IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2022 1

AutoView: An Autonomous Materialized View
Management System with Encoder-Reducer

Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun

Abstract—Materialized views (MVs) can significantly optimize the query processing in databases. However, it is hard to generate MVs for
ordinary users because it relies on background knowledge, and existing methods rely on DBAs to generate and maintain MVs. However, DBAs
cannot handle large-scale databases, especially cloud databases that have millions of database instances and support millions of users. Thus it

calls for an autonomous MV management system. In this paper, we propose an autonomous materialized view management system, AutoView.

It analyzes query workloads, estimates the costs and benefits of materializing queries as views, and selects MVs to maximize the benefit within a

space budget. We propose a serialization and encoding method that can encode the features of both queries and views into vectors. Then we

design a sequence-to-sequence model, Encoder-Reducer, to estimate MVs’ cost/benefit by taking the encoding vectors as input. Next, we propose

a deep reinforcement learning model to select high-quality MVs, which enriches the state representation with Encoder-Reducer’s output.

Experimental results show that our method outperforms existing studies in terms of MV selection quality.

Index Terms—materialized views, database, deep learning, deep reinforcement learning.

1 INTRODUCTION

ATERIALIZED views (MVs) are very important in DBMS
M that utilize views to improve the query performance based
on the space-for-time trade-off principle. Specifically for online
analytical processing (OLAP), many queries share equivalent
sub-queries and there are many redundant computations among
these queries. MVs can alleviate this problem by utilizing views
to avoid such redundant computations.

However, it is hard to automatically generate MVs for ordi-
nary users, because it relies on background knowledge. Existing
methods rely on DBAs to generate and maintain MVs. How-
ever, DBAs cannot handle large-scale databases, especially cloud
databases that have millions of database instances and support
millions of users. Therefore, it calls for an autonomous MVs
management system, which, given a query workload, selects
potential queries (subqueries) as views and uses the views to
answer subsequent queries [35], [38]], [43], [44]].

MV management systems have four main modules. (1) MV
candidate generation. It analyzes the query workload, selects
common sub-queries, and takes them as candidates to generate
MVs. (2) MV Cost/Benefit estimation. It estimates the cost and
benefit of materializing subqueries as views, where the cost
includes the space/time overhead and the benefit is the saved
execution time using the view to optimize queries. (3) MV
selection. It selects high-quality MV candidates to generate MVs
based on the estimation model, aiming to maximize the benefit
within a given cost budget. (4) MV-aware query rewriting. Given
a new query, it selects appropriate views and rewrites the query
based on the selected views. There are several challenges in these
four modules. First, MV selection relies on benefit estimation of
using a view to optimize a query, and existing methods [[1f], [2],
(81, [11], 16f], [17], [36], [41] do not consider the complicated

e Y Han, G. Li, H Yuan and J Sun were with the Department of
Computer Science,Tsinghua University, Beijing, China. Guoliang Li is
the corresponding author. { han-y19@mails. liguoliang@,yht16@mails.,sun-
Jjl6@mails.} tsinghua.edu.cn

Manuscript received Feb. 28, 2021; revised Jan. 22, 2022; accepted Mar. 19 2022.

effect of views on queries and cannot capture the correlation
between views and queries. Second, traditional MV selection
methods model it as the knapsack problem and use greedy
algorithms to choose which MVs to materialize. However, the
knapsack problem relies highly on the estimation model and
cannot find high-quality views. Third, MV rewriting also relies
on the estimation model, but existing models depend on the cost
model of optimizers and cannot effectively estimate the cost and
benefit of using an MV to answer a query.

To address these challenges, we propose an end-to-end au-
tonomous MV management system, AutoView. It first analyzes
the query workloads, extracts common subqueries, and selects
the subqueries with high frequency as MV candidates. Then it
estimates the benefits of MV candidates and selects the candi-
dates with the highest benefits as MVs. We propose a benefit/cost
estimation model to estimate MV candidates. The estimation
model serializes, encodes, and estimates queries and views. A
Recurrent Neural Network (RNN) model, Encoder-Reducer, is
designed to embed queries and views as embedding vectors and
predict the benefit of views. In Encoder-Reducer, the encoder
encodes a query into a semantic vector, and the reducer reduces
views from a query and predicts the benefit. Next, to effectively
select the MVs, we propose a reinforcement learning (RL) model,
Encoder-Reducer Double Deep Q-learning Network (ERDDQN),
to select MVs. Finally, for MV rewriting, we use the ERDDQN
model to select MVs to rewrite queries.

Contributions. We make the following contributions.

(1) We propose an autonomous materialized view management
system, AutoView, with deep reinforcement learning.

(2) We design Encoder-Reducer to estimate the cost and benefit
of using MVs to answer a query. We propose a serialization and
encoding method to encode query’s features.

(3) We propose a reinforcement model to select MVs for
materialization, and integrate the vectors outputted by the
Encoder-Reducer model into the model.

(4) Our experimental results on real datasets showed that our
method significantly outperformed existing solutions.

I . .
| Database Schema title AS t | q1 q2 qs Queries |
! q movie_companies AS mc | |
[movie_keyword] i - , -
: . moweﬁke Lot company_type AS ct | 7|Tt.t|tle 7|Tt.t|tle 7|Tt title :
| id id | info_type AS it | M N |
. mv_id movie_info_idx AS mi_idx! !
| kw_id movie_info AS mi | | P _/ H
: D _ movie_keyword AS mk | |U nfo 'bottom 10, - :
| Keyword AS k | b |hfo top 250" d pde mfo '‘top 250 !
! id | d d” year LIK 'Ysequel%' |
! o i I EEN 2005 AND 2010 Pdn ear >2005 I
[mv_id id [[
! !;pr'd title I\ |
| ! dnyear | T T T T T T T T T T T T T T T T T T ST T T T T
| pan_y : : ‘/U].‘\ I/U2I ' Views :
| ALEHERE S | Execution time of different MV selection plans. | 7va d \7-‘- info 7-(- info, |
: ﬁv id a : Query Origin With v; | With vy | With vg | With vy, v3 : cpy:id mv ',d |- mv_id, :
| P P cpy._id I 10.67ms | 4.61ms | 139.79ms | 8.37ms 3.28ms I X! M.mlnfo B .N'mlnfo I
|| A cpy_tp_id = 0.39ms | 0.26ms | 130.08ms X X : |/ fo \ top 250' i
1| kind . - - 1 nd info X 'top X
\ : q3 169.12ms X 230.67ms | 167.14ms X | |
: || size X 111MB 103MB 43MB 154MB | 1
)

Fig. 1. MV selection example.

Q1 {v1,03}
|
»

ltop 250! InfO = 'tOp 250'
dc' O-klnd 3‘ 'pdc’
U3

7|Tt title

'?il,'
Fig. 2. Query rewriting example.
2 AutoView OVERVIEW

2.1 Problem Formulation

MYV Selection. Given a set of SQL queries, Q = {¢;}, we aim to
generate a set of views V' = {v,}, such that (1) the total size of
views in V' is within a space budgetﬂ and (2) the performance of
using views in V' to answer queries in () is optimized. Figure [1
shows an example with three queries Q@ = {qi,¢2,q3} and
three views V' = {v1, va,v3}. The execution time of different
optimization plans are also shown in Figure The spaces
occupied by v1, v2, v3 are 111MB, 103MB and 43MB respectively.
If the MV space budget is 50MB, we will materialize {v3} and
utilize it to optimize g3 with a benefit of (10.67-8.37)+(169.12-
167.14)=4.28ms. If the budget is 120MB, we will materialize {v; }
and get a benefit of (10.67-4.61)+(0.39-0.26)=6.19ms. If the budget
is 200MB, we will materialize {v1,v3} and get a benefit of (10.67-
3.28)+(0.39-0.26)+(169.12-167.14)=9.50ms. We do not materialize
V9, because it does not improve the performance.

Query Rewriting with MVs. Given a set of views V' = {v,}
and a query g, we select a subset of views, V¥ C V, and use
the views in Vj, to answer query g, such that the performance
of answering ¢ with MVs in V' is optimized. For example, given
three MVs vy, v2, v3, query g1 can be optimized using v; and v3,
and the optimized plan is shown in Figure [2]

2.2 System Overview

To address the MV generation and query rewriting problem with
MVs, we propose an autonomous MV management system as
shown in Figure [3| The goal of AutoView is to automatically
generate MVs by analyzing the query workload and utilize the
MVs to optimize queries. The system includes four modules, MV

1. Our method can also support the case that the total time of generating
views in V' is within a time constraint.

candidate generation, MV cost/benefit estimation, MV selection,
and MV-aware query rewriting.

