here is to design effective
neural networks for G that can capture correlations among
attributes.
Phase III—Synthetic Data Generation. This phase utilizes
G, which is well trained previously, to generate a synthetic
table T′. It repeatedly feeds G with the prior noise z (as well
as target label), which generates a set of synthetic samples
{t ′}. Next, it adopts the same data transformation scheme
used in Phase I to convert the samples back into records that
then compose T′.

Example 2 (Framework) Considering our example in Fig. 1,
the framework transforms each record into a sample. Suppose
that we adopt ordinal encoding for categorical attributes.

The first record is transformed to [38, 0, 0, 0, 0]. Then, it
uses the transformed samples to train the GAN model for
obtaining an optimized generator G. It leverages G to gener-
ate samples, e.g., [40, 1, 2, 1, 1], and transforms the samples
back to synthetic records, e.g., (40, Female, Bachelors,
Prof-specialty, > 50K).

4 Design space of TDGAN

We provide a categorization of design solutions for each
component in TDGAN, which forms a design space as sum-
marized in Fig. 3.

123

260 T. Liu et al.

• For data transformation, we examine how to encode
categorical attributes to numerical values and normalize
numerical attributes to appropriate ranges that fit neural
networks in Sect. 4.1.

• For neural networks, we consider three representative
neural network architectures in Sect. 4.2.

• ForGAN training, we present a vanilla training algorithm
and a differential privacy (DP)-preserving algorithm in
Sect. 4.3.

4.1 Data transformation

Data transformation converts a record t in T into a sample
t ∈ R

d . To this end, it processes each attribute t[j] in t inde-
pendently to transform t[j] into a vector t j . Then, it generates
t by combining all the attribute vectors. Note that the trans-
formation is reversible: after generating synthetic sample t ′
using G, we can apply these methods to reversely convert
t ′ to a fake record. Moreover, as different neural networks
have different requirements for the input, sample t can be in
the form of either matrix or vector. Next, we first describe
the schemes for both categorical and numerical attributes and
then discuss how to combine multiple attributes. Note that a
recent survey summarizesmore sophisticated transformation
schemes for tabular data [9]. We will explore these schemes
as a future work.
Categorical attribute transformation. We consider two
commonly used encoding schemes.
(1) Ordinal encoding assigns an ordinal integer to each cat-
egory of categorical attribute T[j], e.g., starting from 0 to
|T[j]|−1 (|T[j]| is domain size of T[j]). After ordinal encod-
ing, T[j] is equivalent to a discrete numeric attribute.
(2) One-hot encoding assigns each category of categorical
attribute T[j] with an integer, starting from 0 to |T[j]| − 1.
Then, it represents each category as a binary vector with all
zero values, except that the index of the integer correspond-
ing to the category is set as one. For example, for gender,
ordinal encoding and one-hot encoding, respectively, trans-
form its two values into 0 and 1, and (1, 0) and (0, 1).
Numerical attribute transformation. We normalize values
in a numerical attribute to [−1, 1], to enable neural networks
in G to generate values in the attribute using tanh as an
activation function. In particular,we investigate the following
two normalization methods.
(1) Simple normalization uses T[j].max and T[j].min to,
respectively, denote the maximum and minimum values of
attribute T[j]. Given an original value v in T[j], it normalizes
the value as:

vnorm = −1 + 2 · v − T [j].min

T [j].max−T [j].min
. (3)

For example, for age in Fig. 1, value 43 of the last record is
transformed into 0.2.
(2) GMM-based normalization. Some studies [73, 74] pro-
pose to consider the multimodal distribution of a numerical
attribute T[j], to avoid limitations of simple normalization,
such as gradient saturation. They utilize a Gaussian mixture
model (GMM) to cluster values of T[j], and normalize a
value by the cluster it belongs to. They first train a GMM
with s components over the values of T[j], where the mean
and standard deviation of each component i are denoted by
μ(i) and σ (i). Then, given a specific value v, they compute
the probability distribution (π(1), π(2), . . . , π(s))where π(i)

indicates the probability that v comes from component i , and
normalize v as:

vgmm = v − μ(k)

2σ (k)
, where k = argmax

i
π(i). (4)

For example, suppose that the records in our example table
can be clustered into twomodes, i.e., “young generation” and
“old generation” with Gaussian distributions G(20, 10) and
G(50, 5), respectively. Then, given an age value 43, we first
determine that it is more likely to belong to the old generation
and then normalize it into a vector (−0.7, 0, 1) where (0, 1)
indicates the second mode and −0.7 is vgmm.
Combining multiple attributes. Once all attributes in t are
transformed by the above schemes, we need to combine them
together to generate sample t .
(1) Matrix-formed samples.ForCNN-basedneural networks,
we follow the method in [57] to convert attributes into a
square matrix. For example, a record with 8 attributes is con-
verted into a 3 × 3 square matrix after padding one zero.
Note that this method requires each attribute is transformed
into one value instead of a vector (otherwise, the vector of an
attribute may be split in the matrix). Thus, one-hot encoding
and GMM-based normalization are not applicable.
(2) Vector-formed samples. For MLP-based and LSTM-
based neural networks, we concatenate all the attribute
vectors to generate a sample vector, i.e., t = t1⊕ t2⊕. . .⊕ tm .
Obviously, thismethod is compatible to all the attribute trans-
form schemes described above.

Example 3 (Data Transformation) Let us consider the last
record in Fig. 1. When transforming the record into a
matrix-formed sample, we can only apply ordinal encod-
ing and simple normalization and obtain a square matrix
((0.2, 1, 2), (4, 1, 0), (0, 0, 0)). When transforming it into a
vector-formed sample, we may choose to use one-hot encod-
ing and GMM-based normalization, and obtain (−0.7, 0, 1,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1), where the underlines indi-
cate different attributes.

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 261

4.2 Neural networks

We present representative neural networks according to the
form of input sample t . Given matrix-formed samples, we
examine convolutional neural networks (CNN) for both gen-
erator G and discriminator D, in which G is a deconvolution
process and D is a convolution process. Such solution has
been proven to be effective for synthetic image generation
[62]. For vector-formed samples, we can use fully-connected
neural networks (MLP) [28] to realize G that uses multiple
layers to transform random noise z to sample t ′. Alter-
natively, we can model record synthesis as a sequence
generation process that generates attributes separately in
sequential timesteps. In this case, we may choose some vari-
ant of recurrent neural networks, such as long short-term
memory (LSTM) networks [29] to realize G.
CNN: convolutional neural networks. Inspired by the suc-
cess of image synthesis, some apply DCGAN [62] and use
convolutional neural networks (CNN) for G and D, in which
G is a deconvolution process and D is a convolution process
[13, 57].

Specifically, generator G takes as input a prior noise z,
which is also denoted by h0g . It then uses L de-convolution
layers {hl

g} (i.e., fractionally strided convolution) to trans-
form z to a synthetic sample in the form of matrix, i.e.,

hl+1
g = ReLU(BN(DeConv(hl

g))),

t = tanh(DeConv(hL
g)), (5)

where DeConv is de-convolution function.
Discriminator D takes as input a real/fake sample t in

matrix form, denoted by h0d . It applies L convolution layers
{hl

d} to convert t to a probability indicating how likely t is
real, i.e.,

hl+1
d = LeakyReLU(BN(Conv(hl

d))),

f = sigmoid(BN(Conv(hL
d))), (6)

where Conv is a convolution function and BN is the batch
normalization.
MLP: fully connected neural networks. Following the
original GAN [27], some studies [15, 73] use multilayer per-
ceptron (MLP) consisting ofmultiple fully-connected layers.
G takes as input noise z, which is also denoted by h(0), and
utilizes L fully-connected layers. Each layer is computed by:

hl+1 = φ
(
BN(FC|hl |→|hl+1|(hl))

)
, (7)

where FC|hl |→|hl+1|(hl) = W lhl + bl with weights W l and
bias bl , φ is the activation function (we use ReLU in our
experiments), and BN is the batch normalization [31]. D is an

MLP that takes a sample t as input, andutilizesmultiple fully-
connected layers and a sigmoid output layer to classify if
t is real or fake.

One issue here is how to make the output layer in G
attribute-aware.We propose to generate each attribute vector
t j depending on the transformation method on the corre-
sponding attribute T[j], e.g., using tanh and softmax for
simple normalization and one-hot encoding, respectively. In
particular, for GMM-based normalization, we adopt the fol-
lowing method in [73]. We first use tanh(FC|hL |→1(h

L)

to generate vgmm and then use softmax(FC|hL |→s(h
L)) to

generate a one-hot vector indicating which component vgmm
belongs to. After generating {t j } for all attributes, we con-
catenate them to obtain t as a synthetic sample.
LSTM: recurrent neural networks.A sequence generation
mechanism is also utilized to generate attributes separately in
sequential time-steps [74]. It uses recurrent neural networks,
such as long short-term memory (LSTM) networks [29] for
G. Specifically, it models a record t as a sequence, and each
element of the sequence is an attribute t j . It uses LSTM to
generate t at multiple timesteps, where the j-th timestep is
used to generate t j . Let h j and f j , respectively, denote the
hidden state and output of the LSTM at the j-th timestep.
Then, we have:

h j+1 = LSTMCell(z, f j , h j),

f j+1 = tanh(FC|h j+1)|→| f j+1)|(h j+1)),

where h0 and f 0 are initialized with random values. To real-
ize discriminator D, we use a typical sequence-to-oneLSTM
[68]. Moreover, similar to MLP, we make the output layer in
G attribute aware by considering transformation method for
each attribute. In particular, for t[j] transformed by GMM-
based normalization, we use two timesteps to generate its
sample t j , and concatenate these two parts.

4.3 GAN training

This paper investigates two alternatives to trainGANs: (1) the
vanilla training algorithmwith an improved loss function and
(2) the differential privacy-preserving (DP) GAN training.
Vanilla GAN Training. We use the vanilla GAN training
algorithm [27] (VTrain) to iteratively optimize parameters
θd in D and θg in G.

θd ← θd + αd∇θd

1

m

m∑

i=1

[log D(t(i))

+ log (1 − D(G(z(i))))]

θg ← θg − αg∇θg

1

m

m∑

i=1

log(1 − D(G(z(i)))),

123

262 T. Liu et al.

wherem is theminibatch size andαd (αg) is learning rate of D
(G). One limitation of the algorithm is that it may not provide
sufficient gradient to trainG in the early iterations [27]. Exist-
ing work [74] introduces the KL divergence between real and
synthetic data towarmupmodel training. LetKL(T[j], T′[j])
denote the KL divergence regarding attribute T[j] between
the sampled real examples {t(i)}m

i=1 and synthetic samples
{G(z(i))}m

i=1. Specifically, we optimize G by considering the
original loss and KL divergences regarding all attributes, i.e.,

LG = Ez∼p(z)[log(1 − D(G(z)))] +
|T|∑

j=1

KL(T[j], T′[j]).

(8)

Differential Privacy-Preserving GAN Training. We con-
sider differential privacy [22], a well-adopted formalization
of data privacy, to evaluatewhetherGANcan still be effective
to preserve data utility while providing provable privacy pro-
tection. Intuitively, although G does not access the real data
T (only D accesses T via Sampler), G may still implicitly
disclose privacy information as the gradients for optimizing
G is computed based on D. Thus, we adopt the DPGAN
model [72] in the GAN training process.

