The VLDB Journal (2025) 34:12
https://doi.org/10.1007/s00778-024-00888-3

REGULAR PAPER O‘)

Check for
updates

In-database query optimization on SQL with ML predicates
Yunyan Guo' - Guoliang Li' - Ruilin Hu' - Yong Wang'

Received: 8 March 2024 / Revised: 21 October 2024 / Accepted: 25 November 2024 / Published online: 23 December 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Extended SQL with machine learning (ML) predicates, commonly referred to as SQL+ML, integrates ML abilities into
traditional SQL processing in databases. When processing SQL+ML queries, some methods move data from database (DB)
systems to ML systems to support SQL+ML queries. Such methods are not only costly due to maintaining two copies of data,
but also pose security risks due to data movement. Fortunately, in-database SQL+ML processing addresses these limitations.
However, conventional DB optimizers take ML predicates as UDFs (user-defined functions) and cannot optimize them using
query rewriter and cost models. To boost the efficiency of in-database SQL+ML processing, this paper proposes to generate
SQL predicates based on ML predicates and add them into SQL+ML queries, which can prune a significant number of
irrelevant tuples and thus improve the performance. Optimizing SQL+ML queries presents three challenges: (C1) how to
generate valid SQL predicates, (C2) how to select high-quality SQL predicates, and (C3) how to optimize the query using SQL
predicates. To address these challenges, we propose Smart, which integrates three novel modules into the database optimizer:
(1) inference rewrite: generating tight and valid SQL predicates for logical optimization; (2) progressive inference: selecting
high-pruning-power but low-overhead SQL predicates to prune irrelevant tuples; (3) cost-optimal inference: optimizing the
cost of query plan with selected SQL predicates for physical optimization. We implemented Smart in PostgreSQL and
evaluated it on four widely-used benchmarks, JOB, TPC-H, SSB, and Flight. Experimental results revealed that Smart

performed up to three orders of magnitude faster than the state-of-art baselines.

Keywords Query optimization - Model inference - Machine learning - Database system

1 Introduction

Many customers have both SQL analytics and machine learn-
ing (ML) requirements on top of their data in databases [20,
47]. Existing methods usually use two independent systems
to support this requirement, i.e., using DBMS to support
SQL analytics, exporting the data to another ML platform,
and using ML platforms to support ML predicates [23, 43].
Obviously this solution is expensive and insecure, because it
maintains two copies of the data, transforms the data between
the two systems [46], and cannot effectively reuse the hard-
ware environments between the two systems [4].

To alleviate this limitation, the concept of in-database
machine learning is introduced [12, 35]. It extends SQL
capabilities to support ML operators [5, 37] as SQL+ML.
SQL+ML encompasses the ML predicate, which consists
of an inference function by utilizing a trained ML model

B Guoliang Li
liguoliang @tsinghua.edu.cn

' Tsinghua University, Beijing, China

(e.g., linear regression 1r_model) and specific columns as
features, a comparative operator and a value (e.g., < 14).
Figure 1 illustrates an SQL+ML example that the ML predi-
cate reports the tuples where the inference result satisfies the
predicate.

The primary objective of in-database ML systems is to
optimize SQL+ML queries. However, the processing of ML
predicate incurs significant costs due to its computationally
intensive operations, which involve joining multiple tables,
inferring the value for each joined tuple, and returning the
tuples that satisfy the ML predicate [19, 51]. A natural idea to
accelerate the in-database SQL+ML processing is to prune
irrelevant tuples before performing joins.

To this end, we propose deriving “valid” SQL predicates,
solely based on columns and values, from ML predicates
involving ML models. Notably, a “valid” SQL predicate is
a necessary condition for an ML predicate, that is, if a tuple
satisfies the ML predicate, it must also satisfy the SQL pred-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00888-3&domain=pdf

12 Page2of20

Y. Guo et al.

SELECT A.id, price
FROM Apartment as A, Building as B,
District as C, Landlord as D, Construction as E
WHERE A.id=B.aid AND Alid=D.id
AND B.zone =C.id AND B.eid =E.id
AND E.name = “XYZ”
AND Ir_model ([A.room_num, B.building_age,
C.hospital_num, D.rating_score]) < 14 AS price
ORDER BY price;

Fig. 1 Example of an SQL+ML. In this query, an ML predicate (bold
red lines) utilizes a trained ML model to infer and filter tuples

icate!. These derived SQL predicates can be optimized by
DB query optimizers as well. Collaboratively optimizing ML
predicates and other DB operators can early prune some irrel-
evant tuples using SQL predicates, and consequently enhance
the efficiency of SQL+ML processing.

In this paper, we study how to optimize an SQL+ML query
through employing valid SQL predicates within DB optimiz-
ers.

Challenge 1: How to generate valid SQL predicates that
achieve the equivalence guarantee? The generated SQL
predicate should be valid and tight, ensuring that it does not
include false-negative tuples and minimizes the occurrence
of false-positive tuples.

Contribution 1: Inference rewrite for SOQL predicate gener-
ation. By combining the model’s weight and structure with
conditions in ML predicate, we derive valid SQL predicates.
Inference rewrite incorporates these SQL predicates into the
query tree as a logical optimization step in DB optimizer.
Challenge 2: How to choose high-quality SQL predicates?
The number of valid SQL predicates is large when ML
predicate involves many columns across numerous tables.
However, multiple SQL predicates result in execution over-
head and pruning redundancy. Therefore, it becomes crucial
to judiciously select a high-quality subset of valid SQL pred-
icates.

Contribution 2: Progressive inference for SQL predicate
selection. We compute the pruning redundancy and over-
head of different SQL predicates, and select a subset with
the maximum pruning performance. Aiming to minimize the
overhead, the selected SQL predicates infer tuples progres-
sively.

Challenge 3: Where to place the SQL predicates in the plan
tree? BEach SQL predicate can be positioned at different nodes
in the plan tree to affect the subsequent operators’ costs, while
the relative positions of SQL predicates influence each other.
Therefore, it is crucial to identify the cost-optimal positions
for them.

1 We will discuss how to generate such SQL predicates in Sects.3.2
and 3.3.

@ Springer

Contribution 3: Cost-optimal inference for SQL predicates
placement. We propose computing the cost of placing multi-
ple SQL predicates at different positions, and then design a
dynamic programming algorithm that finds the cost-optimal
positions.

We summarize the main contributions of this paper.

(1) To the best of our knowledge, this is the first work
focused on optimizing ML predicates within the DB opti-
mizer.

(2) We propose a logical optimization technique, infer-
ence rewrite, that generates SQL predicates while preserving
equivalence.

(3) We introduce the progressive inference to select
high-quality SQL predicates, aiming to improve query per-
formance.

(4) We devise a cost-optimal inference technique to opti-
mize the physical positions for SQL predicates.

(5) We have implemented Smart into PostgreSQL.
Experimental results on most commonly used ML models,
including linear regression, logistic regression, and decision
tree models, showed that Smart outperformed state-of-
the-art baselines by 2.28-1000x on four benchmarks with
real-world datasets.

Notably, the “State of Data Science and Machine Learn-
ing” report [22] indicates that the most commonly used ML
algorithms are “linear or logistic regression” (80.3%) and fol-
lowed closely by “decision tree” (74.1%), which are popular
on relational datasets. Our techniques can also be adapted for
linear/non-linear SVM and random forests with slight mod-
ification, and can be seamlessly integrated in most modern
DB query optimizers.

2 System framework

In this section, we first define SQL+ML and then present a
framework for optimizing SQL+ML queries.

SQL+ML queries. We extend SQL to support ML pred-
icates, where each ML predicate can be modelled as
“MLmodel (Columns) OP value”,where MLmodel
is an ML model, e.g., linear regression, Columns is a
list of columns, OP is a comparison operator (e.g., <
,>,=), value is a user-specific value. The ML model
will compute a value for each tuple on the specified
columns, and each tuple satisfies the predicate if the cor-
responding model inference value meets the condition.
For example, in Fig. 1, “1r_model ([A.room_num,
B.building age, C.hospital_num, D.rating
_score]) < 14”is an ML predicate, which reports tuples
with inferred prices are smaller than 14. An SQL where
the WHERE clause contains ML predicates is called an
SQL+ML query. Notice that the model in the ML predicate
can be created by “CREATE MODEL lr_model USING

In-database query optimization on SQL with ML predicates

Page3of20 12

/* SQL+ML */
SELECT A.id, label
FROM Apartment as A, Building as B,
District as C, Landlord as D,
Construction as E
WHERE A.id=B.id AND Alid=D.id
AND B.zone =C.id AND B.cid=E.id
AND E.name = “XYZ”
AND Ir_model ([A.a,B.b,C.c,D.d]) <14
AS label
ORDER BY label;

Input Query

parser

-

Abbreviation: room_num -> a; building_age ->b;
hospital_num -> ¢; rating_score -> d; price -> label.

1

I

I

feature |_min | max |weight SRS RN
1 4 3.0 sys_feature | |
2 6 20 I
3 8 1.0 _ |
2 10 05 |
I

" I
atomic |
predicates -Iabel <14 |
generation :
I

T O | o ! -

\Final plan tree with atomic & composite predicates | Intermediate plan tree using selected Fabed | :Plan tree by DB optimizer |

: : : composite predicates * | [— :

etk ST 1 1 o -
: OF (a,b.dc)<14 II : : . OF abdc)<ld - ‘{-4ij//)7[(,/) z<) 1<1 14 II |) . F(a,b,c,ﬁ—labeklét :
d selectivit 3(@. b,) | |

i (A.B.ED)™ C aesery L ! (A.B.ED)X C Fya,b) < 10 computation | | (A.B.E.C.D) MM |

: ABEYXD T g : : 0 s A : : (A,B.E, KNC\M :

| x é dynamic . «I Fy(a.bd)<11 Oc<6 composite Fy(a,b) I« . g’ |

| <8 programming | : F) . (A,B,EY M D 1

A ! Cost- | (A,B.E) X D predicates IProgressive! » B, c<6

: AB)NE ! A | 2 selection Inf A.B / E%' (1: !
| Optimal (A.B)WE Oycg | Inference | | '/ X d<8 !

I AMB E .) I Inference ! O I/ 1} ! 1 AN !

6,5 o AN ! | G | max_|weight! order | | 1| ARB E !

1| %a<2 Ob<3s | ! A | B 1 4 30 1 ! ! !

I I s\ 2 - 0,5 0} |
! Z | | |%a<2 %p<3.s

| l I %a<2 Op<35 b 2 6 20 2 | | 1

| | | s c 3 8 10 4 | \ 1

| l ! d 2 10 05 3 1 1 !

Fig.2 A running example of SQL+ML query optimization in Smart

linear_regression FEATURES Columns FROM
Tables; ” and trained offline, and then the model will be
maintained in databases (e.g., in the view of database sys-
tems) and can be used in SQL+ML queries. In addition, if
the columns in the ML predicates are from multiple tables, the
model training queries and inference queries should explic-
itly specify the join conditions, i.e., tables A, B, C, and D
appear in the FROM clause and the join conditions are in the
WHERE clause in Fig. 1.

Key idea. If an SQL+ML query contains an ML predicate,
traditional databases typically first compute the intermediate
table for the SQL+ML query by omitting the ML predicate,
then infer values of these tuples based on the model in the
ML predicate, and finally prune the tuples that do not satisfy
the ML predicate. However, this approach definitely incurs
high computational costs, especially when the intermedi-
ate table comprises a large number of tuples after multiple
joins. Therefore, it’s crucial to prune irrelevant tuples either
before or during the join operators, especially when the inter-
mediate table is substantial but only a small proportion of
tuples satisfy the ML predicate. To achieve this goal, we
design SQL+ML optimizer ARchiTecture (Smart), which
generates, selects, and places valid SQL predicates (e.g.,
column OP wvalue)tooptimize ML predicates within the
DB optimizer. Given that these SQL predicates can prune a
significant number of irrelevant tuples, Smart can notably
improve the performance of SQL+ML in DB systems.

We classify SQL predicates into atomic predicates with
single table (e.g., A. room_num < 4), and composite predi-
cates with multiple tables (e.g., w1 * A.room_num + w;
* B.building_age < 10, where w; and w; are two

weights of 1r_model). Next we discuss how to generate
SQL predicates, whether to use SQL predicates, and how to
place them within DB optimizer.