MV Candidate Generator. We analyze the workload to find
common subqueries for MV candidate generation, where a sub-
query is a subtree of the syntax tree for relational algebra.
Common subqueries are the equivalent or similar rewritten
subqueries among different queries. Common subqueries with
a high quality will be selected as MV candidates. Equivalent
subqueries will be rewritten in the same form [8], [11], [36].
And subqueries that have similar selection conditions will be
merged into a large one. For example, “WHERE country IN
(’Sweden’, 'Norway’) GROUP BY country” and “WHERE country
IN ('Bulgaria’) GROUP BY country” will be merged into “WHERE
country IN (Sweden’, 'Norway’, ‘Bulgaria’) GROUP BY country”.
We discuss the details of MV candidate generation in Section 3]

MYV Estimation. Let V' = {v;} denote the set of MV candi-
dates. This module estimates the saved execution time (called
benefit) from executing ¢; € () by making use of a set of
views Vi, C V. The benefit of using Vj to answer ¢; can be
calculated by the formula below:

B(gi, Vi) = tq, — to* (1)

where t,, is the execution time of g; without using views and
t;/f is the execution time of executing g; using Vj.

We propose an Encoder-Reducer model to predict ¢4, and
t;’“ using the features of queries and MVs in Section Note
that it is expensive to enumerate and predict all pairs of (g;, Vi)
with exponential time complexity. Instead, we prune unmatched
pairs, e.g., a view cannot be used to answer a query, using join
and selection conditions.

We estimate the cost of a view v; including the space
cost |vj| and the view generation time cost ¢, using our
Encoder-Reducer model. Finally, the estimated benefits, car-
dinalities and hidden states outputted by the neural network are
passed to the MVs selection module. The details are in Section [4]

MV Selection. Given a space budget 7, this module selects
a subset of MV candidates to maximize the total benefit of
answering queries in () within the space budget. We model
this selection problem as an integer programming problem and
propose a reinforcement learning (RL) model to address it. The
details of MV selection are presented in Section 5]

MV-aware Query Rewriting. Given a query, if the query can
be optimized using the MVs, we use our estimation model to
select the most appropriate views and rewrite the query using

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 4‘
Input | MV Generation Benefit Estimation Mmv Selectlon‘ Execution . Output
N \ dC) Estimation ﬁ Selection = Recommendation |
= Bonerd ‘ \‘“*“”‘» |
| E ncoder ‘ ‘ gent | Mvz‘ |
Workload | © 00 | |
—— Embeddlng | |
) - Experience
- Encoder- \\ Pool N
- Reducer | ‘ Execution | P==
R= e D] DDON |
‘ o Dataset Training == Training Materialize | Result
. A T T e I
Collect Data

Fig. 3. AutoView Framework.

the views. Subqueries in the query are replaced by the MVs.
An example of utilizing v; and v3 to rewrite g; is shown in
Figure [2| 0in fo="top 250/ (it) X mi_idz is replaced by vs and
the predicate “info = ‘top 250” is appended in case that vs is a
superset of “info = ‘top 250”. The join order is also reordered.
(t X me) X ct is reordered into t X (mec X ct), and me X
Okind="pdc’ (Ct) is replaced by vs.

2.3 Related Work

MYV Candidate Generation. Traditional MV methods generate
MV candidates by exploiting common subqueries that appear
frequently in the workload [J1], 7], [11], [16]], [17]. [29]], [30], [31],
[36]]. To make MVs more general, some studies rewrite subqueries
to find equivalent sub-queries [1] and merge subqueries [45]]. To
apply MVs on queries, query equivalence is checked and queries
are rewritten based on the MVs. There are two main methods
for query equivalence checking and rewriting, using graphs [6],
[11], [14], [17], [27], [36] and rules [5], [8], [12]. We propose an
efficient query plan-based method to improve the performance
of MV candidate generation.

MV Estimation. Existing studies estimate MV benefit by check-
ing whether the MVs appear in the optimal query plans of
queries [1]. Traditional methods estimate benefit and cost of MVs
based on cardinality estimation. Horng et al. [15] assign query
and update frequency to each MV candidate and use cardinality
for approximating cost of query and MVs. Ahmed et al. [2]
prune MV candidates by heuristics such as join number and
cardinality ratio. Traditional cardinality methods, e.g., sampling
and histogram, are not accurate, because they cannot capture the
correlations between queries and views. Recently, deep learning-
based methods [[19], [22]], [24], [25], [28] are proposed to estimate
cost and cardinality more accurately, but they are not aware
of the correlation between queries and MVs. Therefore, these
methods still perform not well on MV estimation. Thus, we
propose a new model that can capture the correlation for a better
estimation of answering queries with MVs.

MV Selection. There are many heuristic methods for MV selec-
tion. Horng et al. [[15] present a genetic algorithm to select MVs
by encoding the query plan and MV states in chromosome rep-
resentation. However, the length of chromosome representation
is linearly dependent on workload size and the genetic algorithm
becomes slow when the workload size grows. Sohrabi et al. [33]]
present a frequent itemset mining method to select MVs from
queries. However, they do not take the MV maintenance cost
into consideration. Gosain et al. [13|] design a penalty function
for MV disk space and maintenance cost to make heuristic

methods better aware of MV cost. Azgomi et al. 3] propose coral
reefs optimization algorithm for MV selection. Kumar et al. [20]
propose another heuristic method, particle swarm optimization.
Jindal et al. [[16] propose BigSubs, which is a combination of
heuristic algorithm and integer linear programming, to select
MVs. However, the heuristic methods rely on some assumptions
on the data/workload distribution and adapt to the distribu-
tion changes. Therefore, deep learning methods address this
by learning from the experience. Liang et al. [23] introduce
the reinforcement learning (RL) method, DQM, to learn MV
benefits from historical runtime statistics and create/evict MVs.
However, DQM still needs a long model training time to adapt
to the data/workload distribution or environment changes. Yuan
et al. [41]] propose RLView to select MVs for workloads. The
DON [26]] model they used can only deal with a fixed number
of MV candidates because they represent MV states by a fixed-
length vector. Moreover, they cannot select MVs within a limited
space budget and cannot handle multiple views rewriting. To
address these problems, AutoView learns to estimate benefits
with query plans and has a better generalization ability.
MV-aware Query Rewriting. Query rewriting using given MVs
to answer SQL queries is necessary. Chaudhuri et al. [8] use
rules to identify sub-queries in the given query that can be
safely substituted by an MV. They extend the join enumeration
algorithm, with safe guarantee. However, the application of their
method is limited to cost-based join enumeration algorithm.
For ML-based cost estimation and optimization algorithm such
as [40], their method are not well applicable.

3 View CANDIDATES GENERATION
The first challenge of autonomous MV management is to obtain
important view candidates in the workload. Here we take the
benefit of a subquery as the importance of materializing the
subquery as a view candidate. Intuitively, the benefit of a sub-
query is positively correlated to its frequency and computational
cost. There are two methods to find high-beneficial subqueries.
The first method searches for subexpressions of the SQL text
as MV candidates, but this method has two limitations. (1) A
subexpression of a SQL may not be a valid subquery. (2) A
good MV may not be a subexpression. For example, in SQL
“SELECT t.title FROM ct, mc, t WHERE ct.kind = ‘pdc’ AND
ct.id = mc.ct_id AND t.id = mc.mv_ id”, a subquery “SELECT *
FROM ct, m¢c WHERE ct.kind = ‘pdc’ AND ct.id = mc.ct_id” is a
good candidate, but it is not a subexpression.

The second method represents each SQL query as a tree-
structured query plan and finds high-beneficial subtrees. As the

@ q1 q3
7|Tt.title 7Tt title
y /M /[Xl\
) E den ar > 2005
I
f ='top 25¢° {in
= pd | LIKE 'Y%esequel%'
[}
]
@ 41 g3
Titie 7|Tt.t|t|e 7th.tit|e
X X
Oinfo =
SNSRI mfo—'botto '
1222
== 1= [P , | dc'
S11S1IS] (filo=10p250 Coanlyedr
:g | :_GCJ | :_.-GC_,J ! info|= ‘bottom 10’ BETW EN20 AND 2010
SARCERCEN |

Fig. 4. Merged query plans example.

subtrees in the query plan are valid latent subqueries, we can
select subtrees and take their expressions as view candidates.
Thus, it is easier to search for view candidates in the tree-
structured query plan. Query plans in tree structure provide
more choices for selecting view candidates. However, each query
may have exponential available query plans according to the
different join order. This results in a large number of different
subtrees. Yu et al. [40] use RL to search and recommend a
low cost query plan in query optimizer. PostgreSQL optimizer
uses dynamic programming and heuristics to recommend query
plans. Query plans in PostgreSQL can have left-deep, right-deep
and bushy join order. We use the query plan recommended
by the optimizer, because it has high possibility to contain a
high-beneficial MV. Our generator can be extended to support
multiple plans of a query from the database optimizer to consider
other potential join orders. To address this issue, that there are
still many subtrees, we propose an efficient method to extract
common sub-expressions and generate MV candidates.