The basic idea is to add noise to the gradients used
to update parameters θd to make discriminator D differ-
entially private, since D accesses the real data and has
the risk of disclosing privacy information. Then, accord-
ing to the post-processing property of differential privacy,
a differentially private D will also enable G differentially
private, as parameters θg are updated based on the output
of D. Overall, DPGAN follows the framework of Wasser-
stein GAN training with minor modifications (DPTrain).
When training D, for each sampled noise z(i) and real exam-
ple t(i), it adds Gaussian noise N (0, σ 2

n c2g I) to the gradient

∇θd [D(t(i)) − D(G(z(i)))], where σn is the noise scale and
cg is a user-defined bound on the gradient of Wasserstein
distance with respect to parameters θd .

5 Optimizations in GAN training

This section presents three optimization techniques to handle
difficulties in training a GAN model on real-world tabular
data. First, a well-recognized obstacle in GAN training is
mode collapse such that the generator produces records with
limited varieties. We discuss how to avoid mode collapse in
Sect. 5.1. Second, the performance of GAN heavily relies on
the quality and diversity of the real data T, and it is chal-
lenging to train GAN with limited data. To address this, we
introduce a data augmentation strategy in Sect. 5.2. Third,
most real-world data have imbalanced label distribution,
which increases the difficulty of data synthesis, especially

Fig. 4 An example of mode collapse in GAN training, which results in
similar, or even nearly duplicated records in the synthetic data

for records with minority labels. We examine how to adopt
conditionalGAN for synthesizing datawith imbalanced label
distribution in Sect. 5.3.

5.1 Avoidingmode collapse

We investigate mode collapse [54, 65], a well-recognized
challenge in GAN training. Mode collapse would result in
similar, or even nearly duplicated records in synthetic table
T′, as shown in Fig. 4. The reason is that generator G would
generate a limited diversity of samples, regardless of the input
noise. Then, as synthetic records are transformed from the
samples, many records will have the same values for most of
the attributes aswell as the labels.Consequently, the synthetic
table T′ would fail to preserve the data utility of original table
T. For example, a classifier trained on synthetic table T′ may
perform badly on the test set.

Our experimental study shows that, when mode collapse
happens, the loss of D will rapidly decrease to a low value.
In contrast to D, the loss of G can hardly decrease, and even
increase in the training process. This phenomenonmeans that
D can be trained very well while the G fails to converge. This
is because when D is well trained, G cannot get sufficient
gradients in training iterations and the training algorithm fails
to decrease the loss of G. In this case, G won’t converge and
may overfit to a few training records.

We first analyze why the gradients of generator G will
disappear when discriminator D is perfectly trained. As
analyzed in [27], given any generator G, the optimal dis-
criminator D, denoted as D∗(t), is

D∗(t) = pdata(t)
pdata(t) + pg(t)

, (9)

where pdata(t) and pg(t), respectively, denote distributions
of the real data and the synthetic data. Then, by substituting
D∗(t) into Equation (1), we have:

V (G, D) = Et∈pdata(t)
[
log D∗(t)

]

+ Et∈pg(t)
[
log (1 − D∗(t))

]

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 263

= Et∈pdata(t)
[
log

pdata(t)
pdata(t) + pg(t)

]

+ Et∈pg(t)
[
log

pg(t)

pdata(t) + pg(t)

]

= 2JSD(pdata||pg) − 2 log 2, (10)

where JSD(pdata||pg) is the Jensen–Shannon divergence
between the two distributions pdata and pg [27].

The existing study [4] has shown that JSD(pdata||pg)

tends to be a constant (i.e., log 2) in most of the cases. The
main reason is that the support sets of pdata and pg are
low-dimensional manifolds in a high-dimensional space, and
thus, the measurement of the overlap between pdata and pg

is 0. Please refer to [4] for more detailed analysis. Then,
based on Equation (10), we obtain a constant value function
V (G, D). Thus, the gradients of V (G, D) will become 0,
leading to the fact that generator G fails to converge.

To address this problem, we investigate the following two
strategies.
Wasserstein GAN. The first strategy is to utilize the train-
ing algorithm of Wasserstein GAN (WTrain) [5], which is
commonly used for addressing mode collapse in image syn-
thesis. The idea is to use the Wasserstein distance to replace
the Jensen–Shannon divergence.

Specifically, it removes the sigmoid function of D and
modifies the loss functions into

LD = −Et∼pdata(t)[D(t)] + Ez∼p(z)[D(G(z))]
LG = −Ez∼p(z)[D(G(z))]. (11)

Moreover, it clips the parameters of D in each iteration to
make sure that D(t) can satisfy the Lipschitz continuity, i.e.,
|D(t)|L ≤ K . In this case, given an optimal discriminator
D∗(t), the value function becomes

Vw(G, D) =Et∈pdata(t)
[
D∗(t)

] − Et∈pg(t)
[
D∗(t)

]

= max|D(t)|L≤K
Et∈pdata(t)

[
D(t)

] − Et∈pg(t)
[
D(t)

]

≈WD(pdata, pg), (12)

where WD(pdata, pg) is the Wasserstein distance between
pdata and pg . Different from JSD(pdata||pg), even when
the measurement of the overlap between pdata and pg is
0, WD(pdata, pg) is not a constant [5]. Thus, gradients of G
will not disappear even when D is well trained. Specifically,
it changes the gradient optimizer from Adam to RMSProp
and uses Tg iterations to optimize G. In each G’s training
iteration, it uses Td iterations to train D and then trains G.
In particular, it clips parameters θd of D into an interval
[−cp, cp] after each training iteration of D.
Simplified Discriminator. To avoid mode collapse, we can
also use a very simple strategy: we still use the vanilla GAN

training algorithmVTrain, while simplifying the neural net-
work architectures of discriminator D. For example, we can
reduce the numbers of layers or neurons in the neural network
of the discriminator D. The idea is to limit the capacity of D,
which can make it hard to obtain a well-trained D, and then
avoids the chance of gradient disappearance of generator G.

We will empirically evaluate the performance of these
two strategies in alleviating mode collapse of GAN training.
Please refer to Sect. 7.2.1 for the results.

5.2 Training GANwith limited data

The size of our original tableT (i.e., the number of tuples inT)
will significantly affect the performance of TDGAN. Typ-
ically, an important premise of obtaining a well-performed
generator G that synthesizes “near-real” data is having suf-
ficient original data as the training set. However, this may
not be practical due to the high cost of data collection and
labeling. To address the problem, this section investigates an
optimization approach to training a GANmodel with limited
data.We first analyze the effect of limited data onGAN train-
ing in Sect. 5.2.1 and then introduce a novel solution, called
MaskGAN, in Sect. 5.2.2.

5.2.1 Effect of limited data on GAN training

Weconduct an empirical investigation on the effect of limited
data on the Adult dataset. (Details of the Adult dataset
can be found in Sect. 6.) Specifically, we report the output
probability D(t) of discriminator D for each sample t fed
to D, where t could either come from the training set and
the validation set of original data T, or be synthesized by
generator G. Recall that an optimized discriminator D will
produce higher probability D(t) if t comes from T, while
giving lower D(t) for a synthetic sample.

Figure 5a shows the per-iteration performance of D
trained under Vanilla GANwith sufficient data. As expected,
values of D(t) for samples from both training and valida-
tion sets are higher than 0.5, which means that D tends to
classify the samples as “real data”. On the other hand, values
of D(t) for synthetic samples are lower than 0.5, and thus,
D is likely to identify them as fake samples. Also, with the
increase of training iterations, the gap between real and fake
samples becomes smaller, which means that generator G is
improved to generate indistinguishable samples that fool D.

However, the behavior of discriminator D is significantly
changed given limited training data, e.g., 10% of the origi-
nal training set, as shown in Fig. 5b. We have an interesting
observation that the values of D(t) for samples from val-
idation set sharply decrease when increasing the training
iteration. The results indicate that discriminator D gradu-
ally tends to classify samples from the validation set as “fake
data”, although these samples are actually real. The main

123

264 T. Liu et al.

Fig. 5 Per-iteration performance of discriminator D on training and validation sets under different settings. (a) D is trained using Vanilla GAN
with sufficient data. (b) D is trained using Vanilla GAN with limited data. (c) D is trained using our proposed MaskGAN with limited data

Fig. 6 Overview of MaskGAN. To mitigate overfitting of discrimina-
tor D,MaskGAN applies a masking function to real/synthetic samples
before feeding these samples to D

reason is that D overfits to the limited training data, that
is, it simply memorizes the distribution of the training data
rather than understanding how to distinguish real samples
from synthetic ones. Consequently, D will not provide suf-
ficient gradients to update G [36, 79, 83], leading to poor
performance of synthetic data generation.

5.2.2 MASKGAN: a data augmentation approach

To mitigate the overfitting issue of discriminator D, we pro-
pose an approach called MaskGAN. The basic idea is to
introducedata augmentation techniques that enhance the size
and quality of the limited training data for D. Existing studies
on GAN-based image synthesis have shown that data aug-
mentation is very effective to mitigate overfitting and thus
improve the performance of GAN training with limited data
[36, 83]. However, supporting data augmentation for tabu-
lar data is quite challenging, because, different from images,
tabular datasets cannot be augmented by a predefined set of
transformation operations, such as pixel blurring, color trans-
forms, and image-space filtering.

To address the challenge, MaskGAN utilizes a simple
yet effective data augmentation operation. As illustrated in
Fig. 6, MaskGAN applies a masking function Mp to the
training data sampled from the real distribution and the syn-
thetic data generated by the generator G before feeding them

into the discriminator D in the training process. Note that,
although the masking function has achieved superior perfor-
mance in our experiments, there could be more sophisticated
data augmentation operations for tabular data. We will take
a more comprehensive study as the future work.

Intuitively, the masking function aims to only allow dis-
criminator D to observe a random subset of values in the
original tuples. Given a transformed tuple t , we formally
define the masking function over the tuple as

Mp(t) = t � mp, (13)

where � is the element-wise multiplication and mp ∈
{0, 1}N is a binary mask vector that each element mi ∈ mp

indicates whether the corresponding t[j] is visible (mi = 1)
or masked (mi = 0).

In particular, the mask vector mp is randomly sampled
from a binomial distribution with a masking probabil-
ity p(m = 0) = p. For example, given a tuple t =
{38, 1, 9, 23, 1} and p = 0.4, M0.4 will first randomly sam-
ple a mask vector m0.4 = {1, 1, 0, 0, 1}, and then obtain the
masked tuple M0.4(t) = t � m0.4 = {38, 1, 0, 0, 1} for the
discriminator D.

Based on the aforementioned masking function Mp, we
introduce new loss functions for MaskGAN as

LD = − Et∼pdata(t)[log D(Mp(t))]
− Ez∼p(z)[log(1 − D(Mp(G(z))))]

LG =Ez∼p(z)[log(1 − D(Mp(G(z))))]. (14)

Our experimental results show that the masking function
can achieve satisfied results tomitigate overfitting of D, given
a well-tuned masking probability p. For example, the result
shown in Fig. 5c has revealed a fact that, after applying M0.4

to the limited training set mentioned above, the scores of
validation set can be closer to the training data comparedwith
the results shown in Fig. 5b. This indicates that MaskGAN
can effectively alleviate the overfitting of the discriminator
D. This is because it is more difficult for D to memorize the

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 265

distribution of the training data after the masking function is
applied.
Remarks. We also examine a question about whether
MaskGAN can capture the distribution of the real data, given
that it can only access masked tuples. Some existing studies,
such as Cheng et al. [47] and Liu et al. [49], consider a very
similar problem for training a GAN model with data with
missing values. They also apply masking functions to sam-
ples before feeding the samples to D. The studies find that
GAN can implicitly undo the masking function and learn the
original distribution as long as we (1) control the magnitude
of the masking function (i.e., the mask probability p) and (2)
apply the same masking function to both real and synthetic
samples. Our empirical study in this paper also validates the
above result: when we select an appropriate masking prob-
ability p for the masking function Mp and apply it to all
samples, MaskGAN performs well for effective data aug-
mentation.