Atomic Predicates. (1) Generation: Each ML predicate con-
tains multiple tables, and we generate a corresponding atomic
predicate for each table. (2) Selection: The cost of execut-
ing atomic predicates is almost negligible when compared
to the cost of table scan and join operators. Each atomic
predicate highly likely prunes many tuples in the correspond-
ing basic table, so Smart directly preserves the generated
atomic predicates. (3) Placement: The atomic predicates are
common in SQL and optimized by DB. Thus, Smart simply
appends the atomic predicates to the scan node in the query
tree.

Overall, the generation, selection, and placement of
atomic predicates constitute the inference rewrite module as
shown in Figs. 2 and 3. Since Smart aims to leverage exist-
ing optimization algorithms to optimize atomic predicates,
this module is deployed at the beginning of logical optimiza-
tion stage.

Composite predicates. (1) Generation: Composite predicates
are generated by combining multiple tables and their cor-
responding model weights. They provide tighter necessary
conditions than atomic predicates, thus can further prune
irrelevant tuples. The generation function, which extends
from the atomic predicate generation function, will be dis-
cussed in Sect.3.3. (2) Selection: Unfortunately, the total
number of candidate composite predicates that can be gen-
erated reaches up to 2D _ p — 1, where D represents the
number of columns in the ML predicate, resulting in signifi-
cant time and space costs when generating all of them. Hence,

@ Springer

12 Page4of20

Y. Guo et al.

Input: SQL+ML traditional proposed
L DB module ML module

[Parser J
SQL+ML Optimizer O
query (2] inference || atomic
. rewrite rewrite predicates
Logical
Physical join order progressive
selection (3} inference Lo
composite
predicates
operator cost-optimal || S,
selection inference
[15)
[Executor J

Fig.3 The framework of Smart

it becomes crucial to select effective composite predicates
that possess high pruning ability. We propose a tree-based
method to evaluate the pruning redundancy between different
composite predicates and select the high-quality compos-
ite predicates to maximum pruning performance in Sect.4,
which corresponds to the progressive inference module in
Figs. 2 and 3. (3) Placement: Different places lead to vary-
ing total costs. Firstly, the computational cost is affected by
the positions of other composite predicates due to progres-
sive inference. Secondly, the pruning benefits change based
on positions. Considering both factors, Smart utilizes a
dynamic programming algorithm to optimize the plan tree’s
cost through iteratively determining the optimal placement
for each selected composite predicate from bottom to top,
after localizing cascading effects. This is the cost-optimal
inference module in Figs. 2 and 3.

System workflow. The framework is shown in Fig. 3, and
Fig. 2 illustrates a running example. A user-given SQL+ML
is parsed into a query tree @ as the input of Smart. Inthe log-
ical optimization stage, the inference rewrite module rewrites
ML predicate using atomic predicates, leading to a modified
query tree @. Then it undergoes traditional modules, pro-
ducing a physical plan tree ©. In the physical optimization
phase, the progressive inference module replaces ML pred-
icate with composite predicates as @, and the cost-optimal
inference module refines them to obtain the cost-optimal plan
tree @.

Optimizing SQL+ML directly within DB optimizer is
notably more effective. Since ML predicates and DB opera-
tors are intricately intertwined, they should not be optimized
separately. DB optimizers optimize ML predicates using
statistical data and cost estimation models. Smart treats
SQL+ML as a cohesive entity, merging both the newly
introduced modules and the existing ones to enhance the per-
formance collaboratively.

@ Springer

Different from existing frameworks. Smart integrates ML
predicate optimization directly within the DBMS query opti-
mizer, unlike Raven [23, 38], which externally compiles ML
models into SQL and relies on the database’s native capa-
bilities. Raven’s key contribution lies in partitioning tasks
between SQL for the database and Python for TensorFlow
while optimizing the intermediate representation (IR). In
contrast, our method focuses on pruning data rather than
simplifying models and introduces new SQL predicates to
reduce data processed during query execution, especially in
complex queries where all tables are necessary. Our approach
and Raven’s can be seen as complementary, with Raven’s
output serving as input for our optimizer.

While both PP [34] and Smart aim to filter data before
inference, they address different challenges. PP focuses on
unstructured data where inference dominates costs, whereas
our method targets joined relational data where join opera-
tions are the bottleneck. PP adds probabilistic predicates but
does not address the cost of joins in relational data, limiting its
effectiveness. Our method generates SQL predicates specif-
ically to optimize joins, reducing intermediate dataset sizes
and ensuring query equivalence without requiring additional
model training. Despite the differences, our approach can
complement PP by optimizing join operations for its proba-
bilistic predicates in relevant scenarios.

Orion [27] proposed that in each iteration of the ML model
training process, the total gradient calculation on the total
tuples can be accelerated over factorized joins [8, 33]. Dif-
ferent from Orion, Smart filters irrelevant tuples through
ML predicate in query before joins.

3 SQL predicate generation

In this section, we take linear regression, logistic regression,
decision tree as examples to discuss how to generate SQL
predicates.

3.1 Preliminary

Linear regression inference. A linear regression model f has
a model weight array w = {wp, ..., wp}. Given a tuple
x = {Xi, ..., Xp}, the inferred numeric value of model f is
defined as f(x,w) € R:

F& W) =wo+ Y0 wa - xg (1)

We abbreviate this linear regression model as 1r__f, then
users can write an SQL+ML query with arange ML predicate
using it.

Range ML predicate. Given a numeric value /,,, € R as the
upper bound of the inferred value with the inference func-
tion f(x,w), the range ML predicate can be written in an

In-database query optimization on SQL with ML predicates

Page50f20 12

SQL+ML query as “1r_£ ([Coly, ..., Colpl) <I[,"
where Col, is the column name of d-th feature, which selects
a list of tuples

x, f(x,w)),x € {X}, s.t. f(x,W) <y

Logistic regression inference. A logistic regression model

g has a model weight array w = {wp,...,wp}, and
Skx) = 1_:? is the sigmoid function. Given a tuple x =
{x1, ..., Xp}, the inferred category label of model g on tuple

x is defined as g(x, w) € {FALSE, TRUE}:

- FALSE, s.t. S(wo 4+ Y5, wa - xq) < 0.5
g(x,w) =
TRUE, s.t. S(wo + Y5 wa - X4) > 0.5

@)

Similarly, we abbreviate this logistic regression model as

1r_g, then users can use equality ML predicates to write
SQL+ML.
Equality ML predicate. Given a category label TRUE as the
required inferred label with the inference function g(xy, W),
the equality ML predicate can be written in an SQL+ML
query as “lr_g([Coly, ..., Colp]) = TRUE" where
Coly, is the column name of d-th feature, which selects a list
of tuples

(x, TRUE),x € {X]}, s.t. g(X, w) = TRUE

We take a binary classification as an example, and our

method can be easily extended to support multi-class classi-
fication.
Decision tree inference. A decision tree model % is typically
structured as a tree. Each internal node tests a feature condi-
tion (one column predicate) for the tuple x, and the traversal
turns left if the condition is satisfied or turns right otherwise.
Each leaf node represents the inferred value. The inferred
value of model % for tuple x is obtained by traversing the tree
from the root to a leaf: h(x) € {vy, va, ..., vg}. The inferred
value is one of the unique decision labels {vy, va, ..., vt},
which can be reached through various paths in the tree.

Similarly, the equality ML predicate can be written

as “dt_h([Coly, ..., Colp]l) = v", where v €
{v1, V2, ..., vk}.
SQL predicate generation. Given an SQL+ML query O, SQL
predicate generation aims to generate a set of valid SQL pred-
icates, such that adding them into Q will keep equivalent with
original query.

3.2 Atomic predicate generation

An ML predicate is a condition that combines columns from
multiple tables, whereas an atomic predicate, which involves

only a column from a single table, represents a necessary
but not sufficient (less restrictive) condition. We first discuss
linear models and then move on to discuss tree models. We
consider each table only maintains one column, then multiple
columns are easy to expend.

Linear models. To derive the atomic necessary conditions,
it is necessary to exclude other columns in other tables
with additional conditions. Thus, we propose incorporating
the min/max ranges of all columns from DBMS catalogs,
Vie{l,..., D}, Xi min < Xi < Xi max, to create a combined
inequality. DBMS catalogs generally store up-to-date statis-
tic data for column values. Theorem 1 serves as an example
of the derivation.

Theorem 1 (Atomic Necessary Condition for Linear Mod-
els) When an SQL+ML query includes a range ML predicate
as"lr_f([Coly, ..., Colp]) <l,p"withtheinference
function in Equation (1), and let

di di
M; = lup — Wo — ZdeSl Wy - Xd,min — ZdeSz Wq - Xd,max

then the ith necessary condition of the ith column value is
derived as:

<(M;/w;), ifw; >0
-
" > M jwi) ifwi <0

where Xg max and xq min are the maximum and minimum
values of column Coly. Also, S1U S, = {1,...,D}, S1N
S, = 0, and Vd € S satisfies wy > 0, Vd € S, satisfies
Wy < 0.2

Foranequality ML predicate 1r_g ([Coly,...,Colp])
= TRUE, it holds that S(wq + Zfl):l wg - Xq) > 0.5 accord-
ing to Equation (2), indicating that

D
wo-l-de'XdzO-
d=1

Therefore, it is similar to the range ML predicates setting [y,
to 0.

The model weights can be either positive (S;) or negative
(S2), leading to different derivations in Theorem 1. However,
for the sake of simplicity in further discussions, we consider
each negative weight wy as logically positive, represented by
the transformation:

[wa, X4, Xd,mins xd,max] <~ (—1) - [wg, X4, Xd,max» xd,min]

2 There is no need to consider wy = 0 for inference since that means
the corresponding column is useless.

@ Springer

12 Page60of20

Y. Guo et al.

By doing so, we only need to consider situations where all
weights are positive. Subsequently, we present the atomic
necessary conditions for the ML predicates.

Decision tree. For each path in the decision tree, every branch
represents a condition. Within the conditions of a path, a
column may appear multiple or zero times. By intersecting
multiple occurrences and using x,i, < X < Xpgqy for the
omitted one, we transform them into D distinct necessary
conditions.

Theorem 2 (Atomic Necessary Condition for Decision Tree)
When an SQL+ML query includes an ML predicate as
“dt_h([Coly,..., Colp]) =v"andv € {vi,..., v}
frommodel h, there exists a set of paths P(v) = {P;, ..., Py}
that lead to this label, where J is the size of P(v). For any
specific path P; € P(v), it consists of a set of conditions,
which are denoted as P; = {cj 1, ..., cj p}. Fortheith col-
umn X;, the atomic necessary condition for lable v is derived
as a logical disjunction:

Xj:C,iVeC2,iV...VCyi

Atomic necessary conditions. A single SQL+ML query can
include multiple ML predicates. Forexample, “1r_f (Cols)
BETWEEN /jo, AND /[,," includes two ML predicates sharing
the same model and columns, or “dt_h1l (Cols) =as AND
dt_h2 (Cols) =b3" involves some of the same columns but
different models. In such cases, each ML predicate derives a
set of atomic necessary conditions using Theorem 1 or Theo-
rem 2. When combining the two sets, they mutually reinforce
each other.?

Assuming all weights are positive in a linear regression
model as an example, specifically, the necessary conditions
are computed using the minimum column values to deter-
mine the upper bounds. Subsequently, if these upper bounds
are used instead of the maximum values to compute the nec-
essary conditions, the lower bounds of the column values
become tighter. Hence, we propose Algorithm 1 to leverage
this effect.

Furthermore, the initialization in Algorithm 1 can use
existing predicates in SQL+ML query. For example, the
lower bound value of column rating_score can be
initialized using D.rating_ score>4, if this predicate
appears in the original SQL+ML query, instead of the min-
imum value from catalog to provide a tighter additional
condition.

If any column exists in both different decision tree mod-
els, the two generated atomic necessary condition sets can
also reinforce each other. Taking “dt_hl (Col;, Colj)
=as AND dt_h2(Col;, Colsz) = b3" as an example,

3 Supporting disjunctions is similar but more verbose, and we leave it
as a future work.

@ Springer

Algorithm 1: Atomic Necessary Conditions for Linear
Regression

Input: I, liow, w, max_iter or €
Output: Vd € {1, ..., D}, Xd,10ws Xd,up

/* Initialize with catalogs or SQL

predicates: */
ford < 1to D do
‘ (Xd.tow> Xdup) < (Xd.mins Xd.max);
end
/* Update with Theorem 1: */
repeat
fori < 1to D do

6 Xilow < i(how —wo — Zf:l,d;ei Wd - Xdup);

1 D
7 Xiup < ,‘Ti(lup —wo — Zd:l,d;&i Wy Xd low)-
8 end
until iter_num > max_iter OR output changes < €;

W =

[N

-

the conditions of Col; with Vv and A can be optimized with
existing logical algebra algorithms.