MYV Candidate Generation Framework. For each query, we
first extract the tree-structured physical query plan from opti-
mizers. We then detect the common subtrees, where two nodes
(subtrees) in the query plan tree are equivalent if the two
nodes have similar join/selection/projection conditions and their
children are equivalent. We can merge the two nodes and a
merging example is shown in Figure [4f Next, we calculate the
benefit of each subtree, which is the product of the number of
queries that contain common subtrees and the estimated benefit.
Finally, we take the top beneficial subtree as MV candidates.
The challenge here is to efficiently detect the common subtrees
because it is rather expensive to enumerate every subtree and
check every subtree pair.

Merging Similar Nodes. To efficiently detect common subtrees
and the corresponding MV for these subtrees, we merge two
subtrees into a new subtree once we detect them. A merging
example is shown in Figure |1} First, we try to merge ¢; and g3
and detect common subtrees between them. The purple subtrees,
O'anof/top 250/ (it) M mi_idx, have same join condition which

“itid = mi_idx.it id”. And their children are both “it where

Algorithm 1: JoinQueryGeneration

Input: Q: A set of queries

Output: S: Merged join graph
1 S < 0; // initialize the merged join graph
2 for g, in Q do

3 Queue < : initialize the to-merge queue;

4 T < Query plan graph of g;; Add T into S

5 | for nodey € S and nodey € T' with same table do

6 | Queue + (nodey, node,);

7 | while Queue # () do

8 (nodeg, nodey) < Queue. front

9 Queue pops (nodegy, nodey)

10 if nodey.children = nodey.children and

nodey = nodey then

Queue < {nodeg. father, nodey. father}
nodey <— Merge(nodegy, nodeg)

info="top 250’)” and “mi__idx”, which are equivalent respectively.
Thus, we merge q; and g3 so that they share the same common
subtrees. Second, we merge ¢ into the graph of ¢; and gs.
Note that the purple subtree in g2 is not completely equal to
that in ¢; and g3, but it is worth merging them because using
one MV to optimize three queries is beneficial for saving the
storage, especially in the situation with a “GROUP BY” clause. We
measure the commonality in two subtrees [45], and merge them
if the overlap between their predicates is higher than a threshold.
The result of the merged subtree should be a union set of the two
subtrees. Thus, the selection condition will be “info="‘top 250’ OR
info="bottom 10°”. Then, additional filters, oy fo—'top 250/ and
Oinfo='bottom 10’ are appended to the corresponding queries to
ensure correct execution results.

Merging Query Plan Trees. To find the high beneficial sub-
trees, we merge all the query plans among the workload into
a Multiple View Processing Plan (MVPP) [15], [32], [39], [42].
MVPP is a directed acyclic graph that merges all the query plan
trees. In the graph, equivalent subtrees with the same structure
are merged into one subtree so that we can easily find the
common subtrees. We adopt a bottom-up manner to merge the
equivalent subtrees as shown in Algorithm [1} First, two leaves
are merged if they use the same tables and have the same
selection/projection conditions. Second, we merge two internal
nodes if (1) the two nodes have the same selection/projection
conditions and (2) their children are equivalent, ie., for each
child of a node, we can find an equivalent child of the other
node and vice versa. Iteratively, we merge the queries into the
query graph. Finally, we count the frequency of each node (ie.,
the number of queries merged into this node), and take the node
(i.e., the corresponding subtree rooted at the node) with high
benefit as the MV candidates, for example, the purple common
subtree in Figure

4 BENEFIT ESTIMATION MODEL

The goal of MV selection is to maximize the benefit of selecting
MVs to answer queries. Thus, it is important to estimate the
benefit B(q, V);) of using a set of views V}, to answer a query
q. According to Equation _ we can estimate £, and tYr to
calculate B(q, V). A rough estimation of B(q, Vj) is the MV’s

Attention

Encoder Cell

E(tq) E(cq)

Reducer Cell
]E(t}f“)

N
Encoder Encoder Reducer| |Reducer] Reducer Reducer|
Cell Cel | " T T > cet [™] cet [™| cel > cell ==
Encoder) Reducer
Embedding
Node Features @000 fﬁ] [@ [@ [@ [@ @
Nested Bitmap | .| Nested Nested
Nodes | seq Scan] [Loop] [Aggregate] [Index Scan][ln dex Sc@] [Loop [Seq Scan] [Loop
) \) [\
S \ A
Query View, View,

Fig. 5. Encoder-Reducer Model.

generation time ¢y, for that the query ¢ can read the result of the
MV instead of executing the corresponding subquery repeatedly.
Meanwhile, reading the result of MV from the disk instead of
memory brings the overhead of disk scanning, tscanvk. Thus,
the rough estimation of B(q,V}) is tv, — tSC(ank,' However,
this estimation is very inaccurate, because MVs have compli-
cated effects on queries, e.g., reordering joins due to MVs, and
different join orders dramatically affect the execution time of the
query [40]. For example, Figure 2| shows that using v; changes
the original join order of the query plan. Thus we cannot estimate
the benefit by estimating the execution time of the query and
the view separately using the learning-based single query cost
estimator [34]] and conduct linear computations.

To estimate the benefit, we propose a learning-based query-
view model. There are two main challenges. (1) How to input
an SQL query into the tensor model? different query plan
trees have a varied number of nodes, and they cannot be
simply concatenated and input into the neural networks with
fixed input size. Thus, we serialize and encode queries and
views, and propose a Recurrent Neural Network (RNN) model,
Encoder-Reducer, to estimate the benefit. We use the RNN
model because it is suitable for encoding varied-length sequences
of nodes. Encoder-Reducer model is different from the tradi-
tional Encoder-Decoder model [9]. Encoder-Decoder model
translate sentences from a language to another language. Instead,
our encoder encodes ¢ into a semantic vector and our reducer
“reduces” g with Vj, and predicts the benefit. (2) How to capture
the correlation between queries and views? Experimental results
show that two simple RNN models cannot predict benefit/cost
accurately enough. After deeply analyzing the RNN structure and
node embedding, we found that the co-occurrence of the same
or correlated predicates and join orders between a query and
views affects the benefit. Therefore, we define three relationships,
similarity, conflict and reordering, between a query and views
at query plan node level, and use Multi-head Attention [37] in
Encoder-Reducer to better capture the correlations between
nodes of query trees and view trees. Moreover, we propose two-
step training to accelerate model convergence and improve the
performance.

4.1 Overview of The Estimation Model

We use the Encoder-Reducer model to estimate the execution
time ¢, of answering query ¢, the execution time t}]/k of using
Vi to answer query ¢, the time ¢, of executing v and the
cardinality ¢, of view v. The Encoder-Reducer model consists
of two sub-models, encoder and reducer, as shown in Figure

We first extract node features from the query plan tree. We then
input these query features into the encoder using an embedding
model. The encoder predicts ¢, and encodes the query into a
semantic vector. Next, we input the semantic vector and views
into the reducer to predict t;/". With ¢, and t}]/’“, we derive the
benefit. To obtain the space/execution cost of views, we input
each view into the encoder to predict the corresponding c,, and
t,. To improve the accuracy of prediction, we use the multi-head
attention in Encoder-Reducer to better capture the correlation
between query and views.

4.2 Encoding

Deep neural networks only accept tensor models and SQL queries
cannot be directly inputted into neural networks. To address
this problem, we use a serialization and encoding method that
transforms SQLs into tensors while keeping its structural and
semantic information. Given an SQL query, we serialize the
query plan tree by a postorder traversal which is the executing
order of the query execution engine. After serialization, we
encode the elements (tree nodes) in the sequence into fixed-
length tensors by using an existing encoding method [34]. For
a node in the query plan, which contains join type, index type,
predicates, and so on, we assign an encoding on them using one-
hot encoding and then concatenate them. Meanwhile, we sample
the data of the relation and append the sample bitmap [19] (e.g.,
500 bits) to the encoding, to utilize the sample bitmap to capture
the selectivity and distribution of the data.