5.3 Generating with imbalanced data

The imbalanced label distribution in real-world data may
result in insufficient training for records with minority labels
[73], which can also affect the utility of the synthetic data.
For instance, most records in our example table in Fig. 1 have
income ≤ 50K , while only a few with income > 50K .

To handle this issue, some studies [73] apply conditional
GAN [55] to data synthesis, which encodes a label as a
condition vector c to guide G (D) to generate (discrimi-
nate) samples with the label. We first introduce the design
of the conditional GAN. Moreover, we also propose a differ-
ent sampling strategies, label-aware sampling that gives fair
opportunity for samples with different labels.
Design of conditional GAN The basic idea of conditional
GAN is to encode label as a condition vector c ∈ R

c and
feed c to both generator and discriminator as an additional
input. Specifically, given a domain � of labels, we use one-
hot encoding (see Sect. 4.1) to encode the labels. Then, we
concatenate the prior noise z and the condition vector c as
a new vector z′ and feed z′ to G. Moreover, we also con-
sider condition c in discriminator D(t|c) in the similar way.
We, respectively, represent the generator and the discrimina-
tor as G(z|c; θg) ∈ R

d and D(t|c; θd). Then, generator G
would like to generate samples conditioned on c, which can
perfectly fool discriminator D, while D wants to distinguish
real samples with condition c from synthetic ones, i.e.,

min
G

max
D

V (G, D) =Et∈pdata(t)
[
log D(t|c)]

+ Ez∈pz(z)
[
log (1 − D(G(z|c)))].

(15)

After injecting the conditional input c, the target of G
is changed to learn the conditional distribution pdata(t|c),
which can then be used to generate the corresponding syn-
thetic tuple t ′ according to the given condition c.
Label-aware sampling in training To make the data with
minority label have sufficient training opportunities, we
introduce label-aware data sampling in model training
(CTrain). The idea is to sample minibatches of real exam-
ples by considering labels as a condition, instead of uniformly
sampling data. Specifically, in each iteration, the algorithm
considers every label in the real data, and for each label, it
samples records with corresponding label for the following
training of D and G. Using this method, we can ensure that
data with minority labels also have sufficient training oppor-
tunities.

6 Evaluationmethodology

This section presents the methodology of our experimental
study that explores the design space and compares with base-
line approaches.Wemake all codes and datasets public at the
Github repo.3

6.1 Datasets

Toconsider various characteristics of tabular data, e.g.,mixed
data types, attribute correlation and label skewness, we use
10 real datasets from diverse domains, such as Physical and
Social. The datasets are representative that capture different
data characteristics, as summarized in Table 1. We describe
the detailed information of these datasets as below:
(1)HTRU2 dataset is a physical dataset that contains 17, 898
pulsar candidates collected during the High Time Resolution
Universe Survey [30]. This dataset has 8 numerical attributes,
which are statistics obtained from the integrated pulse profile
and the DM-SNR curve, and a binary label (i.e., pulsar and
non-pulsar). The label distribution is balanced.
(2)Digitsdataset contains 10, 992 pen-based handwritten
digits [60]. Each digit has 16 numerical attributes collected
by a pressure sensitive tablet and processed by normalization
methods, and a label indicating the gold-standard number
from 0-9. The label distribution of this dataset is balanced.
(3) Adult dataset contains personal information of 41, 292
individuals extracted from the 1994 US census with 8 cat-
egorical attributes, such as Workclass and Education
and 6 numerical attributes, such as Age and Hours-per-
Week [1]. We use attribute Income as label and predict
whether a person has income larger than 50K per year (pos-
itive) or not (negative), where the label distribution is skew,
i.e., the ratio between positive and negative labels is 0.34.

3 https://github.com/ruc-datalab/Daisy.

123

https://github.com/ruc-datalab/Daisy

266 T. Liu et al.

Table 1 Real datasets for our
evaluation: #Rec, #C, #N, and
#L are, respectively, numbers of
records, numerical attributes,
categorical attributes, and
unique labels

Dataset Domain #Rec #N #C #L Skewness

Low-dimensional (#Attr≤ 20)

HTRU2 [30] Physical 17,898 8 0 2 Skew

Digits [60] Computer 10,992 16 0 10 Balanced

Adult [1] Social 41,292 6 8 2 Skew

CovType [16] Life 116,204 10 2 7 Skew

Mid-dimensional (20 <#Attr≤ 50)

SAT [69] Physical 6,435 36 0 6 Balanced

Anuran [2] Life 7,195 22 0 10 Skew

Census [11] Social 142,522 9 30 2 Skew

Bing [45] Web 500,000 7 23 – –

High-dimensional (#Attr> 50)

Internet [32] Web 10,108 1 70 – –

Diabete [19] Medicine 91,786 11 44 3 Skew

(4) CovType dataset contains the information of 116, 204
forest records obtained from US Geological Survey (USGS)
and US Forest Service (USFS) data [16]. It includes 2 cat-
egorical attributes, Wild-area and Soil-type, and 10
numerical attributes, such as Elavation and Slope. We
use attributeCover-typewith 7 distinct values as label and
predict forest cover-type from other cartographic variables.
The label distribution is also very skew, e.g., there are 46%
records with label 2 while only 6% records with label 3.
(5) SAT dataset consists of the multi-spectral values of pix-
els in 3x3 neighborhoods in a satellite image [69]. It has 36
numerical attributes that represent the values in the four spec-
tral bands of the 9 pixels in a neighborhood, and uses a label
with 7 unique values indicating the type of the central pixel.
The label distribution is balanced in the dataset.
(6) Anuran dataset is from the life domain for anuran
species recognition through their calls [2]. It has 22 numer-
ical attributes, which are derived from the audio records
belonging to specimens (individual frogs), and associates a
label with 10 unique values that indicates the corresponding
species. The label distribution is very skew: there are 3, 478
records with label 2 and 68 with label 9.
(7)Censusdataset containsweighted census data extracted
from the 1994 and 1995 Current Population Surveys [11].
We use demographic and employment variables, i.e., 9
numerical and 30 categorical attributes, as features, and
total-person-income as label. We remove the records
containing null values and then obtain 142, 522 records with
very skew label distribution, i.e., 5% records with income
larger than 50K vs. 95% with income smaller than 50K .
(8) Bing dataset is a Microsoft production workload
dataset, which contains the statistics of Bing Search and is
used for evaluating AQP [45]. We sample 500, 000 records
with 23 categorical and 7 numerical attributes. As the dataset

does not have any attribute used as label, we only use the
dataset for evaluating performance of data synthesis on AQP.
(9) Internet dataset contains general demographic infor-
mation on internet users that come from a survey conducted
by the Graphic and Visualization Unit in 1997 [32]. It has 1
numerical attribute and 70 categorical attributes. Since there
is no explicit label in the original dataset, we use it for eval-
uating performance of data synthesis on AQP.
(10) Diabete dataset collects 10-year data (1999–2008)
of clinical care at 130 US hospitals and integrated delivery
networks [19]. It includes 11 numerical attributes and 44
categorical attributes to represent the features of diabetics
and diagnoses. We use attribute Readmitted as label to
predict days to inpatient readmission. The label distribution
is also skewed: only 11% of the patients are readmitted in
less than 30 days.

To provide an in-depth analysis on synthesis performance
by varying degrees of attribute correlation and label skew-
ness, we also use two simulated datasets, SDataNum and
SDataCat, to evaluate data synthesis for records with
purely numerical and categorical attributes, respectively.
Due to the space limit, we leave the details of how we create
these two datasets in our technical report [24].

6.2 Evaluation framework

We implement our GAN-based tabular data synthesis frame-
work (see Fig. 2) and optimization techniques (see Sect. 5)
using PyTorch [61].

To evaluate the performance of the data synthesis frame-
work, we split a dataset into training set Ttrain, validation
set Tvalid and test set Ttest with ratio of 4:1:1, respec-
tively, following the existingworks for tabular data synthesis.
Next, we train a data synthesizer realized by our GAN-based
framework on the training set Ttrain to obtain the optimized

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 267

parameters of discriminator and generator as follows. We
first perform hyper-parameter search, as described later, to
determine the hyper-parameters of the model. Then, we run
a training algorithm for parameter optimization. We divide
the training iterations in the algorithm evenly into 10 epochs
and evaluate the performance of the model snapshot after
each epoch on the validation set Tvalid. We select the model
snapshot with the best performance and generate a synthetic
tabular data T′.

After obtaining T′, we compare it with the original table
Ttrain on both data utility and privacy protection.
Evaluation on data utility for classification We train a classi-
fier f ′ on the fake table T′, while also training a classifier f
on the training set Ttrain. In our experiments, we consider
the four traditional machine learning classifiers and one deep
learning-based classifier for evaluation.

• Decision Tree (DT) is a classifier for classification by
training a decision tree model. We adopt 2 decision trees
with max depth 10 and 30, respectively.

• Random Forest (RF) is a classifier that uses multiple
decision trees for training and predicting. We adopt two
random forests with max depth 10 and 20, respectively.

• AdaBoost (AB)devises an iterative algorithm to trainmul-
tiple classifiers (weak classifiers) and uses them to form
a stronger final classifier.

• Logical Regression (LR) is a generalized linear regression
model that uses gradient descent to optimize the classifier
for classification.

• Multilayer Perceptron (MLP) is a deep learning-based
classifier. The MLP we implemented in the experiment
contains three hidden-layers and an output layer, where
the numbers of neurons in the hidden layers are 512, 256
and128, respectively.Weuse this classifier to evaluate the
performance of synthetic data for deep-learning models.

We evaluate the performance of a trained classifier f ′
on the test set Ttest. We use the F1 score, which is the
harmonic average of precision and recall, as the evaluation
metric for the classifier. In particular, for binary classifier,
we measure the F1 score of the positive label, which is much
fewer but more important than the negative label. Specifi-
cally, let TP denote true positives, which are positive tuples
correctly outputted by the classifier. Let FP denote false pos-
itives, which are negative tuples incorrectly outputted by the
classifier. Let FN denote false negatives, which are positive
tuples omitted by the classifier. Then, we can, respectively,
compute precision and recall as P = TP/(TP + FP) and
R = TP/(TP+FN). Based on this, we can compute F1 score
as F1 = 2 · P · R/(P + R).