Atomic predicates generation. From an ML predicate and
column ranges, a set of atomic necessary conditions can be
derived. In this set, each atomic necessary condition includes
one column, a comparative operator, and a bound of value,
such as Xj < x;p, which can be used to generate one
atomic predicate as “Col; < x;,,". Therefore, the atomic
predicates generation function generates atomic predicates
for ML predicates in an SQL+ML query. For example, by
using the weight values from the sys_model in Fig. 2, where
wi, w, w3, wg are 3, 2, 1, 0.5, respectively, and the col-
umn statistics from sys_feature in Fig. 2, with min(B.b)=2,
min(C.c)=3 and min(D.d)=2 as additional conditions, we can
derive an atomic predicate "A.a < 4", since:

wi-A.a < 14—wrmin(B.b) —w3min(C.c) —wg-min (D.d)

3.3 Composite predicate generation

Similarly, before generating composite predicates, it is cru-
cial to derive the composite necessary conditions for ML
predicates firstly.

Theorem 3 (Composite Necessary Condition for Linear Mod-
els) When an SQL+ML includes a range ML predicate as
“lr_f([Coly, ..., Colp]l) <lyp" with the inference

function as shown in Equation (1), a generated composite

predicate including all columns in a subset I C {1, ..., D}
can be derived as

E Wi - Xj <lI,up = lup — wo

iel
- Z Wq - Xdup — Z Wq - Xd,low

deSy,d¢l deS,,d¢l

In-database query optimization on SQL with ML predicates

Page70f20 12

where x4, and x4 10w are the bounds of column Coly after
generating atomic predicates. Sy, Sy are described in Theo-
rem 1.

When Smart selects a composite predicate with the
input columns set I, the output composite predicate is
“Y iy Wi - Col; < lj " from the corresponding compos-
ite necessary condition. For example, by using the weight
values from the sys_model in Fig. 2, where w1, wy, w3, wy
are 3, 2, 1, 0.5, respectively, and the column statistics from
sys_feature in Fig. 2, with min(C.c)=3 and min(D.d)=2 as
additional conditions, we can derive a composite predicate
wyp* A.a +wy * B.b< 10, since:

wi-A.at+wymin(B.b) < 14—w3min(C.c) —w4-min (D.d)

Theorem 4 (Composite Necessary Condition for Decision
Tree) When an SQL+ML includes an ML predicate as
“dt_h([Coly, ..., Colp]) =v", a generated com-
posite predicate including all columns in a subset I C
{1, ..., D} can be derived as:

i
Xy - \/j:l (/\iel Cj,i)
where J and cj ; are described in Theorem 2.

For decision tree, the generated atomic and composite
predicates can be optimized further. Columns omitted in
specific paths can be excluded as they do not contribute to
pruning, and repeated conditions across paths need not be
evaluated multiple times. For the larger decision trees, the
generation time may increase. Its feasibility is maintained
through optimization strategies such as consolidating con-
ditions for the same feature across paths and amalgamating
paths with identical labels during the preprocessing phase.
Then, during real-time optimization, we can quickly check if
all paths leading to the label share conditions on a particular
feature before deriving the relevant predicates, which accel-
erates the process. Bitwise operations and modern compilers
facilitate these optimizations. However, not all features in a
decision tree can generate useful predicates. Only features
that appear in all paths leading to the query label condition
can produce meaningful predicates. Also, the predicate on a
column or a column set needs to be the disjunction of all rele-
vant paths, which will make the predicate filter less selective.
For more complex models like random forests with thousands
of trees, the generation time could become large, but its over-
head is still negligible compared with the execution time. We
leave optimizing the overhead for complex models as a future
work.

Complex transformation. When a column undergoes trans-
formations such as square, logarithmic, or exponential
functions, we can derive the additional conditions of the
transformed one by leveraging the min/max values of the

original column. Then the necessary conditions can be further
derived by exploiting the range of the transformed feature
as in simpler models. And when generating atomic predi-
cates for them, e.g., log(x) < upper, if the inverse function
is straightforward to compute, the atomic predicate can be
transformed to x < exp(upper). If the inverse function
cannot be explicitly derived, we can retain expressions like
x* < upper. This retention does not impose a significant
computational overhead because x* needs to be calculated
even without our approach.

Supporting categorical values. Typically, categorical fea-
tures are transformed into numerical ones using techniques
like one-hot encoding. Our method’s principles and pipeline
apply directly to these encoded features, and the character-
istics of one-hot encoding further tighten the generated SQL
predicates.

On the one hand, since these encoded features originally
come from the same column, they can be treated as multiple
numerical columns and combined to form one composite
predicate. Therefore, the generation process is similar to
that for numerical columns. For instance, consider a dataset
with two features: “Color" (a categorical feature) and “Size"
(a numerical feature). After applying one-hot encoding to
the “Color" feature, it is split into three binary features:
“Color_Red", “Color_Green", and “Color_Blue", with cor-
responding weights of 2, 3, and 1, respectively. In our method,
using min(Size) and max(Size) will derive a necessary con-
dition about “Color", e.g. “2*Color_Red + 3*Color_Green +
1*Color_Blue < 1.5", which can be simplified as an atomic
predicate “Color = Blue".

On the other hand, by considering the nature of one-hot
encoding, we can generate tighter additional conditions of
min/max ranges. In the same instance, when deriving an
atomic predicate for “Size", the additional conditions are
“l < Color < 3", corresponding to the min and max weight
values of “Color". These additional conditions are tighter
than treating each color feature independently, where the con-
ditions might range from min(Color) = 0 to max(Color) = 6
=243+1.

3.4 Inference rewrite

To generate SQL predicates from a given ML predicate in
the SQL+ML query, the inference rewrite module initially
derives a set of atomic necessary conditions from Theo-
rem 1(2) and refines them further through Algorithm 1. Each
atomic necessary condition is then used to generate a cor-
responding atomic predicate. Finally, the inference rewrite
module rewrites the query tree by appending the generated
atomic predicates to the scan node.

Atacertain point, the generation time could take more than
actually executing the model. We can use the cost to predict
the execution cost. If the execution cost is high, we can use

@ Springer

12 Page80f20

Y. Guo et al.

our method to optimize the query; otherwise, we can directly
execute the query. Note that as the data size grows, the exe-
cution time increases proportionally, while the generation
time remains a one-time cost during the query optimization
phase. This means that the relative impact of the genera-
tion overhead decreases with larger datasets, emphasizing
the efficiency of our method in big data scenarios.

4 Progressive inference for composite
predicates

An ML predicate may contain multiple tables, e.g., D
columns from D tables, and any subset of these tables can
generate a valid composite predicate*. Thus, the total num-
ber of valid composite SQL predicates grows exponentially,
specifically 2P — 1, which includes D atomic predicates and
2P — D — 1 composite predicates.’ It is rather expensive
to utilize all composite predicates blindly because of (1)
their exponential count, leading to increased execution over-
head, and (2) pruning redundancy across different composite
predicates, which results in redundant computational costs.
Consequently, the selection of which composite predicates
to retain becomes crucial in minimizing computation redun-
dancy.

4.1 Composite predicate correlation

The composite predicates selection must adhere to three prin-
ciples to minimize computation redundancy.

Principle 1. A composite predicate must be after joining the
corresponding tables. The execution of a composite predicate
must occur after joining all tables involved in the predicate.
For example, a composite predicate “wi*A.room_num +
wyxB.building_age < 10" must occur after joining
tables A and B. In other words, within the query plan tree,
a composite predicate must appear at higher nodes than the
join nodes for tables.

Principle 2. A sub-predicate must appear before its super-
predicate. Given two generated predicates P and P, from
the same ML predicate, we denote P € P> (P; is a sub-
predicate of P> and P, is a super-predicate of Pp), if each
column in P; appears in P,. For example, the composite
predicate “wi*A.room_num + wrxB.building_age
< 10" is a sub-predicate of the predicate “w1*A . room_num

4 In scenarios where multiple columns are in the same table, we can
introduce a new column as a composite of them to logically simplify
the situation. When applied across multiple columns within the same
table, these composite predicates can still be efficiently pushed down
to the scan operator, enhancing data filtering before joins.

5 We represent the composite predicate “w*A.a + wy*B.b < 10"
as “p(a,b)", with all candidate composite predicates listed in the set Py
in Fig. 4.

@ Springer

+ wyxB.building_age + w3x*C.hospital_num <
14". Lemma 1 is provably true but omitted for its simplicity.

Lemma 1 Given two predicates Py C P, derived from Theo-
rem I and 3 for linear models or Theorem 2 and 4 for decision
tree of the SQL+ML query Q, any tuple pruned by P must
be pruned by P;.

In this way, considering P; C P 0if Py appears at the same
or higher node in the query plan tree than P, P is redundant,
as Pj cannot prune more tuples than P,. So the principle is
predicate P; must appear before (lower in the query plan
tree) P, if P C P.

Principle 3. A super-predicate can reuse the result of its
sub-predicate. Considering two predicates P; C P, if P;
has already been computed in a former/deeper join opera-
tor, we do not need to compute P, from scratch. Instead,
we can compute P, progressively by reusing the computed
results of Pj. For example, computing “w1* A.room_num
+ wyx B.building_age + w3* C.hospital_num"
can reuse the computed results of “wi*x A.room_num +
worx B.building_ age".

4.2 Composite predicate selection

Composite predicate selection. Composite predicate selec-
tion aims to select high-quality composite predicates by
removing the redundant predicates and satisfying the three
principles. We develop a heuristic method to address the com-
posite predicate selection problem, comprising four primary
steps and Fig. 4 shows a running example.

Step I: Generate a set of all valid composite predicates,
denoted as Pjy1, and insert them into the predicate list of
the root node in the query plan tree.

Step 2: Push down each composite predicate in Py as low
as possible, adhering to Principle 1, with the objective of
pruning the maximum intermediate tuples.

Step 3: At each node, among predicates with sub/super-
predicate relationships, keep the super-predicates and remove
the sub-predicates based on Principle 2, thereby allowing for
the most effective tuple pruning.

Step 4: Progressively infer to minimize computation redun-
dancy among the remaining predicates based on Principle
3. By adding the expression of sub-predicate into the target
list’, the super-predicate can reuse the previously result to
infer each tuple progressively.

Algorithm analysis. Composite predicate selection selects a
maximum of D — 1 composite predicates, where D is the
number of tables in the ML predicate. It aims to prune as

6 One or more columns are in P; but are not in Pj.

7 In the query plan tree, each node has a rarget list to represent its output
columns.

In-database query optimization on SQL with ML predicates

Page90of20 12

\@ pg«;, b)),p((;z,;))yp((a,;i)), @ - {pgu, Z),I)f(b,(‘:)vpg;)d),} @ Py = p(a,b,c,d) @ Py = p(E(Ps),¢) :
| _ p\b,¢),p(Y,a),p(c,a), 4= 4§Pa0c)pla,ca,), 0 y
I Pan p(a,b,¢),p(a,b,d),p(a,c,d,) p(b, ¢, d), p(a, b, ¢, d) O4:(A,B,E,D)>=C O4:(A,B,E,D)>=C :
! p(b, ¢,d),p(a,b,c,d) v N e
| . ‘
| { O4:(A,B,E, D) C S ,d)/\ c - p(E(PZ)‘d/)\ o
| 04:(A,B,E,D) C b, , ‘
‘ o~ Py = {pla,d),p(b,d),p(a,b,)} C | | :
\ Os3:(A,B,E)a D Os3:(A,B,E)>a D [
| Os:(4,B,E) = D c Os: (A, B,E) s D |
|
: /\ — T 0y:(A,B)=E D 0y:(A,B)= E D |
I 0y:(A,B)<E D Oz:(4 B> B P /\ /\ :
I E
LN Po=(plat)y B Py = f(”’) P gt z |
101: A B E |
v
: VAN 0,: A B O,:A=<B 0,: A= B :
4 B PN PN T \
A B A B A B |

Fig.4 Example of the 4 Steps for composite predicate selection. Step
1 @ adds all candidate predicate to the root O4. Step 2 @ pushes down
each predicate to sets P2, Pz, and Py. Step 3 @ selects the strongest
predicates, P3 and P4, from each set based on Lemma 1, and removes

many tuples as possible on the query plan tree while minimiz-
ing redundant computations among the generated composite
predicates. Despite processing an exponential number of
composite predicates with respect to D, Algorithm 2 merges
generation and selection to optimize it.