4.3 Encoder-Reducer Model

We use the Encoder-Reducer model to estimate the benefit
and obtain the query-view semantic vector. The query-view
semantic vector outputted by the reducer implies the meaning of
the rewritten query, ¢"*. Reducer estimates the execution time
where the query is optimized by MV without regard to the order
of inputted MVs. Intuitively, MVs reduce the execution time by
replacing redundant computations in queries. Query rewritten
can be seen as subtraction of views from a query on the SQL
level, and the semantic vector can be seen as subtraction of views
from a query on the semantic level, and the prediction of the
model can be seen as subtraction of views from a query on the
execution time level.

Encoder. The encoder cell contains an embedding layer, a gated
recurrent unit [[10] (GRU) cell and two output layers as shown in
Figure[5] The embedding layer is to embed the node features into
a dense vector called embedding. The GRU cell gets the passed

Query View

Nested Loop Nested Loop

tid = mk.mv_id <‘\| k.id=mk.kw_id
o e
Nested Loop Index Scan Siqusvcfn Nested Loop
k.id=mk.kw_id t.eps_nr<100 Y Lo t.id = mk.mv_id
. supervillain
q /| Bitmap Heap |A | Index Scan Bitmap Heap
k.kw =
. , Scan t.eps_nr< 110 Scan
superhero

Bitmap Index Bitmap Index
Scan Scan
mk mk

SELECT t.title

FROM k, mk, t

WHERE k.kw =‘superhero’
AND t.eps_nr < 100
AND t.id = mk.mv_id
AND mk.kw_id = k.id;

SELECT t.title

FROM k, mk, t

WHERE k.kw =*‘supervillain’
AND t.eps_nr< 110
AND t.id = mk.mv_id
AND mk.kw_id = k.id;

Fig. 6. Attention among nodes.

hidden state, h;_1, and the current node embedding. It remem-
bers some new information about the current node embedding
and forgets some useless information in the hidden state. The
two output layers are designed to output the estimated execution
time and cardinality at the current node. The new hidden state,
h¢, which contains the information of the past hidden state and
the current node, is passed to the next recurrence of the encoder
cell. At the last recurrence of the encoder cell of the encoder, the
outputted hidden state is regarded as the encoding of the whole
query. The outputted values are the estimated execution time and
cardinality of the whole query.

Reducer. The reducer cell contains an embedding layer, a GRU
cell, a linear layer, a ReLU layer and an output layer as shown
in Figure |5| The linear layer combines the hidden state with the
embedded input to be an input of the attention module. The ReLU
layer combines the attention with the input. The output layer
outputs the estimated execution time of the rewritten query. The
cardinality of the rewritten query is the same as the query, so it is
not necessary to predict cardinality repeatedly. As the inputs of
the encoder and reducer are in the same semantic space, the
parameters of the embedding layer and the output layer are
shared between the encoder and reducer. The difference between
hidden states h;_1 and h; contains the information of the current
node operation.

4.4 Multi-head Attention

We use the Multi-head Attention [4], [37] to capture the rela-
tionship between nodes in query plan tree and view plan trees
because it is hard for GRU to deliver long-term information in
the hidden state. There are three types of relationships — node
similarity, node conflict, node reordering, which have a signif-
icant influence on the benefit of views. For example, Figure [¢]
shows these relationships between nodes in a query and a view.

Node Similarity. The green dashed line shows the relationship
of node similarity, e.g., a node in view outputs same result as the
node in the query. We find that if an MV can be utilized to answer
a query, there will be some similar sub-plan appearing in the MV
and the query. Capturing this information will help the model
understanding on how much computation the query can replace

with the MV. For example, on the “Nested Loop(t.id=mk.mv__id)”
node in the view’s plan, the model needs to attend to the
“Index Scan(t)” node and “Bitmap Scan(mk)” node in the query’s
plan. This helps the model know that the query can reuse the
computation performed by the “Nested Loop” node although “t”
and “mk” are not joined directly in the query. Note that the
predicate of “Index Scan(t)” nodes in the view and query are a
little different, but the predicate can still be reused because the
scan result of predicate “episode nr<110” contains the result
of predicate “episode nr<100”. We just attach an additional
predicate “episode nr<100” when using the view.

Node Conflict. The red dashed line shows the relationship
of node conflict, e.g., the predicates on the query and view
conflict. For example, on the “Seq Scan(kw, kw="supervillain’)”
node in the view plan, the model needs to attend to the “Seq
Scan(kw, kw="superhero’)” node in the query plan. These two
nodes have different predicates that lead to completely different
results. Furthermore, these results will be further joined with
other parts and make the whole view not usable. Capturing the
conflicted relationship between nodes helps the model to capture
the negative influences of the views.

Node Reordering. The blue dashed line shows the relationship
of node reordering. One of the most important reasons that t‘q/k
cannot be predicted by t,, — ¢, + tscanvj is that the using of a
view may change the join order from the original optimal plan
to a sub-optimal plan. For example, on the “Nested Loop(t.id =
mk.mv__id)” node in the view’s plan, the model needs to attend to
the “Nested Loop(t.id = mk.mv_id)” node in the query’s plan. In
the sub-plan represented by that node in the view, the join order
is t X mk; while in the query, the join order is mk X kw X ¢.
If the query wants to use this sub-plan, it needs to adjust its join
order to ¢t X mk X kw, which has a different execution time.
Paying close attention to this structure difference relationship
helps the model to predict an accurate benefit even when the
query needs to change the plan structure drastically to use views.

In a reducer cell, the embedding of the input and the hidden
state will be compared with the hidden state of nodes in the
encoder to find the correlated subqueries. Then the hidden state
of correlated subqueries will be used to enhance rewritten query
estimation directly without long-distance information delivering.

To capture different relationships between nodes, we trans-
form the hidden state of a query node with multiple projection
matrices WZQ, and an MV node with WX. With different
projection matrices, the model can capture information of query
nodes from different representation subspace. The process can be
formulated as below, where u € R? is the output vector of the
linear layer in each reducer cell; K € R™*4 i the hidden state
vectors outputted by the encoder cells where n is the number of
the encoder cells. We then compute the similarity scores between
nodes by dot production, which is the K in Equation[2] We use
a softmax function to normalize the scores as a weight. The
attention value is the weighted sum of each K. The attention
value of each head will be then concatenated and projected by
matrix WO, ie., the final attention value in Equation

Ku
Attention(u, K) = softmaz(—=)K 2
(1K) = softmas(L) @)
head; = Attemfion(VViQu7 KWK) (3)

MultiHead Attn(u, K) = Concat(heady, ..., heady,)W ©
4

4.5 Loss Function

We choose the metric of mean absolute percentage error (MAPE)
as the judgment of the model performance. Let E(t}*) be the
estimated time and t;/’“ be the real execution time. For estimating
tqv’“, we optimize:

|E(tYr) — t¥*| E(tVr)

: q g | . q

min Z T = min Z NG -1
¢ €EQ,v; €V q GEQW;EV q

=min Z ’exp [ln E(t;/’“) —1In t(‘;"} -1
GEQ;EV

®)
We transform the expression with “In” because we apply a
logarithm operation to the data before the model training. The
execution time of queries in the workload shows a long-tail
distribution which is not friendly to the neural network. After
applying the logarithm operation and data standardization, it
shows a normal distribution which is easier for the neural net-
work to converge. To smooth the gradient values and accelerate
the model training, we use the Smooth L1 function as an alternate
of the absolute value,

sa? if |z] <1

|| — % otherwise

Smoothr, (x) = { (6)

where = denotes the original L1 distance loss value.
The loss functions for ¢V, ¢; and Cq; are:

Et;’k = Smoothp, (ln]E(t;/’“) —1In t;/’“) (7)
L, = Smoothr, (InE(ty,) —Inty,) (8)
L, = Smoothr, (InE(cq,) —Incy,) 9

The total loss function is the sum of the three loss functions:

L - Ltvk + thi + Ecqi (10)

4.6 Model Training

Training Data. The training data consists of a dataset, e.g.
IMDB, and a set of queries Q = {¢;}. Given the queries and the
dataset, we generate MV candidates V' = {v,} by the method
in Section [3} We can also add some manually written views to
simulate the real environment that users may provide their own
materialized views. Given () and V/, we first select out the usable
views set, V., for each query, g;. To judge whether v; can be
utilized to optimize ¢;, we check whether the relation set of
v; is a subset of the table set of g;. And for each table, we
check whether the selection condition of the view is a superset of
the selection condition of the same relation of the query. Given
¢; and corresponding V,, we sample usable pairs, {(g;, Vi)},
where V), C V, and g¢; can be rewritten with Vj and the
rewritten query is q"*. We also generate some negative pairs
from V — V,,, where g; cannot be rewritten with V};, to enhance
the model generalization ability. For these pairs, the benefit is
—tscanvk which is a punishment for scanning the MVs in Vj,
from the disk. To obtain the ground truth — the execution time
tq, and the result size c,, of the query g¢;, the execution time
t};’“ and the result size of the rewritten query C;/k’ we shuffle the
queries and rewritten queries and get the real query plans and
the running log from optimizers. We extract the real execution
time ¢, t‘q/k and cardinality c,; from the query plans. Note c‘q/’c is

equal to c,; because the query and the rewritten query have the
same results. By the way, a query plan contains all the sub-plans’
execution time and cardinality, we also extract this information
for training the Encoder part.