We evaluate the performance of a data synthesizer bymea-
suring the difference Diff of the F1 scores between f ′ and
f , as defined in Sect. 3. The smaller the difference is, the bet-

ter T′ is for training. Note that we also consider area under the
receiver operating characteristic curve (AUC) as evaluation,
and obtain similar trends with that of F1 score.
Evaluation on data utility for clustering We evaluate the per-
formance of the well-known K-Means algorithm on both
Ttrain and T′. Note that we exclude the label attribute
from the features fed into K-Means and instead use it as
the gold-standard. We use normalized mutual information
(NMI) to evaluate the clustering performance. NMI mea-
sures the mutual information, i.e., reduction in the entropy
of gold-standard labels that we get if we know the clusters,
and a larger NMI indicates better clustering performance.
After obtaining NMI scores from both the clustering results
on Ttrain and T′, we compute the absolute difference of the
scores as DiffCST, as defined in Sect. 3, and use DiffCST

to measure the utility of T′ for clustering.
Evaluation on data utility for AQP We use the fake table T′
to answer a given workload of aggregation queries. We fol-
low the query generation method in [45] to generate 1, 000
queries with aggregate functions (i.e., count, avg and
sum), selection conditions and groupings. We also run the
same queries on the original table Ttrain. For each query,
wemeasure the relative error e′ of the result obtained from T′
by comparing with that from Ttrain. Meanwhile, following
the method in [70], we draw a fixed size random sample set
(1% by default) from the original table, run the queries on
this sample set, and obtain relative error e for each query. To
eliminate randomness, we draw the random sample sets for
10 times and compute the averaged e for each query. Then,
as mentioned in Sect. 3, we compute the relative error differ-
ence DiffAQP and average the difference for all queries in
the workload, to measure the utility of T′ for AQP.
Evaluation on privacy protectionWeadopt the following two
attacks: membership inference attacks and re-identification
attack, which are widely used in the existing works [15, 51,
53, 57, 58] for privacy evaluation.
(1) Membership inference attack for a target GAN model
aims to identify if a given record is used in training the GAN
model. To this end, we follow [57] to train a classifier as the
attack model. Based on this, we can use the F1-score of the
attack model to measure the attack performance.

We use the method in [57] to train the attack model, which
is described as follows. First, we use the synthetic table T′
generated by the target GAN to train another GAN model,
named shadow GAN. Then, we input each record t ′ ∈ T′ to
the discriminator D of the shadow GAN to create a positive
attack training example, denoted as (t ′, D(t ′),In), where
D(t ′) is the probability produced by D and In is a label
indicating t ′ is used for training the shadow GAN. Next,
we use a shadow test dataset {(t, D(t),Out)} as negative
examples, where Out indicates that these examples are not
used for training the shadowGAN. Finally, we combine these

123

268 T. Liu et al.

positive and negative examples as the attack training data for
the attack model.
(2) Re-identification attack aims to directly re-identify the
information of the records used in the GAN model training.
Here we utilize two metrics to measure the attack perfor-
mance:

• Hitting rate It measures how many records in the orig-
inal table Ttrain can be hit by a synthetic record in T′.
To measure hitting rate, we first randomly sample 5000
synthetic records from T′. For each sampled record, we
measure the proportion of records in Ttrain that are sim-
ilar to this synthetic record. We regard two records are
similar if and only if 1) the values of each categorical
attribute are the same, and 2) the difference between val-
ues of each numerical attribute is within a threshold. In
our experiment, this threshold is set as the range of the
attribute divided by 30.

• Distance to the closest record (DCR) This measures
whether the synthetic data is weak from re-identification
attacks [51, 58]. Given a record t in the original table
Ttrain, wefind the synthetic record fromT′ that is closest
to t in Euclidean distance. Note that a recordwithDCR=0
means that T′ leaks its real information, and the larger the
DCR is, the better the privacy protection is. To measure
DCR, we calculate the distance after attribute-wise nor-
malization to make sure each attribute contributes to the
distance equally. We sample 3000 records from the orig-
inal table Ttrain, and find the nearest synthetic record
in T′ for each of these records. Then, we compute the
average distance between the real record to its closest
synthetic record.

6.3 Data synthesis methods

This section presents implementation details the methods
evaluated in our experiments. All the implementations as
well as their experimental settings can be found in our Github
repository mentioned above.
GAN-based methods We have implemented the design
choices shown in Fig. 3.

• Weuse the code provided by [57] to implement the CNN-
based model.4 We use the hyper-parameters provided by
the code to train the model. Moreover, the code provides
three privacy settings. When evaluating the ML training
utility, we choose the settings of the weakest privacy pro-
tection to achieve the best synthetic data utility.

• We implement the MLP-based and LSTM-based models
by ourselves using PyTorch to enable the flexibility of

4 https://github.com/mahmoodm2/tableGAN.

adapting different transformation schemes for compre-
hensive evaluation.

• We also implement the three practical optimization tech-
niques in TDGAN introduced in Sect. 5.

Statistical methods We compare our GAN-based approach
with the state-of-the-art statistical synthesismethodPrivBayes
(or PB for simplicity) [80, 81] for tabular data, using the
source code downloaded here.5 AsPB has theoretical guaran-
tee on differential privacy [22],we vary the privacy parameter
ε to examine the trade-off between privacy protection and
data utility. According to the original papers [80, 81], we run
PB in multiple times and report the average result.
Variational autoencoder (VAE) We implement variational
autoencoder (VAE), which is another representative deep
generativemodel [41, 64] for tabular data synthesis. A typical
VAE is composed by an encoder that encodes the input data to
a low-dimensional latent variable, and a decoder that receives
the latent variable and reconstructs the input data. We adopt
the loss function that consists of both the reconstruction loss
and the KL divergence [18]. We use binary cross-entropy
(BCE) loss for categorical attributes and mean-squared error
(MSE) loss for numerical attributes.

6.4 Hyper-parameter search

Hyper-parameter search is very important for neural net-
works. We adopt the method in a recent empirical study for
GANmodels [52] for hyper-parameter search. Given a GAN
model, we firstly generate a set of candidate hyper-parameter
settings. Then, we train the model for several times, and
at each time, we randomly select a hyper-parameter setting
and evaluate the trained model on the validation set Tvalid.
Based on this, we select the hyper-parameter setting that
results in a model with the best performance. We run 5 times
for each experiment and report the average result.

All the experiments are conducted on a server with
2TB disk, 40 CPU cores (Intel Xeon CPU E5-2630 v4 @
2.20GHz), one GPU (NVIDIA TITAN V) and 512GB mem-
ory, and the version of Python is 3.6.5.

7 Evaluation results

This section presents the experimental results. To be more
specific, Sect. 7.1 evaluates different design choices of the
components in TDGAN as summarized in Fig. 3 by inves-
tigating the following questions.

5 https://sourceforge.net/projects/privbayes/.

123

https://github.com/mahmoodm2/tableGAN
https://sourceforge.net/projects/privbayes/

Tabular data synthesis with generative adversarial networks: design space and optimizations 269

• Q1:Which neural network architectures are adequate for
implementing GAN? And how does data transformation
affect the performance?

• Q2:Candifferential privacy (DP) preservingGANmodel
produce satisfactory synthetic data utility?

Section 7.2 evaluates our proposed optimization tech-
niques (see Sect. 5) by answering the questions.

• Q3: How effective are different strategies for avoiding
mode collapse, which is a well-recognized difficulty in
training a GAN model?

• Q4: Is data augmentation strategyMaskGAN helpful for
GAN training with limited data?

• Q5: How effective is conditional GAN with label-aware
data sampling to address imbalanced label distribution
on real and simulated datasets?

Section 7.3 compares TDGAN with existing approaches
to tabular data synthesis, i.e., VAE and PB (see Sect. 6.3), by
answering the following questions.

• Q6: Is TDGAN promising to preserving the data utility
compared with the other synthesis methods?

• Q7: Can TDGAN achieve better trade-off between syn-
thetic data utility and protecting privacy against the risk
of re-identification attacks?

7.1 Evaluating the design of TDGAN

7.1.1 Evaluation on neural network architectures and data
transformation methods

We evaluate the neural network architectures, CNN, MLP
and LSTM that realize the generator G in our framework.
For MLP and LSTM, we fix the discriminator D as MLP.
We also evaluate the LSTM-based discriminator and obtain
inferior result (the result is included in our technical report
[24]).
Evaluation on data utilityWefirst evaluate synthetic data util-
ity for classification, and will report data utility for clustering
and AQP later. Due to space limit, we consider two low-
dimensional (#Attr ≤ 20) datasets Adult and CovType,
two mid-dimensional ones SAT and Census, and one high-
dimensional dataset Diabete. We find similar results on
other datasets. Tables 2a, b, c, d, and e report the experi-
mental results on data utility for classification, where sn,
gn, od, and ht, respectively, denote simple normalization,
GMM-based normalization, ordinal encoding and one-hot
encoding.Note that CNN is not evaluated onCovType,SAT
and Diabete, as the original code in [57] is not designed
for multi-class classification.

The results show that, on the datasets Adult and
CovType with less attributes, LSTM achieves the best per-
formance in most of the cases, i.e., achieving 3–94% less F1
difference than the second bestmodelMLP. This suggests the
sequence generation mechanism in LSTM, which generates
a record attribute by attribute, is more adequate for tabular
data synthesis. First, each attribute is generated from a sepa-
rated noise z, which avoids the disturbance among different
attributes. Second, LSTMdoes not generate an attribute from
scratch. Instead, it generates an attribute based on the “under-
standing” of previous attributes, i.e., the hidden state h and
previous output f , and thus, it would be capable of captur-
ing attribute correlation. Nevertheless, on datasets Census,
SAT, and Diabete with more attributes, the performance
advantage of LSTM is less significant. The reason is that,
with more attributes, it becomes more difficult for LSTM
to capture correlation among attributes, which implies that
more effective models should be invented for data synthesis.

CNN achieves the inferior performance in data synthesis,
which is different from image synthesis [62]. This is because
matrix input of CNN is only compatible with simple nor-
malization and ordinal encoding, which are not effective for
tabular data.Moreover, convolution/deconvolution operation
in CNN is usually effective for data with feature locality. For
example, features, which are locally close to each other in
the matrix of an image, may also be semantically correlated.
However, tabular data does not have such locality.
Finding 1: LSTM with appropriate transformation schemes
generates the best synthetic data utility for classification.
Nevertheless, with more attributes, the performance advan-
tage achieved by LSTM becomes less significant.
Evaluation on efficiency We compare the training time and
the synthesis time of the generator implemented by different
neural networks. For fair comparison on different datasets,
we fix input data in model training and output data in data
synthesis as 4000 tuples. As shown in Figs. 7a and b, both
training and synthesis time of the LSTM-based generator
are longer than that of the MLP-based generator. Moreover,
the training and synthesis time of the LSTM-based genera-
tor increases significantly with the increase of the number
of the attributes, while the time of the MLP-based generator
is relatively stable. This is because the LSTM-based genera-
tor generates each synthetic tuple attribute by attribute, and,
naturally, the more attributes a dataset has, the more time
the generator takes for training and synthesis. In contrast,
the MLP-based generator generates all attributes in a syn-
thetic tuple at one time. Therefore, the MLP-based generator
is more efficient than the LSTM-based generator.
Finding 2: Compared with LSTM, MLP is more efficient
in the model training and the synthetic data generation pro-
cesses of generator G.
Evaluation on robustness We evaluate the robustness of
MLP-based andLSTM-basedgeneratorswrt. hyper-parameters.

123

270 T. Liu et al.

Table 2 Evaluating different
neural networks of generator G
on synthetic data utility for
classification. For
low-dimensional datasets with
less attributes, LSTM with
appropriate transformation
achieves much less F1
differences than MLP and CNN.
For high-dimensional datasets
with more attributes, the
performance advantage of
LSTM over MLP becomes less
significant

Classifier CNN MLP LSTM

sn/od sn/ht gn/od gn/ht sn/od sn/ht gn/od gn/ht

(a) Adult dataset (low-dimensional).

DT10 0.495 0.420 0.108 0.430 0.072 0.544 0.099 0.107 0.030

DT30 0.475 0.433 0.134 0.372 0.090 0.519 0.092 0.107 0.065

RF10 0.481 0.593 0.107 0.596 0.080 0.528 0.014 0.136 0.003

RF20 0.459 0.596 0.143 0.621 0.066 0.561 0.071 0.133 0.032

AB 0.225 0.537 0.112 0.556 0.055 0.575 0.099 0.099 0.023

LR 0.121 0.599 0.085 0.488 0.042 0.577 0.021 0.084 0.006

MLP 0.605 0.310 0.049 0.455 0.016 0.549 0.028 0.076 0.001

Classifier MLP LSTM

sn/od sn/ht gn/od gn/ht sn/od sn/ht gn/od gn/ht

(b) CovType dataset (low-dimensional).