The input of this reduction function CPS is the root node
of the plan tree and an initially empty set, CPS(Root, ¥).
As the function executes, this set is populated with the
selected composite predicates. Lines 4-5 generate the com-
posite predicates with maximum pruning ability, and Lines
8-11 progressively infer ML predicates through passing up
the intermediate results. The optimized algorithm yields a
computational complexity of O(N x D), where N repre-
sents the total number of operator nodes on the query plan
tree.

5 Cost-optimal inference for composite
predicates placement

For each composite predicate, it can be placed in multiple
positions in the query plan tree, i.e., from the lowest position
(e.g., the highest table-join nodes for tables in composite
predicate) to the highest position (e.g., the lowest position
of its super-predicate). As an example, the predicate node
P1 in the left tree in Fig. 5 has two potential positions Oz
and Os. Placing at different positions can lead to different
costs, e.g., the computation cost of executing the predicate
and the number of pruned tuples to save cost of the subsequent
operators (executing higher operators in the query plan tree).
Thus it is important to place each predicate at an appropriate
position in the query plan tree in order to minimize the total
execution cost.

the others. Step 4 @ reconstructs the selected predicates P3 and Ps
using Principle 3 for progressive computation, where E(P) denotes the
expression of the reused result

Algorithm 2: Selection
CPS(Node,P)

Input: Node; P is the set of selected composite predicates.
Output: The set of tables 7 C R below current node.

Composite Predicate

1 if Node.type is Scan then

/* All tables in ML predicate comprise R.
*/

2 T <« (If Node scans table r € R then {} else).

3 else

/* Gather tables in R below current
node. */

4 T < CPS(Node.left, P) UCPS(Node.right, P);

5 P <«

GeneratePredicate(Cols in 7,ML predicate);

/* Add the generated P into the global

P. */
6 if P ¢ P then

7 P <« PU{P}

8 E(P) < Progressivelylnfer(P, Node);

9 Append E(P) into Node.targets;

10 else

11 \ Pass Node.child.targets.E(P) to Node.targets,

12 end

13 end

14 return 7.

Modern optimizers typically pushdown predicates as low
as possible in the execution tree. This approach is based on
the assumption that the calculation cost of SQL predicates
is relatively low and can be ignored, therefore pushdown
does not bring overhead and pruning a few data also brings
benefits. This assumption is valid in many general traditional
scenarios. However, in our method, the additional SQL pred-
icates are generated from the ML predicate, which introduces
a unique challenge. Firstly, the calculation costs of these
predicates can be significant, particularly when they involve

@ Springer

12 Page 100f 20

Y. Guo et al.

complex operations such as multiplication, exponential, or
logarithm. Secondly, these predicates have overlapping or
inclusive relationships in terms of the data they filter. There-
fore, the placements of these relative SQL predicates impact
the benefits of each other.

To address these challenges, we develop a novel cost
model and placement strategy that optimize the positions
of these additional SQL predicates based on their sub-super
relations, relative calculation costs and position-aware ben-
efits. While pushing predicates as low as possible in the
execution plan tree is a common strategy, this approach could
result in minimal data filtering but substantial computational
overhead in some cases. In such cases, our cost-optimal
placement strategy can pull up the predicates higher in the
execution plan tree to effectively avoid unnecessary calcula-
tion overhead.

5.1 Cost model

We first focus on the cost of computing composite predicates,
then other operators affected by them.

The cost of composite predicate. The cost of a predicate is
determined by both (1) the computational cost for each tuple
and (2) the total number of tuples to evaluate.

Firstly, in terms of the computational cost of a predicate
for each tuple, a direct method is to evaluate the expression
of the predicate itself. However, if some other sub-predicates
are under the predicate, the progressive inference incremen-
tally computes the predicate. Considering in Sect.4.1, the
calculation of predicate P; can be computed incrementally
as Costp(P;, (P;)) when P; is the closest predicate to P8

Definition 1 (Closest predicate) Let P; be the closest predi-
cateto P;,ifandonlyif (1) P; C P; and both are derived from
Theorem 1-4, (2) P; is placed closest to P; in the plan tree,
which means no other generated predicates exist between
them.

Secondly, in terms of the number of input tuples for a
predicate, when a predicate P; is located on a position O,
the input rows of P; are equal to the output rows from Oy.
We denote the size of the output rows from the operator O
as Rows (O, (P})), where P; is the closest predicate to P;.0
The output rows from the operator Oy is affected by the pres-
ence of P;, but it is independent of the location of P; due to
the previous insights, as well as independent of the presence
and location of other predicates. However, computing this

8 The notation of Cost (0O, (+)) is consistent with DB optimizer’s oper-
ator cost estimation.

9 Note that if we only consider left-deep tree, there is only one P; for
P;; if we consider bushy tree, there may be multiple closest predicates.
Without loss of generality, we consider the left-deep tree for ease of
representation.

@ Springer

rows function requires an estimation of the selectivity of the
predicates. We propose to obtain the size of rows in three
steps:

1. Without any generated predicates in the plan tree, the size
of the output rows of Oy is denoted as Rows(Oy) and
can be estimated by DB modules;

2. The selectivity of the generated predicate P; is denoted as
Sel(Pj), which can be estimated based on the histograms
of the relevant columns or more advanced methods [16];

3. Under the assumption of independence between oper-
ators, with P; inserted below Oy, Rows(Oy, (Pj)) =
Rows(Oy) x Sel(Pj).

Thus, when P; is the closest predicate to P;, the cost of P;
located on Oy is represented as:

Cost(P;, (O, Pj)) = Rows(Oy, (Pj)) x Costp(P;, (Pj));
and if no predicate is below Oy, then
Cost(P;, (Ox)) = Rows(Oy) x Costp(P;).

The cost of other operators. In Smart, the traditional DB
module is able to estimate the cost of an operator Oy using
the existing cost model and the size of the input rows, which
is denoted as Cost(Or) = E(Oy, (Rows(0Ok—1))). Intro-
ducing composite predicates below the operator affects its
input rows, but only affected by the closest predicate from
the above insights. When P; is the closest predicate below
Oy, the cost is:

Cost(Ok, (Pj)) = E(Ok, (Rows(Ok—1, (Pj)))).

Impact of cardinality estimation We recognize that relying
heavily on Cardinality Estimation (CE) to select among the
2P possible predicates could lead to suboptimal join order
decisions if CE is not accurate. To address this, our sec-
ond technique adopts a progressive inference process, where
composite predicates are chosen with a clear sub-super rela-
tionship between them. Our third technique optimizes the
cost through place and merges selected predicates. This
technique further mitigates the impact of inaccurate CE by
requiring only relative accuracy rather than absolute pre-
cision. This relative accuracy can be reasonably achieved
through existing database histograms, allowing our method
to manage the risks associated with less precise CE effec-
tively.

As a result, our method effectively manages the risks
associated with less precise CE. Specifically, for atomic
predicates with reliable CE, we push them down prior to
determining the join order. This ensures that the join order
chosen is an improvement over the original plan without

In-database query optimization on SQL with ML predicates

Page 110f20 12

Cost(Py, (Og, P2))

COSt(Of” PQ)
+C()St(06, PQ)

P =w; xTi.a
+ we * T3.c < 10

N _
4

] 71 1 l\ _7 2/‘ l\T1) I\Tz)

- 2

Fig. 5 The left tree shows an example of inserting a composite pred-
icate. T nodes represent the scan nodes and O nodes represent other
operators. Pj includes columns from 77 and 73. P C P, and P, is
placed on Oy4. The right tree demonstrates how C(Ps, Og) accumulates
costs from three components. P; is the closest predicate of Py, so the
first component is C(P», O4). And the second component is the sum of
the costs associated with operators Os and Og respectively. Then the
third component is the cost of P4 on the top

predicates. For composite predicates where CE may be less
accurate, we postpone the pushdown decision until after the
join order is established. This helps avoid suboptimal join
orders due to inaccurate CE. Even in worst-case scenar-
ios, our optimization aims to avoid any significant overall
degradation compared to the original plan without predicates.
We acknowledge that accurately estimating the cardinality
of composite predicates remains a challenge. As CE tech-
niques improve, especially for composite predicates, we plan
to incorporate these enhanced CE results directly into our
join order selection process to further improve query perfor-
mance.

5.2 Composite predicate placement

The optimization objective of composite predicate placement.
We aim to place the composite predicates in the query plan
tree to minimize the total execution cost. The above analy-
sis leads to the conclusion that the cost of both the original
operator and the inserted composite predicate depends on
the closest composite predicate inserted under them. There-
fore, we define a cost function for the (sub)plan tree with the
inserted composite predicate serving as the root, and offer
a recursive formula to compute the cost beginning from the
subtree led by the closest predicate.

Cost Optimization in a Bottom-Up Manner. To reuse the com-
puted results of a subtree, we propose a bottom-up manner
to minimize the cost. Specifically, we note the cost function
as C(P, (0)) with two parameters, which represents the cost
of the whole sub-plan tree with generated predicate P as the
root node when the P is placed on the operator O. There-
fore, our goal is to firstly minimize C(Py, (Oy)) where Py
includes all columns involved in the ML predicate and Oy
is one of the possible positions of Pys. Based on these mini-

0,10,105]0, 05| 06| X 0,]0,|05]0,]05|04| X
X|&re X @

P, oreLe P,

P, 00 P, Qlo]o,

Py ol|p, ~IhJo
P, o) P, 10

Fig.6 The left matrix represents a placement P; on Oy, P> on Oy, and
the absence of P3; the three arrows correspond to accumulate compo-
nents in Fig. 5 right tree. The right matrix shows the possible transitions
to d (P4, Og, P>). The left matrix corresponds to the one possible tran-
sition from d (P, O4, Py)

mum values, the total execution costs of the whole plan tree
can be calculated easily. And the set of composite predicates
placements, corresponding to the smallest cost among the
total costs, are the optimal output.

For two closest composite predicates P; C P;, where P;
is placed on Oy and P; is placed on Oy, the total cost of
plan tree rooted by P; is the sum of (1) the subplan tree cost
rooted by P;, (2) the cost of the operators between P; and
P;, and (3) the cost of P; itself, as:

C(P;, (Ox)) =C(Pj, (On)) + Sk + Cost(P;, (O, Pj))
with, Sy 1= Zne(m,k] Cost(Oy, (P)))

where n € (m, k] represents traversal of O,, between O,,, and
Ok. 10

The right tree in Fig. 5 represents an example. When P, C
Py, P, is placed on O4 and Py is placed on O,

C(Py4, (O¢g)) = C(P2,(04)) + Sa,6 + Cost (P4, (Og, P2))

This illustrates the overlapping cost calculation process
within the subtrees of the whole query plan tree. Based
on this, we can construct the optimal substructure for the
overall cost of the optimized tree. We define the function
d(P;, Ok, P;) as the minimum C(P;, (Oy)) where P; is the
closest predicate to P;. Then the transition function is:

d(P;, Ok, Pj)
= Minyep; b {C(Pj, (Om)) + Sm i} + Cost(P;, (Ok, Pj))
= Miyeb; k),yel0.) 1d(Pjs Om, Py) + Sm.k}

+ Cost(P;, (O, Pj))

where Oy, is the lowest position of P; adhering to Principle
1. Specifically, we use d(P;, O, Pp) to denote the scenario
where no composite predicate exists below Oy during initial-

10 For right leaf nodes, static costs like sequential scans are ignored,
while linear changes, as in index scans, are added to join node costs.