Two-step training. It is hard for the encoder and reducer to
converge if we train both the two models from random initial-
ization. To accelerate the model convergence we separate the
training process into two steps. The encoder model is supervised
by the query data () and the corresponding ground truth ¢, , cg,.
In the first step, we train the encoder model with the loss ﬁtqi
and L, only. When the encoder model predicts ¢4, , cq, from
query data (), we go to the second step, which trains the reducer
model and fine-tunes the encoder model with training data.

Offline training. We apply incremental training on the model
to handle the evolution of workloads. As shown in Figure [3| we
update the dataset and train the model offline periodically.

5 MV SELECTION

Given a set of MV candidates and a query workload, we select
a subset of MV candidates to maximize the total benefit while
not exceeding a space constraint, where the benefit and cost can
be estimated by our benefit/cost estimation model in Section
We model this problem as an integer programming problem. Let
ei; € {0,1} denote whether we use v; to optimize ¢;, x; €
{0, 1} denote whether v; will be materialized, and 7 be the space
constraint. We optimize:

1Ql V]
argmaxZB(qi,Vi),s.t., (Z zj|v;|) < T,where
Yo =1
eij S {Oa 1}aVZ € [17 |QH7] € [17 ‘V”a
Vi= {Uj|eij =1,j€ [17 |VH}5V'L € [17 |Q|]’
z;j = max {e;|i € [1,Q[]}, Vj € [1, V]

Benefit/Cost Estimation of MV Candidates

We estimate the execution time and space cost of each MV
candidate generated from the query plan graph in Section
We estimate MV candidates using the benefit estimation model
introduced in Section [4| by inputting MV candidates’ plan tree
into the encoder to predict the cardinality ¢, and execution time
t,. The space cost, |v|, equals to the product of the row size and
cardinality. However, if we estimate all the MV candidates one
by one, the time complexity of the estimation is O(n?) where n
is the number of internal nodes in the query plan graph. When
the n is large, it is expensive.

Thus, we design an efficient method to estimate all the MV
candidates with time complexity of O(n). We add a super root
which connects to all the root nodes of each query so that we can
traverse the query plan graph once by the postorder and save all
the intermediate outputs of the model on each internal node. The
intermediate outputs of an internal node is actually t,, and |v| of
the MV candidates subtree rooted at this node.

Moreover, we prune low benefit MV candidates to optimize
the MV selection problem. Given the estimation results of MV
candidates, we attach a score, w,, to each MV candidate [45].
w, can be calculated by w, = W where f, is
the appearance frequency of the subtree (counted in the merged
query plan graph), £scqn, is the time of scanning the result from
the disk (calculated by multiplying the size and the unit time of
disk accesses). We retain MV candidates with higher w,, until the
space cost exceeds the budget.

5.1

Environment

Action

I I
I IQ(S7 aO)
| g | Select? |
| 5)
)
State Observation
~ Stammics _ fiddenstamves Y (1L vﬂir_’_

i [. . .] [. .ﬂ ! Encoder

- = Reducer
|dden State T

Budget, etc|Benefit, etc.

Fig. 7. Encoder-Reducer DDQN Model.
5.2 DDAQN Model for MV Selection

It is expensive to use an ILP solver to solve the MV selection
problem because there are a large number of queries and MVs.
Thus, we utilize the deep reinforcement model to address this
problem. DDQN model is an effective model among RL models, but
there are two challenges: (1) The number of variables of the MV
selection problem is dynamic varied among different workloads
and it is hard for state representation. (2) It is hard to encode the
relation between MVs, i.e., whether two MVs can be used jointly
for optimizing a query. To address the first challenge, we design
an iterative method for selecting MVs so that we can split the
global state into many fixed sub-states. To address the second

challenge, we design a new state representation method which W*(s¢,a4) =

can include the rich information in queries and MVs. DDQN
model contains two parts, the agent and the environment. The
agent plays the “game” of solving the MV selection problem, and
the environment provides the simulation of the problem-solving
process and gives the rewards. Our Encoder-Reducer DDQN
model (ERDDQN), is shown in Figure |7| The model has six main
parts: environment, agent, state, reward, action and policy.

Environment. The MV selection state is modeled as a bipartite
graph where nodes at the left side represent queries in (), nodes
at the right side represent views in V, and the edges between
them represent {e;;}. The environment module provides obser-
vations, e.g. selection state and total benefit, for the agent.

State. We propose a state representation that includes the
semantic vector outputted by the Encoder-Reducer model
besides the features extracted from the environment observation.
This semantic vector provides rich information about the pair
(gi,v;) such as MV’s structure which can be used to judge
whether two MVs conflict on one query. We estimate the MV
size by multiplying its estimated cardinality and its row width.
The Encoder-Reducer model will also estimate the cardinality
along with the execution time by inputting its expression into
the encoder.

Agent. It consists of two neural networks and the experience
replay mechanism. The two neural networks can be seen as a
function W* (s, a) which approximates the action-value function
W(s,a). W(s,a) equals to the maximum feedback, G, after
choosing action @ (changing e;; to 0 or 1) at state s. G is
positively correlated to the final total benefit. We maximize the
final total benefit by obtaining a high G, at each turn, where r
is the reward, v is the decay and ¢ is the rounds of the iteration.

Gt =741 + T2 + Va3 + - .. (11)

Reward. To make the G positively correlated to the final total
benefit, we define the reward as the change of total benefit after
each action. With the decay, the more steps we take in the
solving procedure, the smaller G we get. Therefore, the model
will achieve the optimal solution as soon as possible.

Action. At each iteration, environment takes an edge (g;, vj),
ie, using v; to optimize ¢;, from all edges and asks agent
whether to use this edge. The answer is the action. If yes, e;;
for this pair will be set to 1, i.e., putting this pair in the global
selection state. If not, e;; for this pair will be set to 0, ie,
removing this pair from the global selection state.

Policy. Agent acts based on the policy of obtaining higher
feedback. Agent chooses the action with the highest feedback.

Solving Procedure. Environment and agent work iteratively.
Agent takes actions and changes the global selection state
according to the policy and observation of the environment.
Once the selection state converges, or we reach the maximum
iterations, the global selection state with the highest benefit will
be saved as the final solution.

Training. ERDDQN model trains with the experience replay
mechanism, which builds an experience pool and samples experi-
ence tuples (S¢, at, St41, 7141 for training, where s; denotes the
current state, a; denotes the action it chooses at s, S;11 denotes
the next state after applying a;, and W*(s;, a;) denotes the
estimated action-value of the Q-network. Let [r be the learning
rate. We update the Q-network parameters by the iteration:

(12)
For each experience (s, at, Sty1,7++1), we use the estimated
action-value (r¢y1 + ymaxg, W*(s¢41,a)) at (¢ + 1)-th round
to update the estimated action-value at ¢-th round. Iteratively,
the Q-network approximates to the true action-value. To make
the experience pool cover more possible states, we let the model
choose random action to take a random walk in the state space
at the early stage of training. The probability of taking random
action is 0.9. After hundreds of iterations, it decays to 0.1.

6 QUERY REWRITE

This section presents how to utilize a set of given MVs to rewrite
a query. Given a query ¢, and the set of MVs, V' = {v;}, we
select a subset of views, Vi, C V, to answer ¢ such that the
performance of answering ¢ with V' is optimized. For example, as
shown in Figure 2} given ¢; and corresponding MVs {v1, va, v3},
we select {v1,v3} to optimize ¢1, and the rewritten query is
qful’v‘o’}. There are two main challenges: (1) The first is how to
select a good Vi which is valid and the benefit is maximum.
The conflicts between MVs will make V}, invalid. For example,
v9 and v3 are in conflict with each other, because they cannot
be used to rewrite the query at the same time. We need to
avoid invalid views when searching possible V. We propose a
selection method that first prunes invalid MVs, and then reuse
the MVs selection model to estimate the benefits and select MVs
for the query. (2) The second is how to reduce the latency of
selecting MVs for the query. The latency of a query is sensitive
to the MVs selection time. However, there are 21V view subsets,
Vi, for the query. Estimating all of them is expensive. Thus,
we optimize the benefit estimation in the selection method with
fewer redundant computations.