DT10 0.264 0.106 0.363 0.122 0.354 0.121 0.265 0.091

DT30 0.421 0.285 0.492 0.302 0.474 0.277 0.427 0.277

RF10 0.237 0.072 0.393 0.089 0.326 0.198 0.290 0.070

RF20 0.356 0.186 0.473 0.204 0.439 0.207 0.379 0.173

AB 0.105 0.019 0.207 0.033 0.200 0.014 0.116 0.024

LR 0.191 0.039 0.322 0.036 0.302 0.071 0.261 0.027

MLP 0.174 0.047 0.293 0.041 0.273 0.069 0.206 0.038

Classifier CNN MLP LSTM

sn/od sn/ht gn/od gn/ht sn/od sn/ht gn/od gn/ht

(c) Census dataset (mid-dimensional).

DT10 0.484 0.264 0.221 0.275 0.206 0.488 0.158 0.340 0.104

DT30 0.462 0.254 0.199 0.233 0.191 0.472 0.176 0.329 0.098

RF10 0.214 0.178 0.054 0.111 0.101 0.184 0.019 0.184 0.029

RF20 0.410 0.378 0.192 0.345 0.230 0.416 0.119 0.411 0.031

AB 0.506 0.291 0.212 0.127 0.308 0.487 0.118 0.459 0.004

LR 0.494 0.157 0.128 0.085 0.248 0.474 0.028 0.409 0.021

MLP 0.556 0.265 0.137 0.242 0.231 0.532 0.055 0.436 0.004

Classifier MLP LSTM

sn gn sn gn

(d) SAT dataset (mid-dimensional).

DT10 0.065 0.061 0.166 0.055

DT30 0.058 0.059 0.169 0.063

RF10 0.034 0.048 0.148 0.048

RF20 0.039 0.039 0.160 0.037

AB 0.041 0.072 0.234 0.119

LR 0.039 0.047 0.138 0.061

MLP 0.064 0.068 0.230 0.054

Classifier MLP LSTM

sn gn sn gn

(e) Diabete dataset (high-dimensional).

DT10 0.029 0.034 0.032 0.027

DT30 0.025 0.027 0.019 0.015

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 271

Table 2 continued Classifier MLP LSTM

sn gn sn gn

RF10 0.013 0.007 0.014 0.018

RF20 0.019 0.028 0.026 0.020

AB 0.021 0.030 0.041 0.024

LR 0.029 0.025 0.024 0.017

MLP 0.047 0.068 0.043 0.034

Bold indicates that the corresponding method achieves the best performance compared with other methods

Fig. 7 Evaluating different neural networks of generator G on effi-
ciency on model training and data synthesis

Given a setting of parameters, we divide the training iter-
ations evenly into 10 epochs and generate a snapshot of
synthetic table after each epoch. Then, we evaluate the F1
score of a classifier trained on each synthetic table snapshot.
Figure8 shows the results on datasetsAdult andCovType.
Note that we find similar trends on other datasets. We have
a surprising observation that the LSTM-based generator per-
forms badly in some hyper-parameter settings. For example,
on theAdultdataset, theF1 score drops sharply to 0 after the
few early epochs in 4 out of 6 hyper parameter settings. After
sampling records from inferior synthetic table snapshots, we
find the reason is mode collapse: generator G only produces
nearly duplicated samples, rather than outputting diverse syn-
thetic records.MLP-based generator is robust against various
hyper-parameter settings, and it achieves moderate results on
F1 score, although its best case is worse than that of LSTM-
based generator. We will provide an in-depth investigation
on mode collapse in Sect. 7.2.
Finding 3:MLP is more robust against hyper-parameters and
achieves moderate results, while LSTM is more likely to
result in mode collapse if its hyper-parameters are not well
tuned.

In the remainder of this section, for ease of presentation,
we use LSTM with one-hot encoding and GMM-based nor-
malization as default setting.

7.1.2 Evaluation on vanilla GAN and DPGAN

We compare two GAN training algorithms, vanilla train-
ing (VGAN) and differential privacy-preserving training
(DPGAN), on the Adult and CovType datasets.

Fig. 8 Evaluating GAN model training against different hyper-
parameter settings. The MLP-based generator is more robust against
various hyper-parameters, while the LSTM-based generator is likely to
result in mode collapse

Fig. 9 ComparingDPGANandVGANonvarying privacy levels (using
DT10 as classifier)

We first consider privacy protection against membership
inference attack and re-identification attack. Table 3 shows
the results of the membership inference attack. DPGAN
outperforms VGAN on protecting privacy against the risk
of membership inference attack, given smaller values of ε.
Moreover, with the increase of ε, the privacy protection per-
formance of DPGAN decreases, which is reflected by larger
F1-scores of the attack model. This is because ε is used to
control the privacy level in differential privacy: the larger
the ε, the lower the privacy level. We also observe simi-
lar trends from the performance of re-identification attack
shown in Table 4: the hitting rate and DCR are reduced with

123

272 T. Liu et al.

Table 3 Evaluation on privacy
protection (F1-score of
membership inference attack)

Dataset VGAN DPGAN

ε = 0.1 ε = 0.2 ε = 0.4 ε = 0.8 ε = 1.6

Adult 0.483 0.450 0.463 0.471 0.490 0.495

CovType 0.456 0.430 0.437 0.437 0.438 0.445

Table 4 Evaluation on privacy protection (re-identification attack)

Method Hitting rate (%) DCR

Adult CovType Adult CovType

DPGAN−0.1 0.25 0.275 0.201 0.093

DPGAN−0.2 0.29 0.320 0.189 0.088

DPGAN−0.4 0.31 0.376 0.176 0.082

DPGAN−0.8 0.36 0.380 0.156 0.082

DPGAN−1.6 0.43 0.425 0.145 0.077

VGAN 0.39 0.463 0.142 0.072

the decrease of the ε and DPGAN outperforms VGAN to
protect the privacy against the re-identification attack. Based
on the observations, we can conclude that DPGAN performs
better than VGAN on privacy protection, and DPGAN can
control the privacy level via parameter ε.

We also evaluate the DPGAN and VGAN on the data util-
ity. Figure9 reports the results on preserving the data utility
varying privacy level ε. We can see that DPGAN can achieve
better data utility as the increase of the ε, i.e., the decrease of
privacy level. However, DPGAN cannot beat VGAN even at
the lowest privacy level. This is because DPGAN adds noise
to the gradients for updating parameters of D and then uses
D to update parameters of G. This process may make the
adversarial training ineffective, as D now has limited ability
to differentiate real/fake samples.
Finding 4: Although the current differential privacy (DP)-
preserving training algorithm for GAN can protect the
privacy well, it sacrifices the utility of the synthetic data,
which implies that better solutions for DP preserving GAN
need to be invented.

7.1.3 Effect of sample size for synthetic data

We also evaluate whether the sample size |T′| of synthetic
tablewould affect the utility. Table 5 reports the F1 difference
Diff when varying the ratio between sizes of synthetic T′
and real Ttrain tables. We observe that, with the increase
of sample size, the performance of classifier is improved, as
more samples can be used for training the classifier.However,
the improvement is not very significant due to the fact that
increasing synthetic data size does not actually inject more
information: synthetic tables with varying sizes are from a
generator G with the same set of parameters.

Table 5 Effect of size ratio between synthetic and original tables (using
DT10 as classifier)

Dataset Size ratio: |T′|/|Ttrain|
50% 100% 150% 200%

Adult 0.073 0.032 0.028 0.024

CovType 0.088 0.079 0.117 0.064

SDataNum 0.007 0.002 0.003 0.001

SDataCat 0.029 0.013 0.018 0.016

Bold indicates that the corresponding method achieves the best perfor-
mance compared with other methods

Table 6 Evaluating neural networks of generator G on synthetic data
utility for clustering

Dataset CNN MLP LSTM

sn/ht gn/ht sn/ht gn/ht

HTRU2 0.3658 0.0043 0.0013 0.0181 0.0035

Adult 0.1141 0.0001 0.0002 0.0001 0.0001

CovType – 0.0013 0.0009 0.0099 0.0002

Digits – 0.0009 0.0144 0.0189 0.0002

Anuran – 0.0032 0.0069 0.0136 0.0013

Census 0.0526 0.0018 0.0147 0.0006 0.0006

SAT – 0.0031 0.0084 0.0005 0.0002

Diabete - 0.0043 0.0003 0.0005 0.0002

Bold indicates that the corresponding method achieves the best perfor-
mance compared with other methods

Table 7 Evaluating neural networks of G on synthetic data utility for
AQP

Dataset CNN MLP LSTM

sn/ht gn/ht sn/ht gn/ht

CovType – 0.295 0.400 0.609 0.053

Census 3.499 0.170 0.167 0.271 0.204

Internet - 0.113 0.077 0.067 0.097

Bold indicates that the corresponding method achieves the best perfor-
mance compared with other methods

7.1.4 Evaluation on clustering and AQP

This sections evaluates if GAN can preserve data utility for
clustering and AQP. The results are reported in Table 6 (for
clustering) and Table 7 (for AQP). For evaluating AQP, we
select the datasets CovType and Census with more than

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 273

Fig. 10 Comparison of strategies for mitigating mode collapse. Vanilla GAN training with simplified discriminator is effective, and outperforms
Wasserstein GAN training in preserving data utility

100,000 records, and the dataset Internetwith more than
50 attributes. Observing from the tables, we find a similar
result to that of data utility for classification. The results
show that LSTM is effective on capturing the underlying
distribution for the original table, which is also beneficial for
clustering and AQP.

7.2 Evaluating the optimizations in TDGAN

This section examines whether the optimization techniques,
which are introduced in Sect. 5, are effective to improve the
GAN training for tabular data.

7.2.1 Evaluation on avoidingmode collapse

We evaluate the following training strategies to mitigate the
mode collapse issue in TDGAN: (i) VTrain (with KL
divergence), (ii) Wasserstein GAN training (WTrain) and
(iii) VTrain with simplified discriminator D (Simplified).
More details of WTrain and Simplified can be referred to
Sect. 5.1.

Figure 10 reports the overall results on the four repre-
sentative datasets. We have an observation that Wasserstein
GAN does not have advantage over vanilla GAN train-
ing, which is different from the image synthesis scenarios.
On the other hand, VTrain with simplified discriminator
(Simplified) achieves better performance than VTrain and
WTrain. For example, on the Adult dataset, it reduces
F1 difference compared with VTrain on most classifiers.
To analyze the reasons, we report more detailed per-epoch
result of Simplified against various hyper-parameters given
the LSTM-based generator, as shown in Fig. 11. We can find
that, on the two datasets Adult and CovType, compared
with the “normal” discriminator, a simplified discriminator
D is effective to reduce the chances of mode collapse. The
results reveal a fact that Simplifiedmakes D not trained too
well and thus avoids the chance of gradient disappearance of
generator G.