@ Springer

12 Page 120f20

Y. Guo et al.

Algorithm 3: Composite Predicate Placement

Input: Operators O, selected composite predicates P.
Output: Optimal positions £ for composite predicates in P.
1 Initialize D[M][N][M] < MAX_INT;
2 fori <~ 1toM, k < 1to N do
3 ‘ DIi][k][0] < d(P;, Ok, Pp), compute with Eq (3);
4 end
sfori < 1toM, k < 1to N do

6 for j < 1toi —1do

7 cur_min < MAX_INT;

8 back_track < (Qg, Py);

9 form < bjtok—1,y <« 0toj—1do
10 gm, y) < D[jlimlly] + Sm:

11 if g(m, y) < cur_min then

12 cur_min < g(m, y);

13 back_track <= (O, Py);

14 end

15 end

16 DIil[j1lk] <= Cost(P;, (O}, Py)) + cur_min;
17 end

18 end

—

9 Back tracking mingepo, ar) { DIM1[N1[k]} to fill in L.

ization,

d(P;, Ok, Po) = 3_ (1.4 Cost(Oz) + Cost(Pi, (Ok)) (3)

We iterate through both the closest predicate ranging from
Py to P;_1 and the position of P;. This allows us to determine
the minimum costs for all possible scenarios, from which we
then return the smallest value.

The right matrix in Fig. 6 gives an example for the
transition of d(P4, O¢, P») using the state transition func-
tion: There are three choices for m and two choices for
vy, d(P2, 03/04/0s, Py/ Py), if P> involves columns from
T1, T3, and T4. Then, the transition is determined by comput-
ing the minimum one.

Composite predicate placement. In Algorithm 3, we employ
dynamic programming to optimize the placement of the
composite predicates. It first initializes the storage and the
boundary values (Lines 1-4). The core transition phase
adheres to the transition function (Lines 5-18). Back tracking
in Line 17 using Line 13 yields the optimal positions for the
composite predicates.

Complexity analysis. Although Algorithm 3 exhibits a
computational complexity of O(M3N?), methodologies
for its reduction are feasible. By pre-computing S(n) =
>, Cost(Oy), the value of any Sy, x = (S(k) — S(m)) x
Sel(j) can be efficiently computed in constant time. Fur-
thermore, by utilizing additional storage space to eliminate
the variable y, the complexity can be further reduced to
O(M*N?).

@ Springer

6 Experimental results

This section presents an experimental study to evaluate our
system Smart.

Experimental environment. Smart was integrated into Post-
greSQL 14.4 [2]. The experiments were conducted on a
server machine s6.xlarge provided by HuaweiCloud. The
server had 8GB of RAM, 4 v-cores of CPU, and an HDD
Disk, running on Ubuntu 18.04. We utilized the stable version
of MADIib 1.18 [1], which is compatible with PostgreSQL
12.2."" We also employed Scikit-Learn 1.2.2 [29] with Con-
nectorX 0.2.3 [46].

System integration. Database administrators (DBAs) can
activate the proposed three ML modules individually by
adding new configuration parameters to the DBMS, which is
as simple as allowing Nested Loop with enable_nestedloop.
The SQL+ML optimization utility relies on two system
tables: sys_feature and sys_model. ML engineers are respon-
sible for managing the content of sys_model. Once a new ML
model is trained, the ML engineer organizes its name, cat-
egory, and weights/paths, and inserts them into sys_model.
Data analysts manage the content of sys_feature. If a col-
umn has potential for inference, its name and table name
are inserted into sys_feature. The update rule for the statisti-
cal information of each feature follows the standard catalog
update strategies of columns commonly used in DBMS.
sys_model[model_name, model_category, weights/paths]
sys_feature[attribute_name, table_name, min, max]

6.1 SQL+ML benchmarks and baselines

To facilitate a fair comparison of the SQL+ML query pro-
cessing efficiency of Smart with existing baselines, we have
designed five SQL+ML benchmark kits. These benchmark
kits were derived from well-known benchmarks, namely
JOB [31, 39], TPC-H [40, 44], and SSB [11]. The final
benchmark kit was designed based on a real-world scenario.
The SQL+ML query sets include linear regression, logistic
regression, and decision tree models. Table 1 provides an
overview of the benchmark Kkits.

6.1.1 Benchmarks

Datasets. From Table 1, the benchmarks include two real-
world datasets: IMDB [18] and Flight [21]. Additionally,
two synthetic datasets were generated from TPC-H [40] and
SSB [11]. The IMDB dataset is widely used in both DB and
ML fields. The Flight dataset is derived from airport and flight
information. The TPC-H and SSB datasets are generated
using the data generation procedures in the corresponding

T We use PostgreSQL 12.2 instead of 14.4 because MADIib supports
PostgreSQL up to 12.

In-database query optimization on SQL with ML predicates

Page130f20 12

Table 1 Statistics of datasets, model information, and query set characteristics for 5 benchmarks

Dataset Data size #rel Distribution ML model Inferred value #feature Workload #query #table
IMDB 5.1 GB 21 Real-world linear Rating 4 JOB 113 4-17
TPC-H 0.1-30 GB 8 Synthetic Linear Price 5 TPC-H 22 6-12
SSB 10 GB 5 Synthetic Logistic Chosen or not 4 SSB 13 5-6
Flight 0.5 GB 4 Real-world Logistic Is delay 5 Delay 10 4
IMDB 5.1 GB 21 Real-world Decision tree Gross level 6 JOB-DT 113 6-19

benchmark kits, and they have the same structure as the orig-
inal datasets. In particular, the TPC-H dataset scales from
100MB to 30GB, allowing us to explore the scalability of
Smart in various scenarios.

ML model training. The experiments are based on linear mod-
els and decision tree, and the number of features/columns
in ML predicate is shown in Table 1 as #feature. For
the JOB and TPC-H benchmarks, we trained linear regres-
sion models. For the SSB and Flight benchmarks, we trained
logistic regression models. Also, we trained decision tree for
JOB. After loading all datasets into the database, we use the
state-of-the-art machine learning library MADIib to train the
models directly. By keeping data management and model
training entirely within the database, we avoid operations
like data movement and format conversion, which enhances
the reproducibility of our experiments. Features and labels
were selected from multiple tables connected within each
schema. Without applying feature selection or normaliza-
tion, our method is robust and not overly sensitive to specific
column choices. Feature engineering and model tuning were
intentionally not performed, as they are outside the scope of
this work. In the real-world datasets, the inferred column for
the JOB dataset represents the movie rating value and gross
level, while for the Flight dataset, it indicates the flight delay
situation. In the synthetically generated datasets, the TPC-H
inferred column represents the numeric price value, and the
SSB inferred column is a manually added Boolean variable
that has logical relationship with the features. We evaluated
our trained models using two real-world datasets. We apply
an ML predicate of “inferred_rating > 8.0” on IMDB. The
results show a precision of 86.8%, recall of 61.6%, and accu-
racy of 97.3%. We apply an ML predicate of “inferred_delay
= FALSE” on Flight. The results show a precision of 80.2%,
recall of 94.6%, and accuracy of 82.4%. These metrics con-
firm that our models are reasonable. The synthetic datasets
TPCH and SSB allow us to demonstrate the broad applica-
bility of our optimization method across diverse query types
and data characteristics. Although the inference accuracy is
relatively lower on synthetic datasets, they are crucial for
evaluating inference efficiency, which is the primary focus
of this work.

(a) An SQL+ML query example of benchmark Flight

SELECT flights.id, is_delay
FROM Alights, airlines, airports AS start_ap, airports AS dest_ap
WHERE flights.airline = airlines.iata_code
AND flights.origin_airport = start_ap.iata_code
AND flights.destination_airport = dest_ap.iata_code
AND Ir_flight([flights.distance, flights.dep_delay, airlines.airlineid,
start_ap.latitude, dest_ap.longitude]) = False AS is_delay;

Model name: Ir_flight

Model category: logistic regression

Model weights: w =[1.2779, 0.0002, -0.1575,0.021, -0.0015, 0.005]
Inference Function: g(x) = FALSE, if w*x <0

(b) An SQL+ML query example of benchmark IMDB

SELECT t.title AS movie_title, inferred_rating
FROM keyword AS k, movie_info AS mi, movie_keyword AS mk,
title AS t, mi_votes, mi_budget, mi_gross
WHERE k.keyword LIKE '%sequel%' AND mi.info IN ('Bulgaria')
AND t.production_year > 2010
AND Ir_rating([t.production_year, mi_votes.votes,
mi_budget.budget, mi_gross.gross]) > 8.0 AS inferred_rating;

AND .. --(omit join conditions)

Model name: Ir_rating

Model category: linear regression

Model weights: w =[-0.009, -6.0e-4,2.2e-7,0.0211, -0.0035]
Inference Function: f(x) = w*x

(¢) A UDF query example of benchmark IMDB

CREATE FUNCTION infer_rating (x_1 numeric, X_2 numeric,
Xx_3 numeric, x_4 numeric)
RETURNS numeric AS $$
SELECT -0.009 - 6.0e-4*x_1 + 2.2e-7*x_2 + 0.0211*x_3 - 0.0035%x_4;
$$ LANGUAGE SQL;

SELECT t.title AS movie_title, inferred_rating
FROM keyword AS k, movie_info AS mi, movie_keyword AS mk,
title AS t, mi_votes, mi_budget, mi_gross
WHERE k.keyword LIKE '%sequel%' AND mi.info IN ('Bulgaria')
AND t.production_year > 2010
AND infer_rating(t.production_year, mi_votes.votes,
mi_budget.budget, mi_gross.gross) > 8.0 AS inferred_rating;

AND .. --(omit join conditions)

Fig.7 Two SQL+ML example cases and a UDF example case. UDF is
identical to inlined inequality, due to the pull-up strategy of PostgreSQL.
Model parameters are embedded in the function, but Smart manages
them in the system table

@ Springer

12 Page 14 0f 20

Workload. Each SQL+ML query template was adapted from
the corresponding original SQL query template in JOB, TPC-
H, and SSB benchmarks. The adaptations involved two parts:
appending relational tables with features to the FROM clauses
and inserting ML predicates with inference functions into the
WHERE clauses. As an example in Fig. 7, in the query set of
the JOB benchmark, each query selects movies based on their
“title" column. We added rating inference for each selected
movie and filtered the inferred ratings within a specific range,
such as “rating > 8.0." The design of the query sets maintains
the multi-table join requirements of the original JOB queries.
Similarly, the TPC-H and SSB queries include the ML pred-
icates before the aggregation requirements. As the Flight
dataset does not include pre-existing queries, we designed
10 queries that consider the flight delay under the influence
of multiple factors, including 4-way joins. Figure 7 shows an
example.

Metric. To measure the efficiency, we utilized the execution
time obtained from the “Explain Analyze" tool in Post-
greSQL. We executed each SQL+ML query three times and
reported the shortest execution time to mitigate the impact
of cache memory. The generation and optimization overhead
was included in the reported end-to-end times. The additional
planning time added by Smart is minor. For example, Post-
greSQL takes 3006 ms to generate the query plans for 113
JOB queries, while Smart requires only 41 ms in addition.

6.1.2 Baselines

PostgreSQL 12 + MADIib. MADIib [1] is a popular in-DB
ML library that provides a user-friendly interface for infer-
ence functions with well-trained models stored in DB. When
using MADIib to process SQL+ML queries, we modify each
query by adding the model table to the "FROM" clause and
replacing the inference function in ML predicates with the
MADIib function.

PostgreSQLI4 + UDF. Inference functions can be created
with UDFs, aligning with the database design philosophy.
Additionally, the utility of UDFs can only be minimally
optimized by the DB optimizer, such as through pushdown.
Unlike MADIib, creating UDFs is an offline process that does
not impose the requirement for users to design SQL+ML
query templates.

PostgreSQL 14 + ConnectorX + Scikit-Learn. Scikit-Learn
[29] is a popular ML library in Python used for traditional
ML algorithms. ConnectorX [46] is a state-of-the-art data
transformation channel that facilitates the transformation of
relational data from DBMS to ML systems. Hence, we inte-
grate these platforms with PostgreSQL 14.4 to implement the
DB+ML strategy. First, PostgreSQL retrieves tuples using
joins and selections, and then utilizes ConnectorX to fetch
the tuples. ConnectorX enables us to handle result tuples
without exporting them to external storage or reloading them.

@ Springer

Y.Guo et al.
Table 2 End-to-end comparison of Smart and baselines
Workload DB+ML MADIib UDF Smart
JOB(113) 19634.8 s 36424 s 1384.0 s 309.7 s
TPCH(22) — 47823 s 2591.6 s 1521.7 s
SSB(13) — 2800.6 s 1619.7 s 665.9 s
Flight(10) 466.6 s 228.1s 185.6 s 67.6s
DT(113) — 705.1s 1140.0 s 1443 s

Instead, it manages the result tuples in memory, and controls
the data transport to Scikit-Learn for ML predicates process-
ing. However, this baseline has limited processing capability.
If ML predicate is not the final operator in the query plan, the
inferred results need to be transformed back into relational
data and loaded into the DBMS. Unfortunately, ConnectorX
is currently unable to handle this for the DB+ML strategy.