MVs Selection for a Query. We reuse the MVs selection model
to select MVs for a query. The selection problem in this section

W*(s¢, ar)+lr[rpe+y max W*(st41,a)—W* (s, at)]

E(t,) E@) B Bl

b

4
[Encoder]—»[Reducer]{Rem Reducer]
A

Fig. 8. MV selection for a query.

is a special case of the MVs selection problem in Section [5| As
shown in Figure (8| there is only one query in the query set, and
the view set consists of MVs instead of candidates. The budget is
infinity because the views are already materialized. Accordingly,
the workload total benefit, which is the optimization target of
the MVs selection model, is equal to the single query benefit.
Thus, MVs selection model gives the solution that maximizes
the benefit of the rewritten query. Moreover, invalid solutions
will be avoided because useless MVs give negative benefit as the
punishment of MVs scanning time.

Removing Redundant Estimation. We cache the hidden state
vectors and attention values among the Encoder-Reducer
model during the estimation of benefit to reduce redundant com-
putations. For example, in Figure [8| we consider three actions:
estimating the benefit of using {v1 } and selecting v;; estimating
{v1,v2} and discarding vy; estimating {v1,v3} and selecting
vs. If we estimate these three actions separately, ¢ will be input
into Encoder model for three times, and v; will be input into
Reducer model for three times. Instead, by caching the hidden
state vectors of Encoder, we just input ¢ once for the whole
round. Similarly, the hidden state vectors of Reducer on vy can be
cached and reused at later estimation, and thus v; just needs to
be input once. Thus the estimation time will be reduced to about
% of the original, where n is the number of MV candidates.

7 EXPERIMENT

We have conducted a set of experiments to evaluate our
AutoView from three aspects. (1) The effectiveness of our benefit
estimation model, Encoder-Reducer model. (2) The effective-
ness of our MV selection model, ERDDQN model. (3) The efficiency
of our query rewrite method.

7.1 Experimental Setting

Datasets. We use the real world dataset IMDB with sev-
eral workloads. IMDB is designed in snowflake schema with
three tables, title (movie title)) name (person name) and
movie companes. IMDB has a size of 3.7GB with 21 tables. The
largest table has a size of 1.4GB and 36 millions rows.

We use four query workloads-JOB [21], Extended JOB, Syn-
thesis, and Scale [19]], as shown in Table |1 The JOB workload
contains 113 queries with 16 joins at most. The Extend JOB
dataset contains 35K queries. It is a generalization of the JOB
dataset. By modifying the predicates of the queries, we generate
more different queries. We use it to pre-train the encoder model
for fine-tuning and help the model to converge in the training
process. The synthesis workload contains 5000 queries with 2
joins at most and only numeric predicates. This workload has
lower potential optimization chances for MVs. The scale work-
load contains 500 queries with 4 joins at most and only numeric
predicates. It is more complex than the synthesis workload.
The TPC-H dataset contains 10K queries generated from 22
templates with 7 joins at most. The TPC-DS dataset contains 990
queries generated from 99 templates with 17 joins at most. Given

TABLE 1
Workloads Dataset.

Dataset Queries | Join Number
JOB 113 3-16
Extended JOB 35615 3-16
Synthesis 5000 0-2
Scale 500 0-4
TPC-H 10000 0-7
TPC-DS 990 0-17

workloads, we generate MV candidates and sample query-MVs
pairs as introduced in Section 4| We execute these workloads to
obtain ground truth of execution time and cardinality. We split
queries in each workload into training and test dataset with the
ratio 8:2. We split the training dataset into training and validation
dataset with the ratio 9:1 in the 10-fold cross-validation.

Evaluation metrics. We evaluate benefit estimation models
based on the error of prediction. We use Mean Absolute Percent-
age Error (MAPE) as the metrics. Specifically, for predicted values
9 = {9} and ground true values y = {y'}, MAPE(y,§) =

F T |5
of queries’ latency, t}]/i’ﬂ, in query workload. For convenience, we
use benefit, B(q;, Vi) = tq, — ty*, in comparison.
Environment. We use a machine with Intel(R) Xeon(R) CPU
E5-2630, 128GB RAM, and GeForce RTX 2080.

7.2 MVs Training Data

The method of generating training data is introduced in Sec-
tion [4] To improve the model generalization ability and better
benchmark the model’s performance. The training data should
satisfy the properties as follows:

. We evaluate MV selection models by the sum

(1) Containing complex queries. The dataset should contain
enough complex queries which can be optimized by MVs, for
example, queries with at least 5 tables and 3 filter conditions.

(2) Containing queries with similar structure. To provide
redundant computation that MVs optimize, queries should have
3 or more other queries with similar structure.

(3) Containing positive and negative samples. If V), can be
used to optimize ¢; but cannot improve the performance, (g;, Vi)
is a negative sample; otherwise (g;, V%) is a positive sample. A
robust dataset should contain both positive and negative samples.
(4) Containing multiple optimization choices. To train the
selection ability of ERDDQN, the dataset should contain queries
that can use different MVs, ie., a query can be optimized by
multiple MVs and multiple MVs can be jointly used.

According to the properties, we choose JOB and it’s derived
workloads as the dataset to evaluate the model performance.

7.3 Effectiveness on Benefit Estimation

Methods. We evaluate and compare the following five methods.
(1) PG: PostgreSQL’s optimizer gives the estimation of execution
time based on the unit of disk page fetches. We transform it to
. . s . Mean{real time}
execution time by multiplying the ratio: 5_— {estimated time}"
(2) DL: We use the Encoder model in Encoder-Reducer as the
DL model to estimate the execution time of queries and MVs
and use t; — ty, + tsc(mvk as the rewritten query time. (3)
AutoView-NA: Our Encoder-Reducer model without multi-
head attention. (4) AutoView-NF: Our Encoder-Reducer model
without fine-tuning. (5) AutoView: Our Encoder-Reducer
model with multi-head attention and fine-tuning. The encoder
model is pre-trained on the Extended JOB workload, then fine-
tuned on other workloads. We train and evaluate the model by
10-fold cross-validation. We split the dataset into 10 partitions.

10 s e 100 °
0] § o o e 104 8 H
g8 o ° 1o . o 100 e ° 101 3 10!
10° 10 N § 5 & ¢ “ o g °
.
1071 100 g 8 T s 1071 10-2 1ot !
10-1 = g °
1072 ? ﬁj 1072 1073
10-2
- 1073
10-3 1072 10-4
10-3
PG DL pANA A-Ni groview PG DL pNA A_N&Um\]\ew PG DL pNA A-Nf\ uroview PG DL ANA A.N; aroview PG DL ANA ;\-N\; uroview
(a) JOB. (b) Synthesis. (c) Scale. (d) TPC-H. (e) TPC-DS.
Fig. 9. Query Estimation Error.
a 10° o o 103 =3 103]
o 102 4
10! o o o 102 s ° .
8 ° 8 o 8 1
100 101 4. ° 101 ° e 5 10 10 8
S S o .
8 10° = °© o -1 1
10 a L) 10° g 10 10
1071 3 - g
° 1072 o 1073 10-
1072 2
10)
8
PG DL pNA ANE oview PG DL ANA ANE oview PG DL pNA ANE oview PG DL pNA AN (oview PG DL ANA ANE oview
(a) JOB. (b) Synthesis (c) Scale. (d) TPC-H. (e) TPC-DS.
Fig. 10. Rewritten Query Estimation Error.
o 103] © ° 10! 8 10°{ o °
10 o ° 102] ° g - ° 8 8 g s °
o 0
103 ° 10? g ° ° S 8 § Q o 10 1
é ° LI 0 10! . 2 . 10
102 2 A . 101 8 o . 3 10-
g i B
10t g 0 10-2
° @ - N 1071
10 -3
- 10
o E|Y:I ? ? e 1o 1073
-a
10-2 102 10

PG DL ANA A—mem\new

(a) JOB.

PG DL ANA A—N; uroview

(b) Synthesis.

PG DL ANA ,_Nf\um\new
(c) Scale.

PG DL ANA ,\—Nf\\m\/\ew

(d) TPC-H.

PG DL ANA ANE (oview

(e) TPC-DS.

Fig. 11. Benefit Estimation Error (AutoView-NA (A-NA): AutoView without multi-head attention; AutoView-NF (A-NF): AutoView without fine-tuning; The box
boundaries are at the 25th/50th/75th percentiles; The traingles are mean values).