We also evaluate the effect of mode collapse on pri-
vacy by using our re-identification attack. We choose the
synthetic data that contains many duplicate records as the

Fig. 11 Evaluating the performance of the Simplified strategy on var-
ious hyper-parameter settings for LSTM-based generator

Table 8 Effect of mode collapse on data utility and privacy

Datasets Results Privacy Utility

Hitting rate (%) DCR F1 Diff

Adult Collapse 0.369 0.205 0.248

No-collapse 0.389 0.142 0.030

CovType Collapse 0.154 0.134 0.556

No-collapse 0.463 0.072 0.091

Bold indicates that the corresponding method achieves the best perfor-
mance compared with other methods

Collapse results. Table 8 shows the results on Adult
and CovType. We find that mode collapse, which gener-
ates synthetic data with many duplicate records, can reduce
the risk of privacy disclosure, as the number of records that
are disclosed becomes limited. However, mode collapse sig-
nificantly degrades data utility, outweighing its benefits on
privacy protection. For example, Collapse’s F1 difference
compared to No − Collapse has increased by 511-727%,
while Collapse only reduces the hitting rate by 5-66% or
increases the DCR by 44-86%.

123

274 T. Liu et al.

Table 9 Effect of limited training data on data utility and privacy

Datasets Training Privacy Utility

Hitting rate (%) DCR F1 Diff

Adult Limited 0.284 0.200 0.076

Sufficient 0.389 0.142 0.030

CovType Limited 0.325 0.105 0.301

Sufficient 0.463 0.072 0.091

Bold indicates that the corresponding method achieves the best perfor-
mance compared with other methods

Finding 5: Vanilla GAN training with simplified discrim-
inator is shown effective to alleviate mode collapse, and
outperforms Wasserstein GAN training in preserving data
utility.

7.2.2 Evaluation on training with limited data

We evaluate the performance of our data augmentation
method MaskGAN to tackle GAN training with limited
training data. Specifically, we randomly sample 20%, 10%
and 5% tuples from the Adult and Census datasets to
prepare training sets with limited data. We compare our
GAN-based framework (denoted as GAN) with MaskGAN
on the synthetic data utility for classification. In particular,we
tune the mask probability p of each dataset for MaskGAN
based on the corresponding validation sets. Figure12 shows
the experimental results.We observe a significant increase on
the F1 difference of our GAN-based framework, e.g., 0.08
(5% of the Adult dataset) vs. 0.001 (100% of the Adult
dataset as shown in Table 2). As analyzed in Sect. 5.2.1, this
is attributed to the overfitting problem of discriminator D.
We also find that our data augmentation methodMaskGAN
can reduce the F1 difference, while significantly outperform-
ing the ordinary GAN-based framework, given all sample
ratios on bothAdult andCensus datasets. The results indi-
cate that themasking-based augmentation strategy applied in
MaskGAN can enhance the size and quality of training data
of discriminator D, and thus mitigates the overfitting issue
of D and enables the generator to preserve the utility of the
synthetic data.

Furthermore,we evaluate the effect of limited trainingdata
on privacy using our re-identification attack. We use 10% of
the training data to train the GAN, denoted as Limited, to
compare with the GAN trained on all training data, denoted
as Sufficient. Table 9 reports the results on Adult and
CovType. We can see that the limited training data can
reduce the risk of re-identification. This is because the syn-
thetic data generated by GANs trained on limited data fails
to follow the same distribution as the original data, making
it difficult to disclose information about the original data.

Fig. 12 Comparing the GAN framework with MaskGAN on training
with limited data

However, similar to the results in Sect. 7.2.1, it sacrifices too
much data utility.
Finding6:The simple data augmentation strategyMaskGAN

with random masking has been shown to be effective to mit-
igate the overfitting problem encountered by discriminator
D, consequently improving synthetic data utility.

7.2.3 Evaluation on synthesis with imbalanced data

We compare the traditional GAN, conditional GAN trained
by random data sampling and conditional GAN trained by
label-aware data sampling, which are denoted by VGAN,
CGAN-V and CGAN-C, respectively, on the skew datasets
Adult, CovType, Census and Anuran. We also find
similar results on the HTRU2 dataset, and do not include the
results due to the space limit. As shown in Fig. 13, CGAN-V
gains very limited improvements over VGAN, and sometimes
it performs worse than VGAN. This is because that VTrain
uses the random strategy to sample each minibatch of real
records. Due to the label imbalance, records with minor-
ity labels may have less chances to be sampled, leading
to insufficient training opportunities for the minority labels.
On the contrary, CGAN-C solves this problem by sampling
records conditioned on given labels. This label-aware sam-
pling method can provide fair training opportunities for data
with different labels.

To evaluate the effect of label skewness, we also evaluate
the conditional GAN on the simulated data. We set the cor-
relation degree as 0.5 for both SDataNum and SDataCat,
and consider their balanced and skew settings. As shown
in Fig. 14, conditional GAN does not improve the data utility,
and it sometimes even achieves inferior performance (e.g., on
the SDataNum-balanced dataset) if label distribution is
balanced. In contrast, if label distribution is skew, conditional
GAN is helpful for improving the performance.

Furthermore, we also evaluate the effect of absolute sizes
(i.e., number of instances) of the minority class in the train-
ing data. To keep the skewness of the original training data
while controlling the absolute size of the minority class, we
follow [82] to sample at different ratios from the original

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 275

Fig. 13 Evaluating conditional GAN on synthetic data utility for classification

Fig. 14 Evaluating conditional GAN on synthetic data utility for classification (Simulated data)

Table 10 Effect of the conditional training on data utility and privacy

Datasets Methods Privacy Utility

Hitting rate (%) DCR F1 Diff

Adult CGAN 0.421 0.122 0.005

VGAN 0.389 0.142 0.030

CovType CGAN 0.501 0.089 0.071

VGAN 0.463 0.072 0.091

Bold indicates that the corresponding method achieves the best perfor-
mance compared with other methods

training data to train the GAN model. Figure15 shows the
results of data utility on datasets Adult and Anuran. We
find that even the absolute size of theminority class is limited
(using 10% of the training data), CGAN-C and CGAN-V can
still outperform VGAN, while the improvement is less signif-
icant. For example, when we reduce the number of records
with minor class to 10%, CGAN-C can only reduce the F1 dif-
ference by 19–22%, while it can reduce the F1 difference by
56–65% when the records with minority class are sufficient.
As analyzed in Sect. 5.2.1, the performance of GAN would
degrade when the size of the training data is limited, and thus
the performance of conditional GAN would also be affected
when the data with minority class is insufficient.

Additionally, we evaluate the effect of the conditional
training on utility and privacy. The results reported in
Table 10 show that conditionalGANmayhavemore potential
risk of privacy disclosure as it can achieve better performance
on preserving the data utility, which is a similar trend as we
find in Sect. 7.2.1 and Sect. 7.2.2.

Fig. 15 Evaluating conditional GAN on different absolute sizes of the
minority class for training

Finding 7: Conditional GANwith label-aware data sampling
is helpful to address imbalanced label distribution on real
and simulated datasets, and improves the utility of synthetic
data, while the improvement would be less significant when
the absolute size of the data with minority class is limited.

7.2.4 Comparing different optimization algorithms

To make our findings more reliable, we conduct a horizontal
comparison of three optimizations in TDGAN introduced
above: Wasserstein GAN (WGAN) for avoiding mode col-
lapse, MaskGAN for training with limited data, and condi-
tional GAN (CGAN) with label-aware training strategy for
synthesizing imbalanced data, and vanilla GAN (VGAN). To
this end, we utilize skill rating [56] to evaluate the different
optimizations. Compared with indirect evaluation through
the data utility in down-streaming applications, skill rat-
ing can directly compare different generators by assigning
a numerical skill for each generator in a player-vs-player

123

276 T. Liu et al.

Fig. 16 Comparing different optimization algorithms via skill rating of
the generator

Table 11 Comparison of GAN and PB on privacy

Method Hitting rate (%) DCR

Adult CovType Adult CovType

PB −0.1 0.49 0.002 0.164 0.106

PB −0.2 0.88 0.006 0.147 0.094

PB −0.4 2.16 0.022 0.123 0.082

PB −0.8 4.40 0.056 0.112 0.073

PB −1.6 4.64 0.070 0.110 0.069

GAN 0.42 0.501 0.122 0.089

game. Higher skill ratings indicate higher player skills, i.e.,
stronger ability of data synthesis of G.

Figure16 shows the skill rating scores of the generator
G trained by VGAN, CGAN, MaskGAN and WGAN on
the Adult and Digits datasets. In particular, we consider
both all training data and limited training data (10% of the
original training data). We find that the results reported in
Fig. 16 are consistent with the findings we concluded before.
First, we find thatWGANperformsworse than other training
algorithms when synthesizing tabular data (Sect. 7.2.1). Our
experiments also validate that MaskGAN outperforms other
methods when the training data is limited, as it can alleviate
the overfitting of the discriminator (Sect. 7.2.2).We have also
observed that the improvement brought by CGAN is affected
by the skewness of the training data and the absolute size of
the records with minority classes (Sect. 7.2.3).

7.3 Comparing with other data synthesis methods

This section compares TDGAN with existing approaches
to tabular data synthesis, i.e., VAE and PB on both synthetic
data utility and privacy.

7.3.1 Evaluation on synthetic data utility

Figure 17 shows the experimental results on synthetic data
utility on our real datasets. First, with the increase of privacy
parameter ε, the result of PB becomes better as ε is used
to control the privacy level. Second, VAE achieves moderate

results, but the generated synthetic data is still worse than
that synthesized by GAN. This is similar to the case in image
synthesis [21]: the images synthesized by VAE is worse than
that generated by GAN. This is because the low dimensional
latent variable in VAE may not be sufficient to capture com-
plex tabular data.

Our GAN-based framework significantly outperforms PB
and VAE on preserving data utility for classification. For
example, the F1 difference achieved by GAN is 45–98%
and 10–90% smaller than that achieved by PB with the low-
est privacy level (ε = 1.6) on the Adult and CovType
datasets, respectively. This is mainly attributed to their dif-
ferent data synthesis mechanisms. PB aims at approximating
a joint multivariate distribution of the original table, which
may not perform well if the data distribution is complex. In
contrast, GAN utilizes the adversarial training mechanism to
optimize generator G. The result shows that the adversarial
mechanism is useful for synthesizing tabular data.
Finding 8: GAN significantly outperforms VAE and PB on
synthetic data utility for classification. For some classifiers,
the F1 difference of the synthetic data wrt. the original data
achieved by GAN is smaller than that of VAE and PB by an
order of magnitude.

We also compareGANwithVAE andPB on data utility for
clustering and AQP. The result on data utility for clustering is
reported in Table 12. We can see that GAN outperforms the
baselines by 1–2 orders of magnitude. The results show that
GAN is very promising in preserving the clustering structure
of the original data, e.g., synthesizing similar attributes to
the records within in the same group. For AQP, as observed
from Table 13, GAN achieves less relative error difference
than VAE and PB on preserving data utility. This is because
that GAN, if effectively trained, is more capable of generat-
ing synthetic data that well preserves the statistical properties
of the original table. Thus, the synthetic data could answer
the query workload with less errors. We also notice that, on
the AQP benchmarking dataset Bing, VAE achieves compa-
rable results with GAN, i.e., 0.632 vs. 0.411 on relative error
difference. The results show that VAE may also be promis-
ing for supporting AQP, considering it may be more easy and
efficient to train than GAN. Some existing work [70] stud-
ies more sophisticated techniques to optimize VAE, such as
partitioning the data and using multiple VAEmodels, adding
rejection criteria for data sampling, etc. We will leave a more
thorough comparison with such new techniques in the future
work.
Finding 9: GAN is also very promising for preserving the
utility of original data for supporting the applications of clus-
tering and AQP.