6.2 End-to-end comparison

To compare the efficiency of Smart with the three men-
tioned baselines, we conducted a set of experiments using
above benchmarks. The queries within each benchmark’s
query set are ordered by query ID, then sequentially exe-
cuted using the four different methods. The total execution
time, which is the sum of the individual execution times of
all queries in each benchmark, is then reported. The server
and DB configurations are consistent across all methods.

The experimental results are presented in Table 2. When
comparing the total execution time horizontally, Smart con-
sistently exhibits the highest efficiency. For JOB, Smart
outperforms all three baselines by 67.6x, 12.5x, and 7.4 x,
respectively. For TPC-H and SSB, Smart provides speedups
of 3.1x and 4.2x over MADIib, and 1.7x and 2.4x over
UDF, respectively. In the case of the Flight dataset, Smart
achieves speedups of 6.9x, 3.4x, and 2.7 x compared to the
baselines. Lastly, for JOB-DT, Smart a performance boost
of 4.9x over MADIib and 7.9x over UDF.

Despite ConnectorX reducing the overhead of transferring
data from a relational data model to a dataframe model, the
overall latency still remains relatively high. This set of experi-
ments demonstrates that extending the entire ML pipeline and
using an additional processing flow to complete the ML pred-
icates is disadvantageous. It is preferable to avoid exporting
data from the DBMS and instead integrate the data process-
ing pipeline inside DBMS.

By installing the MADIib library in Postgres for ML func-
tions, SQL+ML query processing can be performed inside
DBMS, eliminating the need for data copying. However,
MADIib still has its own limitations. Firstly, in order to
perform the inference, the DBMS needs to access the inte-
grated interface of MADIib and uses the returned value from

In-database query optimization on SQL with ML predicates

Page150f20 12

=3 2
510
o
i
153
= 1
& 10
10°
BBBSBRBCLEBSZ88884 48488 STSSB8BF 4R BBYBSNTSLE8AR
JOB SQL+M
10°
=3 2
510
o
Q
(9]
Q
» 10!
10°
BEGEER B8RS E T8 IRESLSEEBERNE888EEARISBERRBEBI2LE Y
JOB SQL+
Fig.8 Query to query speed up of Smart on JOB and JOB-DT
10°
102
o
o}
o
[
(9]
Q.
0 10*

10°
8 9211 217 6 19 1 1322 4 16 7 14 5 20121510 3 18
TPC-H queries

Fig.9 Query to query speed up of Smart on TPC-H

the function, which introduces additional overhead. Fur-
thermore, potential type conversions may occur during this
process, resulting in additional execution time. Therefore,
when using UDF to declare inference in SQL+ML queries,
the execution is faster compared to using MADIib.

By moving the ML process from outside the database to
inside the database, we gain the opportunity to utilize spe-
cially designed algorithms for optimizing computation. In
Smart, we exploit the necessary conditions for ML predi-
cates to achieve early data pruning. This involves excluding
tuples that will not yield selected results from the pipeline
as early as possible during the join process. This approach
significantly accelerates the SQL+ML queries.

6.3 Query-by-query comparison

To assess the effectiveness of Smart for individual queries,
we compare the execution times of each query in the JOB,
JOB-DT, and TPC-H experiments for MADIib and Smart.
The results are presented in Figs. 8 and 9, which show the
number of queries that can benefit from Smart across mul-
tiple query templates.

wwwww

We executed queries in JOB and TPC-H separately with
MADIib and Smart. For JOB-DT queries, we use UDF and
Smart, as MADIib lacks a decision tree inference inter-
face for temporal/CTE tables in SQL+ML. We recorded
the execution time using the aforementioned approach. The
speed-up ratio is calculated as SpeedUp = Thaseline/ 7 smart»
where Thaseline 1S the total execution time with MADIib or
UDF and Tspart is the total execution time with Smart.

Out of the 113 evaluated queries in JOB, the fastest query
demonstrated an impressive speed-up of over 1000x, and
more than half of the queries achieved a speed-up of over
10x. In the JOB-DT set, one query achieved a 1000 x speed-
up, and 23 queries exhibited speed-ups exceeding 10x. In
the TPC-H experiment, among the 22 SQL+ML queries in
the TPC-H dataset, the performance of 21 queries improved.
Notably, 8 queries achieving a speed-up greater than 10x,
and 3 queries experienced a speed-up exceeding 100 x. Query
25b and 32b in JOB experienced a slight slowdown, but the
impact was negligible. This can be attributed to the influ-
ence of various factors on the PostgreSQL query optimizer
when generating query plans. As aresult of inference rewrite,
queries with added predicates are pushed down to the scan
operators of the query plan tree by DB optimizer. This leads
to substantial changes in the overall query plan, and then the
cardinality estimation by DB optimizer, due to its relative
inaccuracy, might result in a plan with a slower execution
speed.

The majority of queries experienced improved perfor-
mance after applying Smart. In these queries, the ML
predicates filtered out a significant number of tuples, result-
ing in smaller output tuple results. As a result of this
characteristic, most of the incompletely joined tuples in
Smart are pruned by generated SQL predicates before being
fully joined. Furthermore, some queries produced empty

@ Springer

12 Page 16 0of 20

Y. Guo et al.

4000

3000

2000

MADIib
1000 _g4 UDF
—&— Smart

Execution Time (s)

10~20% 5~10%

1~2%

0.5~1% 0.1~0.2%

ML Predicate Selectivity

Fig. 10 Effects of ML predicate selectivity

results and inference rewrite prunes many tuples, thus sig-
nificantly improving the performance.

Even on uniformly generated data and SQL+ML queries
adapted from the TPC-H query set, Smart can accelerate
queries by minimizing the number of intermediate results
during joins. Owing to the substantial differences in table
sizes within the dataset and the complexity of the queries,
the inference rewrite in this set of experiments did not result
in significant changes to the query plan tree, and as a result,
no queries exhibited a noticeable performance decline. This
also indirectly corroborates the validity of our observations
from the JOB experiments.

From an end-to-end and query-wise experimental stand-
point, Smart effectively optimizes the majority of SQL+ML
queries, leading to significant performance improvements.
Excluding the occasional suboptimal query plans caused by
imprecise cardinality estimation, Smart consistently deliv-
ers speed-ups from 1x to 1000x.

6.4 Selectivity of ML predicate

The optimization efficacy of Smart is significantly influ-
enced by the selectivity of ML predicates in SQL+ML.
We conducted experiments using three different methods on
JOB to explore the trends in execution time with varying
selectivity. We maintained the same hardware and Post-
greSQL configuration while modifying the ML predicates
in SQL+ML to obtain various selectivity values.

The results are presented in Fig. 10. The horizontal axis
represents different ranges of the selectivity of ML pred-
icates. As the selectivity of ML predicate decreases, the
execution time of the MADIib group exhibits minor fluc-
tuations within a narrow range. This behavior arises because
the inference inequality is consistently positioned at the top
of the query plan tree, and changes in ML predicate do not
significantly impact the main portion of the query execution.
Conversely, the UDF strategy demonstrates a slight decline
in outcomes as the ML predicates are pushed down, resulting
in the processing of fewer tuples by above operators when
the ML predicate selectivity decreases. The execution time of
Smart decreases significantly as the selectivity of ML pred-

@ Springer

Table 3 Execution time (ms) of some JOB queries to show the perfor-
mance of atomic predicates and composite predicates

JOB query Tc 13b l4c 28b 30c
UDF 2067.0 805.9 749.7 7060.0 1283.5
Atomic preds 797.2 512.9 630.0 2049.8 823.5
Atomic+comp 238.6 389.7 318.2 934.2 297.7

icate decreases, eventually approaching zero when the label
selectivity approaches zero. This phenomenon is closely tied
to the utilization of the ML predicate. In MADIib, the ML
predicate is solely employed as a comparison value, and alter-
ing the ML predicate does not affect the number of tuples to
be processed. The UDF strategy exhibits similar behavior, but
operators above the ML predicates benefit from reduced row
processing when the selectivity of ML predicate decreases.
In contrast, Smart fully capitalizes on the ML predicate
by introducing a series of SQL predicates in the query plan
tree to expedite query execution. Consequently, as the label
selectivity decreases, Smart becomes increasingly efficient,
resulting in reduced execution time. In real-world scenarios,
users often require query results within specific ranges rather
than retrieving all the tuples. This characteristic aligns with
the performance advantage of Smart.

As selectivity increases, the optimization effect gradu-
ally diminishes, and the performance approaches that of the
baseline. However, our method does not introduce additional
overhead at higher selectivities such as above 20%. When
selectivity is high, most of the data meets the ML predicate
conditions. This leaves little opportunity for data pruning
before the join, resulting in a smaller optimization. The third
technique proposed in our paper, the cost-optimal placement
strategy, addresses this challenge by dynamically adjusting
the positions of atomic and composite predicates. Based on
the cost model, if any additional SQL predicate has less prun-
ing effect but introduces overhead, it will be moved up in the
execution plan tree until merged with the super predicate to
avoid redundant calculations. For instance, when selectivity
reaches 100%, all generated SQL predicates will disappear
since they are moved up and merged into the original ML
predicate. Then, the final execution plan tree generated by
our method is identical to the original plan tree, ensuring no
additional overhead.

6.5 Ablation study

To examine the individual impact of two kinds of predi-
cates and three proposed optimization techniques on query
efficiency, we conducted ablation experiments on the JOB.
We evaluate the importance of both atomic predicates and
composite predicates, with the comparison results of some
queries listed in Table 3. Then, to evaluate the three proposed

In-database query optimization on SQL with ML predicates

Page170f20 12

2135.7

m 2000 @z without Tech2 or Tech3

1S i with Tech2, without Tech3
) 1500 B with both Tech2 and Tech3
£

'_

c 1000

e

o}

3

g 3271 3029 2904
]

O . .
without Techl with Techl

Fig. 11 Ablation study of Smart with JOB

techniques, we split the experiments into two groups depend-
ing on whether inference rewrite was used. Each group
includes three scenarios: without using progressive inference
and cost-optimal inference, using progressive inference with-
out cost-optimal inference, and utilizing both of them. We
report the total running time of the SQL+ML query set on
JOB. The analyzed results are presented in Fig. 11.

The findings from both Table 3 and Fig. 11 reveal that
atomic predicates employed by inference rewrite plays a sig-
nificant role in enhancing overall query performance. How-
ever, the performance improvement resulting from composite
predicates from progressive inference and cost-optimal infer-
ence becomes less pronounced after the application of atomic
predicates from inference rewrite. This can be attributed to
the fact that atomic predicates and composite predicates con-
tain tuples prune overlapping from Fig. 11. Meanwhile, as
shown in Table 3, composite predicates are vital that they
further reduce the execution time significantly. It is note-
worthy that inference rewrite has the potential to introduce
changes to the plan tree structure due to its impact on the
query optimizer. These changes can have either positive or
negative effects on query performance. In contrast, progres-
sive inference and cost-optimal inference do not influence
the structure.

Overall, our ablation experiments demonstrate that atomic
predicates with inference rewrite bring noticeable perfor-
mance improvements, and the composite predicates with
progressive inference and cost-optimal inference can further
enhance performance.

6.6 Scalability

To investigate the trends of benefits when I/O cost becomes
the bottleneck factor, we varied the sizes of the dataset and
executed the SQL+ML workloads of TPC-H. The results
are depicted in Fig. 12, where the orange line represents
the baseline running the UDF strategy, and the blue line
represents Smart with inference rewrite and progressive
inference only. The horizontal axis represents the dataset size,
ranging from 100MB to 30GB. The vertical axis represents
the execution time of each SQL+ML query with significant
1/O overhead, measured in seconds.

Our findings indicate that approximately two-third of the
queries exhibited a significant performance improvement,
while the remaining one-third did not demonstrate much
improvement.