S of
& R K R R
% O) O
& \<‘b ¥ 6\9 &O 6\’0 RS & (,)(?’Q b\9 &
& R R 4D 4+ L @
S L ELESF E S S S LS C’Q‘
7R QNN X RIRITE N ¥

Seq Scan
Seq Scan
Hash

Hash Join

Fig. 12. Attention Weight Visualization.

Each time choose 9 partitions for training and use the last one
for evaluation. We evaluate the execution time prediction on
queries, rewritten queries and benefits on test dataset using the

MAPE metric The results are shown in Figure E] We use
Adam [18] as the optimizer for model training.

Attention vs Non-Attention. AutoView outperforms
AutoView-NA on the estimation of rewritten query and benefit.
The results show that multi-head attention in the reducer model
alleviates the problem of long-term information delivering and
improves the model’s ability to capture the correlation between
query and views. As shown in Figure [12| attention captures the
similarity between an MV and the corresponding subquery in
a query and has a higher weight between the nodes they are
rooted.

Fine-tune vs Non-Fine-tune. In Figure [9(a)(b)(c), AutoView
outperforms AutoView-NF, especially on the mean estimation
error of query execution time because pre-training on encoder
model improves its generalization ability. Moreover, AutoView
converges faster and is more stable than AutoView-NF as shown
in Figure because the encoder is pre-trained instead of
randomly initialized which helps the training of reducer and

2. For a proper comparison, we filtered out entries whose ¢4, < 10ms or
tg;,v; < 10ms or B(g;,v;) < 10ms that greatly impact the MAPE metric
but have less influence on the workload execution time.

10

0.40

‘ 045
035 0.40
0.35 ‘

030 |
5030] |

@ 0.25

Error

‘\ |) |
5 O R A

\“ \I“‘ N\Hﬂ‘ﬂ‘ AP Mg\'v‘fr;-f 020 |
0 “\\9“ W T 0.15

[
‘ 0.10 WP b Lot s e i)

A

0.

N

0.

N

. v
0 250 500 750 1000 1250 1200 1750 2000
Epoch

(b) AutoView.

0 250 500 750 1000 1250 1200 1750 2000

Epoch

(a) AutoView-NF.
Fig. 13. Converging Time.
reduces the possibility of overfitting.

AutoView vs PG. In Figure PG performs the worst on
estimation of query, rewritten query and benefit. For more
intuitive comparison, we draw the distribution of estimated
execution time and real time in Figure We can see that PG
usually gives same estimation on queries even they have very
different execution time. This is because PG performs bad when
analyzing some complicated predicates such as strings. Ignoring
these predicates will not affect the estimation result but largely
affects the performance of the queries.

AutoView vs DL. In Figure AutoView outperforms DL on
estimation of rewritten queries and benefits. When estimating
rewritten queries, DL predicts an execution time of 0 on more
than half cases, because DL tends to predict higher benefit on
the using of MVs, but, in fact, MVs do not always optimize the
queries. This result shows that capturing the correlation between
MVs and queries significantly improves the estimation.

Summary. Our Encoder-Reducer model, multi-head attention,
and fine-tuning can improve the quality of benefit estimation.

7.4 Effectiveness on MV Selection

To evaluate the performance of our MVs selection module, we
evaluate the module on different budgets and compare our
ERDDQN model with BigSubs and traditional algorithms. (1)
TopValue: A greedy algorithm, using the metric of sum benefit

Estimation
Estimation

10t 102 100 10 10° 100 102 10> 10 10°

Real Real
(b) AutoView.

(a) PG.
Fig. 14. Distribution of Estimated Execution Time.
—— AutoView e Optimal ===+ GA === TopUValue
—— AutoView-NS BigSubs TopValue -=-- TopFreq

Total benefit (s)
Total benefit (s)

250 500 750 1000 1250 1500 250 500 750 1000 1250 1500
Budget (MB) Budget (MB)
(a) JOB (b) TPC-H

Fig. 15. MV selection comparison.

for each MV. The sum benefit of an MV is the sum of the benefit
of using this MV answering each query. MVs with top sum
benefit will be selected within the budget. (2) TopUValue: A
greedy algorithm, using the metric of unit benefit, sum benefit/-
size, for each MV. (3) TopFreq: A greedy algorithm, using the
metric of frequency for each MV. (4) BigSubs [16]: An iterative
method that optimizes views and queries with heuristic and ILP
respectively. (5) GA [[15]: Applying genetic algorithm to choose
MVs. (6) Optimal: Using ILP solver to get an optimal solution.
(7) AutoView-NS: Our ERDDQN model without the semantic
vector in state representation from Encoder-Reducer model
(8) AutoView: Our ERDDQN model with the semantic vector from
the Encoder-Reducer model.

We compare the effectiveness of these methods on optimizing
the JOB workload under different budget size from 5MB to
1500MB. The result is shown in Figure

AutoView vs Heuristics. AutoView outperforms TopValue,
TopUValue and TopFreq. The reason is two-fold. First,
AutoView can estimate the benefit of utilizing multiple MVs
while the greedy methods approximate the benefit by summing
up the individual benefit which is not accurate. Second, the per-
formances of greedy methods are not stable during the increase
of budget while the AutoView grows stable. The reason is that
greedy methods are more likely to fall in local optimum, and they
select MVs with higher benefit or unit benefit, but higher benefit
leads to larger size that waste the budget. AutoView adjusts
the earlier selection in the subsequent iterations. When an MV
results in local optimum, ERDDQN will prefer not to select it.

AutoView vs GA. AutoView outperforms GA by 17.7%. We
observe that GA performs well on small budgets. However, on
large budgets, which mean large problem scales, it is not stable
similar to heuristic methods. Moreover, to get a comparable
result, GA consumes more time than AutoView due to more
iterations and large populations.

AutoView vs Bigsubs. AutoView outperforms BigSubs by
13.8%. The reason is two-fold. Firstly, BigSubs flips a view by the
probability that relies on the benefit and cost of this view. The
probability cannot well reflect the correlation between views.

I Original Query
B Rewritting
Rewritten Query

.
o
ol

Latency (ms)
S

=
o
W

20a20c20b16b18c 7c 25¢17f17al17b17c17d17e19d 6d 6f 29c28c30c25a
Queries

Fig. 16. Example queries rewritten in JOB workload.

While AutoView can capture the correlation between views.
Secondly, BigSubs may fall in local optimal. While AutoView
learns to select views, and avoids local optimal solution as low
rewards make the model to change the action.

AutoView vs Optimal. We use an ILP solver to get an optimal
solution for MV selection problem formulated in Section [5} The
results show that in most cases AutoView outputs the optimal
solution. On space budgets of 300, 350 and 400MB, AutoView
has a little gap with the optimal solution. It shows that ERDDQN
needs more exploration to cover more cases.

AutoView vs AutoView-NS. AutoView outperforms
AutoView-NS 4 times on total benefit under the budget of
500MB, because AutoView-NS selects MVs that are in conflict
and results in waste of budget. However, AutoView learns from
the semantic vectors and captures the conflict relationship.

Summary. ERDDQN and semantic vector can improve the quality.

7.5 Efficiency on Query Rewriting

We evaluate the latency of our query rewriting method. We
rewrite the queries in the JOB workload and compare the latency
of original queries with the total latency of rewritten queries and
rewriting. Figure 16| shows the result of 20 queries. We observe
that the query rewriting latency is nearly a constant because it
relies on the size of query/MV plans and the number of available
MVs which vary little among queries/MVs. The average query
rewriting latency in JOB workload is 64.75ms which is small
compared to the slow queries. The slowest query in JOB workload
is “20a” with 9 joins and a latency of 154,902.81ms. It is optimized
to 6303.36ms with a query rewriting latency of 65.28ms. Thus, it
is beneficial to rewrite slow queries and our query rewriting
method is efficient and has a low latency.

8 CONCLUSION

We proposed an autonomous materialized view generation sys-
tem AutoView. We devised the Encoder-Reducer model for
benefit/cost estimation. To obtain accurate benefit/cost estima-
tion, the Encoder-Reducer estimation model serialized and
encoded the queries and views. We adopted an RNN model
to embed them as semantic vectors by capturing the semantic
information of queries and views. The encoder encoded a query
into a semantic vector, and the reducer reduced views from a
query and predicted the benefit. The Encoder-Reducer was
very important to estimate the cost/benefit of using a view to
answer a query. Moreover, we proposed a double deep Q-learning
network to select MVs based on the estimate of cost/benefit.
Finally, we used the ERDDQN model to select views for MV-aware
query rewriting. Experimental result showed that AutoView
outperformed existing methods, and semantic information signif-
icantly improved the performance and stability of ERDDQN model
in MVs selection problem.