123

Tabular data synthesis with generative adversarial networks: design space and optimizations 277

Fig. 17 Comparison of approaches to tabular data synthesis on data utility for classification

Table 12 Comparison of
approaches to tabular data
synthesis on data utility for
clustering

Dataset Approaches

VAE PB −0.2 PB −0.4 PB −0.8 PB −1.6 GAN

HTRU2 0.0160 0.1769 0.13904 0.0594 0.0331 0.0008

CovType 0.0089 0.0227 0.0121 0.0071 0.0031 0.0002

Adult 0.0891 0.0892 0.0959 0.0729 0.0494 0.0001

Digits 0.0425 0.2025 0.1839 0.1749 0.1545 0.0002

Anuran 0.2184 0.2989 0.2170 0.1505 0.1617 0.0013

Census 0.0010 0.0189 0.0101 0.0011 0.0112 0.0005

SAT 0.4891 0.2451 0.2277 0.2289 0.2279 0.0002

Diabete 0.0005 0.0010 0.0004 0.0004 0.0003 0.0002

Bold indicates that the corresponding method achieves the best performance compared with other methods

Table 13 Comparison of
approaches to tabular data
synthesis on data utility
DiffAQP for AQP

Dataset Approaches

VAE PB −0.2 PB −0.4 PB −0.8 PB −1.6 GAN

CovType 0.251 0.201 0.113 0.183 0.108 0.015

Census 0.469 2.348 1.262 0.786 0.767 0.227

Bing 0.632 0.830 0.805 0.783 0.761 0.411

Internet 0.291 0.696 0.590 0.481 0.449 0.069

Bold indicates that the corresponding method achieves the best performance compared with other methods

7.3.2 Evaluation on privacy

Table 11 compares GAN with PB on protecting privacy
against the risk of re-identification, measured by hitting rate
andDCR introduced in Sect. 6.2. First, on theAdult dataset,
GAN achieves lower hitting rate than PB. For example, even
compared with PB with the highest privacy level ε = 0.1,
GAN reduces the hitting rate by 14%. On the CovType
dataset, GAN achieves very low hitting rate 0.5%, i.e., only
25 out of 5000 sampled synthetic record can hit similar
records in the original table.We notice that, on theCovType
dataset, the hitting rate of GAN is higher than that ofPB. This
is because most of the attributes on CovType are numerical
attributes and PB discretizes the domain of each numerical
attribute into a fixed number of equi-width bins [80, 81],
and thus a synthetic numerical value is seldom similar to

the original one. Second, considering the metric DCR, GAN
provides comparable overall performance to PB, and even
outperforms PB with moderate privacy levels (ε = 0.8 or
1.6). The results validate our claim that GAN can reduce the
risk of re-identification as there is no one-to-one relationship
between real and synthetic records.
Finding 10: Empirically, the GAN-based data synthesis
framework shows better trade-off between synthetic data util-
ity and protecting privacy against the risk of re-identification,
as there is no one-to-one relationship between original and
synthetic records.

123

278 T. Liu et al.

8 Conclusion & future direction

In this paper, we have conducted a comprehensive experi-
mental study for applying GAN to tabular data synthesis. We
introduced a unified framework and defined a design space
of the solutions that realize GAN. We developed three opti-
mization techniques to handle difficulties in GAN training.
We empirically conducted a thorough evaluation to explore
the design space and compare GAN with conventional
approaches to data synthesis. Based on our experimental
findings, we summarize the following key insights that pro-
vide guidance to the practitioners who want to apply GAN
to develop a tabular data synthesizer.
Overall evaluation for GAN GAN is very promising for tab-
ular data synthesis. It generates synthetic data with very good
utility on classification, clustering and AQP (Findings 8 and
9). It can also achieves competitive performance on protect-
ing privacy against the risk of re-identification (Finding 10).
However,GANhas limitations on providing provable privacy
protection: the current solution cannot produce superior data
utility when preserving differential privacy (Finding 4).
Neural network selection & data transformationFor ordinary
users with limited knowledge on deep learning, we suggest to
useMLP to realize GAN, asMLP ismore efficient and robust
to achieve moderate results without parameter tuning (Find-
ings 2 and 3). For expert users who want to spend sufficient
efforts to fine-tune parameters, we recommend LSTM that
can achieve the best performance (Finding 1), given proper
training strategies as discussed below, and data transforma-
tion schemes.
Model training strategy We provide guidelines to users on
how to train GANmodels. To avoid mode collapse, we intro-
duce solutions to boost model training, including adding KL
divergence in the loss function for warm-up and using sim-
plified discriminator to avoid gradient vanishing in generator
(Finding 5). We introduce a data augmentation strategy with
random masking to improve GAN training with limited data
(Finding 6). We leverage conditional GAN for datasets with
imbalanced data distribution (Finding 7).
Tabular data representation Data transformation that con-
verts original records to recognized input of GAN does affect
the overall performance, which shows that representation of
tabular data is important (Finding 1). This may imply an
interesting future work that co-trains GAN and record repre-
sentation through a hybrid optimization framework.

We identify some future directions in GAN-based tabular
data synthesis that are worthy of exploration.

(1) Providing provable privacy protection We have shown
that GAN has limitations on providing provable privacy
protection, i.e., differential privacy. Although enabling
GAN to support differential privacy is a hot research topic
inML [33, 72], this problem is very challenging, because

adding noises to the adversarial training in GAN may
drastically affect parameter optimization in G and D.
Therefore, it calls for new solutions to equip GAN-based
data synthesis with provable privacy protection.

(2) Capturing attribute correlations LSTM achieves good
performance as its sequence generation mechanism can
implicitly capture attribute correlations. The DB commu-
nity has long studied how to model attribute correlations
explicitly by providing solutions like functional depen-
dency [8, 63]. Despite some preliminary attempt [13], it
still remains an unsolved question that how to combine
techniques from the two communities to improve the syn-
thetic data quality for the GAN-based framework.

(3) Supporting more utility definitions This paper studies
synthetic data utility for training classifiers, evaluating
clustering algorithms and supporting AQP. However,
tabular data synthesis should support a variety of applica-
tions, including ML tasks over time-series data and data
synthesis for supporting AQP with theoretical bounds.

(4) Constructing GAN model automatically Although the
main goal of this paper is comparing different design
choices under a unified framework, we can borrow the
main idea of AutoML [77] to explore how to train a GAN
model automatically for synthesizing tabular data for a
given dataset, and this can be a potential avenue for future
research.

(5) Supporting high-dimensional data synthesis When deal-
ing with data that has an extensive number of attributes,
such as EHRs with thousands of attributes [37, 66], the
performance of GAN needs careful consideration. The
LSTM-based generator may encounter serious efficiency
issues while employing MLP might lead to some perfor-
mance trade-offs.

Acknowledgements This work was partly supported by the NSF of
China (62122090, 62072461, 62072458, 61925205, 62232009, and
62102215), CCF-Huawei Populus Grove Fund, the Fund for Building
World-Class Universities (Disciplines) of Renmin University of China,
the Research Funds of Renmin University of China, Huawei, TAL edu-
cation, and Zhongguancun Laboratory.

References

1. Adult data set. https://archive.ics.uci.edu/ml/datasets/Adult
2. Anuran calls (mfccs) data set. http://archive.ics.uci.edu/ml/

datasets/Anuran+Calls+%28MFCCs%29
3. Agrawal, D., Aggarwal, C.C.: On the design and quantification of

privacy preserving data mining algorithms. In: PODS (2001)
4. Arjovsky, M., Bottou, L.: Towards principled methods for training

generative adversarial networks. In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, Conference
Track Proceedings. OpenReview.net (2017)

5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. CoRR
arXiv:1701.07875 (2017)

123

https://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Anuran+Calls+%28MFCCs%29
http://archive.ics.uci.edu/ml/datasets/Anuran+Calls+%28MFCCs%29
http://arxiv.org/abs/1701.07875

Tabular data synthesis with generative adversarial networks: design space and optimizations 279

6. Baowaly, M.K., Lin, C., Liu, C., Chen, K.: Synthesizing electronic
health records using improved generative adversarial networks.
JAMIA 26(3), 228–241 (2019)

7. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Tal-
war, K.: Privacy, accuracy, and consistency too: a holistic solution
to contingency table release. In: PODS, pp. 273–282 (2007)

8. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.:
Conditional functional dependencies for data cleaning. In: ICDE,
pp. 746–755 (2007)

9. Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,M., Kas-
neci, G.: Deep neural networks and tabular data: a survey. CoRR
arXiv:2110.01889 (2021)

10. Brickell, J., Shmatikov, V.: The cost of privacy: destruction of data-
mining utility in anonymized data publishing. In: SIGKDD, pp.
70–78 (2008)

11. Census-income (kdd) data set. http://archive.ics.uci.edu/ml/
datasets/Census-Income+(KDD)

12. Chaudhuri, S., Ding, B., Kandula, S.: Approximate query process-
ing: No silver bullet. In: SIGMOD, pp. 511–519 (2017)

13. Chen, H., Jajodia, S., Liu, J., Park, N., Sokolov, V., Subrahmanian,
V.S.: Faketables: using GANs to generate functional dependency
preserving tables with bounded real data. In: IJCAI, pp. 2074–2080
(2019)

14. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I.,
Abbeel, P.: Infogan: interpretable representation learning by infor-
mation maximizing generative adversarial nets. In: NIPS, pp.
2172–2180 (2016)

15. Choi, E., Biswal, S., Malin, B.A., Duke, J., Stewart, W.F., Sun,
J.: Generating multi-label discrete electronic health records using
generative adversarial networks. CoRR arXiv:1703.06490 (2017)

16. Covertype data set. http://archive.ics.uci.edu/ml/datasets/
covertype

17. Cormode,G.,Garofalakis,M.N.,Haas, P.J., Jermaine,C.: Synopses
for massive data: samples, histograms, wavelets, sketches. Found.
Trends Databases 4(1–3), 1–294 (2012)

18. Doersch, C.: Tutorial on variational autoencoders. CoRR
arXiv:1606.05908 (2016)

19. Diabete data set. https://archive.ics.uci.edu/ml/datasets/
Diabetes+130-US+hospitals+for+years+1999-2008

20. Domingo-Ferrer, J.: A survey of inference control methods
for privacy-preserving data mining. In: Privacy-Preserving Data
Mining—Models and Algorithms, pp. 53–80 (2008)

21. Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M.,
Mastropietro, O., Courville, A.C.: Adversarially learned inference.
In: ICLR (2017)

22. Dwork, C., Roth, A.: The algorithmic foundations of differen-
tial privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407
(2014)

23. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical)
time series generation with recurrent conditional GANs. CoRR
arXiv:1706.02633 (2017)

24. Fan, J., Liu, T., Li, G., Chen, J., Shen, Y., Du, X.: Relation data
synthesis using generative adversarial network: a design space
exploration. In: Technical Report. https://github.com/ruclty/Daisy/
blob/master/daisy.pdf (2020)

25. Fan, J., Liu, T., Li, G., Chen, J., Shen, Y., Du, X.: Relational data
synthesis using generative adversarial networks: a design space
exploration. Proc. VLDB Endow. 13(11), 1962–1975 (2020)

26. Gondara, L., Wang, K.: MIDA: multiple imputation using denois-
ing autoencoders. In: PAKDD, pp. 260–272 (2018)

27. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative
adversarial nets. In: NIPS, pp. 2672–2680 (2014)

28. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, 2nd Edition.
Springer Series in Statistics. Springer (2009)

29. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

30. Htru2 data set. http://archive.ics.uci.edu/ml/datasets/HTRU2
31. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep net-

work training by reducing internal covariate shift. In: ICML, pp.
448–456 (2015)

32. Internet data set. https://openml.org/search?type=data&
status=active&id=372

33. Jordon, J., Yoon, J., van der Schaar, M.: PATE-GAN: generating
synthetic datawith differential privacy guarantees. In: ICLR (2019)

34. Hodge, J.G., Jr., Gostin, L.O., Jacobson, P.: Legal issues concerning
electronic health information: privacy, quality, and liability. JAMA
282, 1466–1471 (1999)

35. Kaggle. The state of data science and machine learning. https://
www.kaggle.com/surveys/2017 (2017)

36. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila,
T.: Training generative adversarial networks with limited data.
In: Larochelle, H., Ranzato M., Hadsell R., Balcan M., Lin H.
(eds) Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, virtual (2020)

37. Khope, S., Elias, S.: Critical correlation of predictors for an efficient
risk prediction framework of ICU patient using correlation and
transformation of MIMIC-III dataset. Data Sci. Eng. 7(1), 71–86
(2022)

38. Kim, J., Jeon, J., Lee, J., Hyeong, J., Park, N.: OCT-GAN: neural
ode-based conditional tabular GANs. In Leskovec J., Grobelnik
M., Najork M., Tang J., Zia L. (eds) WWW ’21: The Web Confer-
ence 2021,Virtual Event / Ljubljana, pp. 1506–1515.ACM/IW3C2
(2021)

39. Kim, J., Lee, C., Park, N.: Stasy: score-based tabular data synthesis.
CoRR arXiv:2210.04018 (2022)

40. Kim, J., Lee, C., Shin, Y., Park, S., Kim,M., Park, N., Cho, J.: SOS:
score-based oversampling for tabular data. In: ZhangA., Rangwala
H. (eds)KDD ’22: The 28thACMSIGKDDConference onKnowl-
edge Discovery and DataMining, Washington, pp. 762–772, ACM
(2022)

41. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In:
ICLR (2014)

42. Kotelnikov, A., Baranchuk, D., Rubachev, I., Babenko, A.: Tab-
ddpm: Modelling tabular data with diffusion models. CoRR
arXiv:2209.15421 (2022)

43. Lee, J., Hyeong, J., Jeon, J., Park, N., Cho, J.: Invertible tabular
GANs: killing two birds with one stone for tabular data synthesis.
In: Ranzato M., Beygelzimer A., Dauphin Y.N., Liang P., Vaughan
J.W. (eds) Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, pp. 4263–4273 (2021)

44. Li, H., Xiong, L., Zhang, L., Jiang, X.: Dpsynthesizer: differen-
tially private data synthesizer for privacy preserving data sharing.
PVLDB 7(13), 1677–1680 (2014)

45. Li, K., Zhang, Y., Li, G., Tao, W., Yan, Y.: Bounded approximate
query processing. IEEE Trans. Knowl. Data Eng. 31(12), 2262–
2276 (2019)

46. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond
k-anonymity and l-diversity. In: ICDE, pp. 106–115 (2007)

47. Li, S.C., Jiang, B., Marlin, B.M.: Misgan: learning from incom-
plete data with generative adversarial networks. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New
Orleans, OpenReview.net (2019)

48. Ling, Z.J., Tran, Q.T., Fan, J., Koh, G.C.H., Nguyen, T., Tan, C.S.,
Yip, J.W.L., Zhang, M.: GEMINI: an integrative healthcare analyt-
ics system. PVLDB 7(13), 1766–1771 (2014)

49. Liu, T., Fan, J., Luo, Y., Tang, N., Li, G., Du, X.: Adaptive data aug-
mentation for supervised learning over missing data. Proc. VLDB
Endow. 14(7), 1202–1214 (2021)

123

http://arxiv.org/abs/2110.01889
http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
http://arxiv.org/abs/1703.06490
http://archive.ics.uci.edu/ml/datasets/covertype
http://archive.ics.uci.edu/ml/datasets/covertype
http://arxiv.org/abs/1606.05908
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
http://arxiv.org/abs/1706.02633
https://github.com/ruclty/Daisy/blob/master/daisy.pdf
https://github.com/ruclty/Daisy/blob/master/daisy.pdf
http://archive.ics.uci.edu/ml/datasets/HTRU2
https://openml.org/search?type=data&status=active&id=372
https://openml.org/search?type=data&status=active&id=372
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
http://arxiv.org/abs/2210.04018
http://arxiv.org/abs/2209.15421

280 T. Liu et al.

50. Liu, T., Yang, J., Fan, J., Wei, Z., Li, G., Du, X.: Crowdgame: a
game-based crowdsourcing system for cost-effective data labeling.
In: SIGMOD, pp. 1957–1960 (2019)

51. Lu, P., Wang, P., Yu, C.: Empirical evaluation on synthetic data
generation with generative adversarial network. In: WIMS, vol.
16, pp. 1–16 (2019)

52. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are
GANs created equal? A large-scale study. In: NeurIPS, pp. 698–
707 (2018)

53. Mateo-Sanz, J.M., Sebé, F., Domingo-Ferrer, J.: Outlier protec-
tion in continuous microdata masking. In: Privacy in Statistical
Databases, pp. 201–215 (2004)

54. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled genera-
tive adversarial networks. CoRR arXiv:1611.02163 (2016)

55. Mirza, M., Osindero, S.: Conditional generative adversarial nets.
CoRR arXiv:1411.1784 (2014)

56. Olsson, C., Bhupatiraju, S., Brown, T.B., Odena, A., Goodfellow,
I.J.: Skill rating for generative models. CoRR arXiv:1808.04888

57. Park,N.,Mohammadi,M.,Gorde,K., Jajodia, S., Park,H.,Kim,Y.:
Data synthesis based on generative adversarial networks. PVLDB
11(10), 1071–1083 (2018)

58. Park, Y., Ghosh, J.: Pegs: perturbed gibbs samplers that generate
privacy-compliant synthetic data. Trans. Data Privacy 7(3), 253–
282 (2014)

59. Patki, N.,Wedge, R., Veeramachaneni, K.: The synthetic data vault.
In: DSAA, pp. 399–410 (2016)

60. Pen-based recognition of handwritten digits data
set. https://archive.ics.uci.edu/ml/datasets/Pen-Based+
Recognition+of+Handwritten+Digits

61. PyTorch Developers. Tensors and dynamic neural networks in
python with strong GPU acceleration. https://pytorch.org

62. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks.
In: ICLR (2016)

63. Ramakrishnan, R., Gehrke, J.: DatabaseManagement Systems, 3rd
edn. McGraw-Hill (2003)

64. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropa-
gation and approximate inference in deep generative models. In:
ICML, pp. 1278–1286 (2014)

65. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford,
A., Chen, X.: Improved techniques for training GANs. In: NIPS,
pp. 2226–2234 (2016)

66. Sarki, R., Ahmed, K., Wang, H., et al.: Image preprocessing in
classification and identification of diabetic eye diseases. Data Sci.
Eng. 6(4), 455–471 (2021)

67. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership
inference attacks against machine learning models. In: 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, pp. 3–18.
IEEE Computer Society (2017)

68. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning
with neural networks. In: NIPS, pp. 3104–3112 (2014)

69. Statlog (landsat satellite) data set. https://archive.ics.uci.edu/ml/
datasets/Statlog+%28Landsat+Satellite%29

70. Thirumuruganathan, S., Hasan, S., Koudas, N., Das, G.: Approx-
imate query processing using deep generative models. CoRR
arXiv:1903.10000 (2019)

71. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet
transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200–1214
(2011)

72. Xie, L., Lin, K.,Wang, S.,Wang, F., Zhou, J.: Differentially private
generative adversarial network. CoRR arXiv:1802.06739 (2018)

73. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni,
K.: Modeling tabular data using conditional GAN. CoRR
arXiv:1907.00503 (2019)

74. Xu, L., Veeramachaneni, K.: Synthesizing tabular data using gen-
erative adversarial networks. CoRR arXiv:1811.11264 (2018)

75. Yang, J., Fan, J., Wei, Z., Li, G., Liu, T., Du, X.: Cost-effective
data annotation using game-based crowdsourcing. PVLDB 12(1),
57–70 (2018)

76. Yang, L., Chou, S., Yang, Y.: Midinet: a convolutional genera-
tive adversarial network for symbolic-domain music generation.
In: ISMIR, pp. 324–331 (2017)

77. Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y.-F., Tu, W.-W., Yang,
Q., Yu, Y.: Taking human out of learning applications: a survey on
automated machine learning. Preprint arXiv:1810.13306 (2018)

78. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative
adversarial nets with policy gradient. In: AAAI, pp. 2852–2858
(2017)

79. Zhang, D., Khoreva, A.: PA-GAN: improving GAN training by
progressive augmentation. CoRR arXiv:1901.10422 (2019)

80. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao,
X.: Privbayes: private data release via Bayesian networks. In: SIG-
MOD, pp. 1423–1434 (2014)

81. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.:
Privbayes: private data release via Bayesian networks. ACMTrans.
Database Syst. 42(4), 1–41 (2017)

82. Zhang, Z., Yan, C., Mesa, D.A., Sun, J., Malin, B.A.: Ensuring
electronic medical record simulation through better training, mod-
eling, and evaluation. J. Am. Med. Inform. Assoc. 27(1), 99–108
(2020)

83. Zhao, S., Liu, Z., Lin, J., Zhu, J., Han, S.: Differentiable augmen-
tation for data-efficient GAN training. In: Larochelle H., Ranzato
M., Hadsell R., Balcan M., Lin H. (eds) Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/1611.02163
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1808.04888
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://pytorch.org
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29
http://arxiv.org/abs/1903.10000
http://arxiv.org/abs/1802.06739
http://arxiv.org/abs/1907.00503
http://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1810.13306
http://arxiv.org/abs/1901.10422

	Tabular data synthesis with generative adversarial networks: design space and optimizations
	Abstract
	1 Introduction
	2 Related work
	2.1 Synthetic data generation
	2.2 Generative adversarial networks (GANs)

	3 Tabular data synthesis with GAN
	3.1 Tabular data synthesis
	3.2 TDGAN: a GAN-based synthesis framework

	4 Design space of TDGAN
	4.1 Data transformation
	4.2 Neural networks
	4.3 GAN training

	5 Optimizations in GAN training
	5.1 Avoiding mode collapse
	5.2 Training GAN with limited data
	5.2.1 Effect of limited data on GAN training
	5.2.2 MaskGAN: a data augmentation approach

	5.3 Generating with imbalanced data

	6 Evaluation methodology
	6.1 Datasets
	6.2 Evaluation framework
	6.3 Data synthesis methods
	6.4 Hyper-parameter search

	7 Evaluation results
	7.1 Evaluating the design of TDGAN
	7.1.1 Evaluation on neural network architectures and data transformation methods
	7.1.2 Evaluation on vanilla GAN and DPGAN
	7.1.3 Effect of sample size for synthetic data
	7.1.4 Evaluation on clustering and AQP

	7.2 Evaluating the optimizations in TDGAN
	7.2.1 Evaluation on avoiding mode collapse
	7.2.2 Evaluation on training with limited data
	7.2.3 Evaluation on synthesis with imbalanced data
	7.2.4 Comparing different optimization algorithms

	7.3 Comparing with other data synthesis methods
	7.3.1 Evaluation on synthetic data utility
	7.3.2 Evaluation on privacy

	8 Conclusion & future direction
	Acknowledgements
	References