As the data set size increased, Smart effectively reduced
the number of tuples in the intermediate results through infer-
ence rewrite and progressive inference thereby decreasing
the need for subsequent operators, e.g. index_scan, and
consequently significantly reducing I/O overhead. This is
reflected by the shallow slope of the blue line in the first row
of Fig. 12. Conversely, in queries where inference rewrite and
progressive inference did not provide effective tuples prun-
ing, the slope of the blue line in the third rows of Fig. 12
resembled that of the orange line.

8.sql 19.sql 17.sql 21.sql 9.sql 13.sql 2.sql
asol By oSl g [A7sal], [2bsal [[9sal] [A3sal]y [2sdl |
—— UDF Va h A o A
300{ — Smart o 801 /,/' 100 7300 s _*—*500 \ #8001 " 2001 %
o o e o
150 a0 2 50 150 v _.250 V. 4001 A e1007 S
o~ o—* o o e /
. / R o~ a® o0 _gle— o
("2}
=~ 1.sql 4.sql 11.sql 7.sql 6.sql 12.sql 20.sql
o o002 Jagg S s [Al gy [TSHL Jugy [Esal Jug [B2sdl], L 20sdl]
£ S P /
= 6001 " 600, A 300 /2001 " » 300 _*300 o 2k] .
_ — e]
S 300 “ /7 300 /7 150 7 /" 100 o 150 e 150 P " ./'/
5 o0 Lo 9 e N e - »
o ~o-* I Zo o™ Rd - o o=~
9]
X 10.sql 14.sql 15.sql 3.sql 5.sql 18.sql 22.sql
S s/ A so] 300] SIS EE N Y L ey a] a_|
/e] °)
300 4300 e 200 /:;3/ 300 //" 300 /:4 600 1 ,‘/f
o~ =) o
1500 ¥ 150 A7 100 7 1so{ &0 1sof 7 300 7 of
o i o—¢' o’ ° o” & o -~ o/'/ 0/9
0.1 10 20 30 0.1 10 20 30 0.1 10 20 30 0.1 10 20 30 0.1 10 20 30 0.1 10 20 30 0.1 10 20 30

Dataset Size (GB)

Fig. 12 Scalability on TPC-H. Queries are ordered by the speedup

@ Springer

12 Page 18 of 20

Y. Guo et al.

In summary, Smart demonstrated comparable or superior
scalability performance compared to the baseline, outper-
forming the baseline in most cases.

7 Related works

In-DB ML inference. Inference (or prediction) is becoming
an official statement of extended SQL in many DBMS prod-
ucts, such as Redshift [5], Big Query ML [13], SQL Server
ML [36], MADIib [9, 12, 15, 45, 50] on PostgreSQL, and
Spark MLIib [35, 42]. Recently, openGauss [32, 37, 52]
designs predict by statement as well, to support in-DB ML
inference. However, the in-DB optimization for inference
predicate has not been widely studied.

Inference on ML platform. The bottleneck comes from ML
inference [19] when processing SQL+ML. Clipper [10],
Willump [25, 26] and PRETZEL [30] provide inference opti-
mization methods for ML systems, but none of them works
for DBMS queries with inference predicates. Raven [23]
designs an intermediate representation for prediction queries,
then separates operators into DB part and ML part with seri-
ous cross-optimizations [38]. The DB parts are compiled as
anew SQL to process by DBMS, and the ML parts are exe-
cuted with ML systems. For unstructured data like images
and videos, PP [34], CORE [49] and FiGO [6] optimize
inferred labels in video DBMS specifically. Among them, PP
generates simpler predicates from models as proxy models to
rewrite queries. A recent work, ConnectorX [46] accelerates
the data loading from DBMS to ML systems. However, how
to transfer inferred results back to DBMS to support complex
applications is omitted. Thus, existing DB+ML strategies
suffer from data copy and low performance, and the opti-
mization techniques can not adapt to in-DB inference.
In-DB ML training. In-DB training acceleration has been
studied [14,48].Lara[28] and LaraDB [17], LevelHeaded [3],
and Froid [41] explored how to co-optimize linear alge-
bra and relational algebra for model training. FAQ-AI [24]
represents model training tasks as additive inequalities in
SQL, then rewrites the complex input query into multiple
simple sub-queries. However, they cannot be used for infer-
ence [7] because during training, complete computations are
performed iteratively for each tuple, while inference com-
putes only once and can terminate early based on query
conditions.

8 Conclusion

We proposed Smart, an in-DB query optimization for
SQL+ML queries with ML predicates. The main idea is
employing SQL predicates to prune irrelevant tuples. To this
end, Smart firstly generates tight and valid SQL predicates

@ Springer

for logical optimization. Then Smart selects proper SQL
predicates to prune irrelevant tuples. Moreover, Smart uses
a cost model to optimize the query plan with selected SQL
predicates. We implement Smart into PostgreSQL, which
outperforms baselines on all four benchmarks.

Acknowledgements This paper was supported by National Key R&D
Program of China (2023 YFB4503600), National Science and Technol-
ogy Major Project of China (CJGJZD20230724093403007), NSF of
China (61925205, 62232009, 62102215), Zhongguancun Lab, Huaweli,
and Beijing National Research Center for Information Science and
Technology (BNRist). Guoliang Li is the corresponding author.

References

1. 1.18.0, M.: Madlib 1.18.0 documentation (2023). https://madlib.
apache.org/docs/v1.18.0/index.html

2. 14.4, P Postgresql 14.4 release notes (2023). https://www.
postgresql.org/docs/release/14.4/

3. Aberger, C.R., Lamb, A., Olukotun, K., Ré, C.: Levelheaded: A
unified engine for business intelligence and linear algebra querying.
In: 34th IEEE international conference on data engineering, ICDE
2018, Paris, France, April 16-19 pp. 449-460. IEEE Computer
Society (2018). https://doi.org/10.1109/ICDE.2018.00048

4. Agrawal, A., Chatterjee, R., Curino, C., Floratou, A., Godwal, N.,
Interlandi, M., Jindal, A., Karanasos, K., Krishnan, S., Kroth, B.,
Leeka, J., Park, K., Patel, H., Poppe, O., Psallidas, F., Ramakrish-
nan, R., Roy, A., Saur, K., Sen, R., Weimer, M., Wright, T., Zhu,
Y.: Cloudy with high chance of DBMS: a 10-year prediction for
enterprise-grade ML. In: 10th conference on innovative data sys-
tems research, CIDR 2020, Amsterdam, The Netherlands, January
12-15 Online Proceedings. www.cidrdb.org (2020). http://cidrdb.
org/cidr2020/papers/p8-agrawal-cidr20.pdf

5. Amazon.com: Redshift ml (2023). https://aws.amazon.com/
redshift/features/redshift-ml/

6. Cao, J., Sarkar, K., Hadidi, R., Arulraj, J., Kim, H.: Figo: Fine-
grained query optimization in video analytics. In: Ives, Z.G.,
Bonifati, A., Abbadi, A.E., (eds.) SIGMOD ’22: International con-
ference on management of data, Philadelphia, PA, USA, June 12
- 17 pp. 559-572. ACM (2022). https://doi.org/10.1145/3514221.
3517857

7. Chai, C., Wang, J., Luo, Y., Niu, Z., Li, G.: Data management for
machine learning: a survey. IEEE Trans. Knowl. Data Eng. 35(5),
46464667 (2023). https://doi.org/10.1109/TKDE.2022.3148237

8. Chen, L., Kumar, A., Naughton, J.F,, Patel, J.M.: Towards linear
algebra over normalized data. Proc. VLDB Endow. 10(11), 1214—
1225 (2017)

9. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton,
C.: MAD skills: new analysis practices for big data. Proc.
VLDB Endow. 2(2), 1481-1492 (2009). https://doi.org/10.14778/
1687553.1687576

10. Crankshaw, D., Wang, X., Zhou, G., Franklin, M.J., Gonzalez, J.E.,
Stoica, L.: Clipper: A low-latency online prediction serving sys-
tem. In: Akella, A., Howell, J., (eds.) 14th USENIX symposium
on networked systems design and implementation, NSDI 2017,
Boston, MA, USA, March 27-29 pp. 613-627. USENIX Associa-
tion (2017). https://www.usenix.org/conference/nsdil7/technical-
sessions/presentation/crankshaw

11. eyalroz: Ssb kit (2023). https://github.com/eyalroz/ssb-dbgen

12. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a unified architec-
ture for in-rdbms analytics. In: Candan, K.S., Chen, Y., Snodgrass,
R.T., Gravano, L., Fuxman, A., (eds.) Proceedings of the ACM
SIGMOD international conference on management of data, SIG-

https://madlib.apache.org/docs/v1.18.0/index.html
https://madlib.apache.org/docs/v1.18.0/index.html
https://www.postgresql.org/docs/release/14.4/
https://www.postgresql.org/docs/release/14.4/
https://doi.org/10.1109/ICDE.2018.00048
http://cidrdb.org/cidr2020/papers/p8-agrawal-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p8-agrawal-cidr20.pdf
https://aws.amazon.com/redshift/features/redshift-ml/
https://aws.amazon.com/redshift/features/redshift-ml/
https://doi.org/10.1145/3514221.3517857
https://doi.org/10.1145/3514221.3517857
https://doi.org/10.1109/TKDE.2022.3148237
https://doi.org/10.14778/1687553.1687576
https://doi.org/10.14778/1687553.1687576
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://github.com/eyalroz/ssb-dbgen

In-database query optimization on SQL with ML predicates

Page190f20 12

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

MOD 2012, Scottsdale, AZ, USA, May 20-24 pp. 325-336. ACM
(2012). https://doi.org/10.1145/2213836.2213874

. Google: Big query ml (2023). https://cloud.google.com/bigquery/

docs/inference-overview

Guo, Y., Zhang, Z., Jiang, J., Wu, W., Zhang, C., Cui, B., Li, J.:
Model averaging in distributed machine learning: a case study with
apache spark. VLDB J. 30(4), 693-712 (2021). https://doi.org/10.
1007/s00778-021-00664-7

. Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin,

E., Gorajek, A., Ng, K.S., Welton, C., Feng, X., Li, K., Kumar,
A.: The madlib analytics library or MAD skills, the SQL. Proc.
VLDB Endow. 5(12), 1700-1711 (2012). https://doi.org/10.14778/
2367502.2367510

Hu, X.,Liu, Y., Xiu, H., Agarwal, PX., Panigrahi, D., Roy, S., Yang,
J.: Selectivity functions of range queries are learnable. In: Ives,
7.G., Bonifati, A., Abbadi, A.E., (eds.) SIGMOD ’22: international
conference on management of data, Philadelphia, PA, USA, June 12
- 17 pp. 959-972. ACM (2022). https://doi.org/10.1145/3514221.
3517896

Hutchison, D., Howe, B., Suciu, D.: Laradb: A minimalist ker-
nel for linear and relational algebra computation. In: Afrati, EN.,
Sroka, J., (eds.) Proceedings of the 4th ACM SIGMOD work-
shop on algorithms and systems for mapreduce and beyond,
BeyondMR @SIGMOD 2017, Chicago, IL, USA, May 19 pp. 2:1-
2:10. ACM (2017). https://doi.org/10.1145/3070607.3070608
IMDB: The csv files of imdb dataset (2023). http://homepages.cwi.
nl/~boncz/job/imdb.tgz

Jassy, A.: Aws re:invent 2018 keynote (2023). https://www.
youtube.com/watch?v=Z0IkOnW640A &t=5316s

Jr., JER., Pépin, J.L., Goeuriot, L., Amer-Yahia, S.: An exten-
sive investigation of machine learning techniques for sleep apnea
screening. In: d’Aquin, M., Dietze, S., Hauff, C., Curry, E.,
Cudré-Mauroux, P., (eds.) CIKM ’20: The 29th ACM international
conference on information and knowledge management, virtual
event, Ireland, October 19-23 pp. 2709-2716. ACM (2020). https://
doi.org/10.1145/3340531.3412686

Kaggle: Flight dataset (2023). https://www.kaggle.com/usdot/
flight-delays

Kaggle: State of data science and machine learning 2021 (2023).
https://www.kaggle.com/kaggle-survey-2021

Karanasos, K., Interlandi, M., Psallidas, F., Sen, R., Park, K., Popi-
vanov, 1., Xin, D., Nakandala, S., Krishnan, S., Weimer, M., Yu,
Y., Ramakrishnan, R., Curino, C.: extending relational query pro-
cessing with ML inference. In: 10th conference on innovative data
systems research, CIDR 2020, Amsterdam, The Netherlands, Jan-
uary 12-15 Online Proceedings. www.cidrdb.org (2020). http:/
cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf

Khamis, M.A., Curtin, R.R., Moseley, B., Ngo, H.Q., Nguyen, X.,
Olteanu, D., Schleich, M.: Functional aggregate queries with addi-
tive inequalities. ACM Trans. Database Syst. 45(4), 17:1-17:41
(2020). https://doi.org/10.1145/3426865

Kraft, P, Kang, D., Narayanan, D., Palkar, S., Bailis, P., Zaharia,
M.: A demonstration of willump: a statistically-aware end-to-end
optimizer for machine learning inference. Proc. VLDB Endow.
13(12), 2833-2836 (2020). https://doi.org/10.14778/3415478.
3415487

Kraft, P, Kang, D., Narayanan, D., Palkar, S., Bailis, P., Zaharia,
M.: Willump: A statistically-aware end-to-end optimizer for
machine learning inference. In: Dhillon, I.S., Papailiopoulos, D.S.,
Sze, V., (eds.) Proceedings of Machine Learning and Systems 2020,
MLSys 2020, Austin, TX, USA, March 2-4. mlsys.org (2020).
https://proceedings.mlsys.org/book/297.pdf

Kumar, A., Naughton, J.F., Patel, J.M.: Learning generalized linear
models over normalized data. In: Sellis, T.K., Davidson, S.B., Ives,
Z.G., (eds.) Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Aus-

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44,
45.

tralia, May 31 - June 4 pp. 1969-1984. ACM (2015). https://doi.
org/10.1145/2723372.2723713

Kunft, A., Katsifodimos, A., Schelter, S., Bref3, S., Rabl, T., Markl,
V.: Anintermediate representation for optimizing machine learning
pipelines. Proc. VLDB Endow. 12(11), 1553-1567 (2019). https://
doi.org/10.14778/3342263.3342633

scikit learn: scikit-learn 1.2.2 (2023). https://scikit-learn.org/1.2/
Lee, Y., Scolari, A., Chun, B., Santambrogio, M.D., Weimer, M.,
Interlandi, M.: PRETZEL.: opening the black box of machine learn-
ing prediction serving systems. In: Arpaci-Dusseau, A.C., Voelker,
G., (eds.) 13th USENIX symposium on operating systems design
and implementation, OSDI 2018, Carlsbad, CA, USA, October 8-
10 pp. 611-626. USENIX Association (2018). https://www.usenix.
org/conference/osdil8/presentation/lee

Leis, V., Gubichev, A., Mirchev, A., Boncz, P.A., Kemper, A., Neu-
mann, T.: How good are query optimizers, really? Proc. VLDB
Endow. 9(3), 204-215 (2015). https://doi.org/10.14778/2850583.
2850594

Li, G., Zhou, X., Sun, J., Yu, X,, Han, Y., Jin, L., Li, W,,
Wang, T., Li, S.: opengauss: an autonomous database system.
Proc. VLDB Endow. 14(12), 3028-3041 (2021). https://doi.org/
10.14778/3476311.3476380

Li, S., Chen, L., Kumar, A.: Enabling and optimizing non-linear
feature interactions in factorized linear algebra. In: Boncz, PA.,
Manegold, S., Ailamaki, A., Deshpande, A., Kraska, T., (eds.) Pro-
ceedings of the 2019 international conference on management of
data, SIGMOD Conference, Amsterdam, The Netherlands, June
30 - July 5 pp. 1571-1588. ACM (2019). https://doi.org/10.1145/
3299869.3319878

Lu, Y., Chowdhery, A., Kandula, S., Chaudhuri, S.: Accelerat-
ing machine learning inference with probabilistic predicates. In:
Das, G., Jermaine, C.M., Bernstein, P.A., (eds.) Proceedings of the
2018 international conference on management of data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15 pp. 1493-1508.
ACM (2018). https://doi.org/10.1145/3183713.3183751

Meng, X., Bradley, J.K., Yavuz, B., Sparks, E.R., Venkataraman,
S., Liu, D., Freeman, J., Tsai, D.B., Amde, M., Owen, S., Xin, D.,
Xin, R., Franklin, M.J., Zadeh, R., Zaharia, M., Talwalkar, A.: Mllib
Machine learning in apache spark. J. Mach. Learn. Res. 17(34), 1-7
(2016)

Microsoft: Sql server ml (2023). https://learn.microsoft.com/en-
us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver16
openGauss: Native db4ai engine (2023). https://docs.opengauss.
org/en/docs/5.0.0/docs/ AlFeatureGuide/native-db4ai-engine.
html

Park, K., Saur, K., Banda, D., Sen, R., Interlandi, M., Karanasos, K.:
End-to-end optimization of machine learning prediction queries.
In: Ives, Z.G., Bonifati, A., Abbadi, A.E., (eds.) SIGMOD ’22:
international conference on management of data, Philadelphia, PA,
USA, June 12 — 17 pp. 587-601. ACM (2022). https://doi.org/10.
1145/3514221.3526141

Rahn, G.: Job kit (2023). https://github.com/gregrahn/join-order-
benchmark

Rahn, G.: Tpe-h kit (2023). https://github.com/gregrahn/tpch-kit
Ramachandra, K., Park, K., Emani, K.V., Halverson, A., Galindo-
Legaria, C.A., Cunningham, C.: Froid: optimization of imperative
programs in a relational database. Proc. VLDB Endow. 11(4), 432—
444 (2017). https://doi.org/10.1145/3186728.3164140

Spark, A.: Mllib (2023). https://spark.apache.org/docs/latest/ml-
pipeline.html#estimators

SQLFlow: Sqlflow: extends sql to support ai (2023). https://sql-
machine-learning.github.io

TPC: Tpc-h (2023). https://www.tpc.org/tpch/defaultS.asp

Wang, D.Z., Franklin, M.J., Garofalakis, M.N., Hellerstein, J.M.,
Wick, M.L.: Hybrid in-database inference for declarative infor-
mation extraction. In: Sellis, T.K., Miller, R.J., Kementsietsidis,

@ Springer

https://doi.org/10.1145/2213836.2213874
https://cloud.google.com/bigquery/docs/inference-overview
https://cloud.google.com/bigquery/docs/inference-overview
https://doi.org/10.1007/s00778-021-00664-7
https://doi.org/10.1007/s00778-021-00664-7
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.1145/3514221.3517896
https://doi.org/10.1145/3514221.3517896
https://doi.org/10.1145/3070607.3070608
http://homepages.cwi.nl/~boncz/job/imdb.tgz
http://homepages.cwi.nl/~boncz/job/imdb.tgz
https://www.youtube.com/watch?v=ZOIkOnW640A&t=5316s
https://www.youtube.com/watch?v=ZOIkOnW640A&t=5316s
https://doi.org/10.1145/3340531.3412686
https://doi.org/10.1145/3340531.3412686
https://www.kaggle.com/usdot/flight-delays
https://www.kaggle.com/usdot/flight-delays
https://www.kaggle.com/kaggle-survey-2021
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
https://doi.org/10.1145/3426865
https://doi.org/10.14778/3415478.3415487
https://doi.org/10.14778/3415478.3415487
https://proceedings.mlsys.org/book/297.pdf
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.14778/3342263.3342633
https://doi.org/10.14778/3342263.3342633
https://scikit-learn.org/1.2/
https://www.usenix.org/conference/osdi18/presentation/lee
https://www.usenix.org/conference/osdi18/presentation/lee
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.1145/3299869.3319878
https://doi.org/10.1145/3299869.3319878
https://doi.org/10.1145/3183713.3183751
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver16
https://docs.opengauss.org/en/docs/5.0.0/docs/AIFeatureGuide/native-db4ai-engine.html
https://docs.opengauss.org/en/docs/5.0.0/docs/AIFeatureGuide/native-db4ai-engine.html
https://docs.opengauss.org/en/docs/5.0.0/docs/AIFeatureGuide/native-db4ai-engine.html
https://doi.org/10.1145/3514221.3526141
https://doi.org/10.1145/3514221.3526141
https://github.com/gregrahn/join-order-benchmark
https://github.com/gregrahn/join-order-benchmark
https://github.com/gregrahn/tpch-kit
https://doi.org/10.1145/3186728.3164140
https://spark.apache.org/docs/latest/ml-pipeline.html#estimators
https://spark.apache.org/docs/latest/ml-pipeline.html#estimators
https://sql-machine-learning.github.io
https://sql-machine-learning.github.io
https://www.tpc.org/tpch/default5.asp

12

Page 20 of 20

Y. Guo et al.

46.

47.

48.

49.

A., Velegrakis, Y., (eds.) In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12—16 pp. 517-528. ACM (2011). https://doi.
org/10.1145/1989323.1989378

Wang, X., Wu, W., Wu, J., Chen, Y., Zrymiak, N., Qu, C., Flokas, L.,
Chow, G., Wang, J., Wang, T., Wu, E., Zhou, Q.: Connectorx: accel-
erating data loading from databases to dataframes. Proc. VLDB
Endow. 15(11), 2994-3003 (2022)

Wu, Y., Lentz, M., Zhuo, D., Lu, Y.: Serving and optimizing
machine learning workflows on heterogeneous infrastructures.
Proc. VLDB Endow. 16(3), 406-419 (2022)

Xu, L., Qiu, S., Yuan, B., Jiang, J., Renggli, C., Gan, S., Kara, K., Li,
G.,Liu, J., Wu, W,, Ye, J., Zhang, C.: In-database machine learning
with corgipile: stochastic gradient descent without full data shuffle.
In: Ives, Z.G., Bonifati, A., Abbadi, A.E., (eds.) SIGMOD ’22:
international conference on management of data, Philadelphia, PA,
USA, June 12 - -17, pp. 1286-1300. ACM (2022). https://doi.org/
10.1145/3514221.3526150

Yang, Z., Wang, Z., Huang, Y., Lu, Y., Li, C., Wang, X.S.: Opti-
mizing machine learning inference queries with correlative proxy
models. Proc. VLDB Endow. 15(10), 2032-2044 (2022)

@ Springer

50.

51.

52.

Zhang, Y., Kumar, A., McQuillan, F.,, Jayaram, N., Kak, N.,
Khanna, E., Kislal, O., Valdano, D.: Tech report of distributed deep
learning on data systems: a comparative analysis of approaches.
Tech. rep., Pivotal (now VMware) (2021). https://adalabucsd.
github.io/papers/TR_2021_Cerebro-DS.pdf

Zhou, X., Chai, C., Li, G., Sun, J.: Database meets artificial intelli-
gence: a survey. IEEE Trans. Knowl. Data Eng. 34(3), 1096-1116
(2022). https://doi.org/10.1109/TKDE.2020.2994641

Zhou, X., Jin, L., Sun, J., Zhao, X., Yu, X., Li, S., Wang, T.,
Li, K., Liu, L.: Dbmind: a self-driving platform in opengauss.
Proc. VLDB Endow. 14(12), 2743-2746 (2021). https://doi.org/
10.14778/3476311.3476334

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

https://doi.org/10.1145/1989323.1989378
https://doi.org/10.1145/1989323.1989378
https://doi.org/10.1145/3514221.3526150
https://doi.org/10.1145/3514221.3526150
https://adalabucsd.github.io/papers/TR_2021_Cerebro-DS.pdf
https://adalabucsd.github.io/papers/TR_2021_Cerebro-DS.pdf
https://doi.org/10.1109/TKDE.2020.2994641
https://doi.org/10.14778/3476311.3476334
https://doi.org/10.14778/3476311.3476334

	In-database query optimization on SQL with ML predicates
	Abstract
	1 Introduction
	2 System framework
	3 SQL predicate generation
	3.1 Preliminary
	3.2 Atomic predicate generation
	3.3 Composite predicate generation
	3.4 Inference rewrite

	4 Progressive inference for composite predicates
	4.1 Composite predicate correlation
	4.2 Composite predicate selection

	5 Cost-optimal inference for composite predicates placement
	5.1 Cost model
	5.2 Composite predicate placement

	6 Experimental results
	6.1 SQL+ML benchmarks and baselines
	6.1.1 Benchmarks
	6.1.2 Baselines

	6.2 End-to-end comparison
	6.3 Query-by-query comparison
	6.4 Selectivity of ML predicate
	6.5 Ablation study
	6.6 Scalability

	7 Related works
	8 Conclusion
	Acknowledgements
	References