ACKNOWLEDGMENTS

This paper was supported by NSF of China (61925205, 62072261),
Huawei, TAL education, and Beijing National Research Center
for Information Science and Technology (BNRist).

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]
(19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of
materialized views and indexes in SQL databases. In VLDB 2000, pages
496-505. Morgan Kaufmann, 2000.

R. Ahmed, R. G. Bello, A. Witkowski, and P. Kumar. Automated gener-
ation of materialized views in oracle. Proc. VLDB Endow., 13(12):3046—
3058, 2020.

H. Azgomi and M. K. Sohrabi. A novel coral reefs optimization algo-
rithm for materialized view selection in data warehouse environments.
Appl. Intell., 49(11):3965-3989, 2019.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. In Y. Bengio and Y. LeCun,
editors, ICLR 2015, May 7-9, 2015, Conference Track Proceedings, 2015.
R. G. Bello, K. Dias, A. Downing, J. J. F. Jr,, J. L. Finnerty, W. D. Norcott,
H. Sun, A. Witkowski, and M. Ziauddin. Materialized views in oracle.
In VLDB, pages 659-664, 1998.

A. Boukorca, L. Bellatreche, and A. Cuzzocrea. SLEMAS: an approach
for selecting materialized views under query scheduling constraints.
In COMAD 2014, Hyderabad, India, December 17-19, 2014, pages 66—73.
Computer Society of India, 2014.

J. Camacho-Rodriguez, D. Colazzo, M. Herschel, I. Manolescu, and S. R.
Chowdhury. Reuse-based optimization for pig latin. In CIKM, pages
2215-2220. ACM, 2016.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimiz-
ing queries with materialized views. In ICDE, pages 190-200, 1995.

K. Cho, B. van Merrienboer, C. Giilcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In ACL, pages
1724-1734, 2014.

J. Chung, C. Giilcehre, K. Cho, and Y. Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.355, 2014.

T. Dokeroglu, M. A. Bayir, and A. Cosar. Robust heuristic algorithms
for exploiting the common tasks of relational cloud database queries.
Appl. Soft Comput., 30:72-82, 2015.

J. Goldstein and P.-A. Larson. Optimizing queries using materialized
views: A practical, scalable solution. SIGMOD Rec., 30(2):331-342, 2001.
A. Gosain and K. Sachdeva. Handling constraints using penalty func-
tions in materialized view selection. Int. J. Nat. Comput. Res., 8(2):1-17,
2019.

G. Graefe. The cascades framework for query optimization. IEEE Data
Eng. Bull, 18(3):19-29, 1995.

J. Horng, Y. Chang, and B. Liu. Applying evolutionary algorithms to
materialized view selection in a data warehouse. Soft Comput., 7(8):574—
581, 2003.

A. Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting subexpressions
to materialize at datacenter scale. PVLDB, 11(7):800-812, 2018.

A. Jindal, S. Qiao, H. Patel, Z. Yin, J. Di, M. Bag, M. Friedman, Y. Lin,
K. Karanasos, and S. Rao. Computation reuse in analytics job service at
microsoft. In SIGMOD, pages 191-203, 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Y. Bengio and Y. LeCun, editors, ICLR, 2015.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. In CIDR,
2019.

A. Kumar and T. V. V. Kumar. Materialized view selection using self-
adaptive perturbation operator-based particle swarm optimization. Int.
J. Appl. Evol. Comput., 11(3):50-67, 2020.

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neu-
mann. How good are query optimizers, really? PVLDB, 9(3):204-215,
2015.

G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database
tuning system with deep reinforcement learning. Proc. VLDB Endow.,
12(12):2118-2130, 2019.

X. Liang, A. J. Elmore, and S. Krishnan. Opportunistic view material-
ization with deep reinforcement learning. CoRR, abs/1903.01363, 2019.
R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul. Neo: A learned query optimizer.
Proc. VLDB Endow., 12(11):1705-1718, 2019.

R. C. Marcus and O. Papaemmanouil. Plan-structured deep neural
network models for query performance prediction. Proc. VLDB Endow.,
12(11):1733-1746, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller. Playing atari with deep reinforcement
learning. CoRR, abs/1312.5602, 2013.

M. C. Mouna, L. Bellatreche, and B. Narhimene. HYRAQ: optimizing
large-scale analytical queries through dynamic hypergraphs. In B. C.
Desai and W. Cho, editors, IDEAS 2020, August 12-14, pages 17:1-17:10.
ACM, 2020.

J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state rep-
resentations for query optimization with deep reinforcement learning.
In SIGMOD, pages 4:1-4:4, 2018.

L. L. Perez and C. M. Jermaine. History-aware query optimization
with materialized intermediate views. In I. F. Cruz, E. Ferrari, Y. Tao,
E. Bertino, and G. Trajcevski, editors, IEEE, pages 520-531. IEEE Com-
puter Society, 2014.

T. Phan and W. Li. Dynamic materialization of query views for data
warehouse workloads. In G. Alonso, J. A. Blakeley, and A. L. P. Chen,
editors, ICDE 2008, April 7-12, 2008, Cancun, Mexico, pages 436-445. IEEE
Computer Society, 2008.

Y. N. Silva, P. Larson, and]J. Zhou. Exploiting common subexpressions
for cloud query processing. In A. Kementsietsidis and M. A. V. Salles,
editors, IEEE, pages 1337-1348. IEEE Computer Society, 2012.

M. K. Sohrabi and H. Azgomi. Evolutionary game theory approach
to materialized view selection in data warehouses. Knowl. Based Syst.,
163:558-571, 2019.

M. K. Sohrabi and V. Ghods. Materialized view selection for a data
warehouse using frequent itemset mining. J Comput., 11(2):140-143,
2016.

J. Sun and G. Li. An end-to-end learning-based cost estimator. In VLDB,
2019.

J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang. Learned cardinality
estimation: A design space exploration and A comparative evaluation.
Proc. VLDB Endow., 15(1):85-97, 2021.

Y. Tao, Q. Zhu, and C. Zuzarte. Exploiting common subqueries for
complex query ogimization. In Collaborative Research, page 12, 2002.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, pages
5998-6008, 2017.

J. Wang, C. Chai, J. Liu, and G. Li. FACE: A normalizing flow based
cardinality estimator. Proc. VLDB Endow., 15(1):72-84, 2021.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view
design in data warehousing environment. In VLDB, pages 136-145,
1997.

X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with tree-
Istm for join order selection. pages 1297-1308. IEEE, 2020.

H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han. Automatic view generation
with deep learning and reinforcement learning. In ICDE, pages 1501-
1512, 2020.

C. Zhang and J. Yang. Genetic algorithm for materialized view selection
in data warehouse environments. In DWKD, pages 116-125, 1999.

X. Zhou, C. Chai, G. Li, and]J. Sun. Database meets artificial intelligence:
A survey. TKDE, 2020.

X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system
using monte carlo tree search. PVLDB, 2022.

D. C. Zilio et al. Recommending materialized views and indexes with
IBM DB2 design advisor. In ICAC, pages 180-188, 2004.

Yue Han is currently a PhD student in the De-
partment of Computer Science, Tsinghua University,
Beijing, China. His research interests include mate-
rialized views and machine learning for database.

Guoliang Li is currently working as a professor
in the Department of Computer Science, Tsinghua
University, Beijing, China. His research interests
mainly include learning models for database system,
data cleaning and integration, spatial databases and
crowdsourcing.

Haitao Yuan is currently a PhD student in the De-
partment of Computer Science, Tsinghua Univer-
sity, Beijing, China. His research interests include
spatial-temporal data manangement, data mining
and machine learning for database.

Ji Sun is currently a PhD student in the Department
of Computer Science, Tsinghua University, Beijing,
China. His research interests include query process-
ing and machine learning for database.

	introduction
	AutoView Overview
	Problem Formulation
	System Overview
	Related Work

	View Candidates Generation
	Benefit Estimation Model
	Overview of The Estimation Model
	Encoding
	Encoder-Reducer Model
	Multi-head Attention
	Loss Function
	Model Training

	MV Selection
	Benefit/Cost Estimation of MV Candidates
	DDQN Model for MV Selection

	Query Rewrite
	Experiment
	Experimental Setting
	MVs Training Data
	Effectiveness on Benefit Estimation
	Effectiveness on MV Selection
	Efficiency on Query Rewriting

	Conclusion
	References
	Biographies
	Yue Han
	Guoliang Li
	Haitao Yuan
	Ji Sun

