
Chat2Data: An Interactive Data Analysis System with RAG, Vector
Databases and LLMs

Xinyang Zhao
Tsinghua University

Beijing, China
xy-zhao20@mails.tsinghua.edu.cn

Xuanhe Zhou
Tsinghua University

Beijing, China
zhouxuan19@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University

Beijing, China
liguoliang@tsinghua.edu.cn

ABSTRACT
Traditional data analysis methods require users to write program-
ming codes or issue SQL queries to analyze the data, which are
inconvenient for ordinary users. Large language models (LLMs) can
alleviate these limitations by enabling users to interact with the data
with natural language (NL), e.g., result retrieval and summarization
for unstructured data and transforming the NL text to SQL queries
or codes for structured data. However, existing LLMs have three
limitations: hallucination (due to lacking domain knowledge for
vertical domains), high cost for LLM reasoning, and low accuracy
for complicated tasks. To address these problems, we propose a
prototype, Chat2Data, to interactively analyze the data with natu-
ral language. Chat2Data adopts a three-layer method, where the
first layer uses Retrieval-Augmented Generation (RAG) to embed
domain knowledge in order to address the hallucination problem,
the second layer utilizes vector databases to reduce the number of
interactions with LLMs so as to improve the performance, and the
third layer designs a pipeline agent to decompose a complex task to
multiple subtasks and use multiple round reasoning to generate the
results in order to improve the accuracy of LLMs. We demonstrate
Chat2Data with two real scenarios, unstructured data retrieval
and summarization, and natural language-based structured data
analysis. The online demo is available at http://vdemo.dbmind.cn.

PVLDB Reference Format:
Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. Chat2Data: An Interactive
Data Analysis System with RAG, Vector Databases and LLMs. PVLDB,
17(10): XXX-XXX, 2024.
doi:XX.XX/XXX.XX
PVLDB Artifact Availability:
The source code, data, technical report, and other artifacts have been made
available at http://vdemo.dbmind.cn/.

1 INTRODUCTION
Existing data analysis methods have big barriers for ordinary users
who cannot write programming code and SQL queries. Recently,
machine learning techniques have been widely applied in data
management systems to assist users in lowering barriers of using
databases and improving efficiency, such as learned query opti-
mizes [4], learned indexes [1], learned database configuration tun-
ing [7]. However, traditional ML-based optimizing methods suffer

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.
doi:XX.XX/XXX.XX

from drawbacks such as high dependency on training data, poor
generalization capability for data schema and distribution changes,
and low interpretability for multi-round dialogue. These issues
make it more difficult to adapt to different scenarios.

Fortunately, the emerging of large languagemodels (LLMs) brings
new opportunities to solve these problems. LLMs are statistical lan-
guage models trained on vast amounts of textual data, which could
be used to handle NLP tasks, such as understanding, summarization
and generation tasks. In data management fields, LLMs could be
used in data cleaning [2], database optimization [8], SQL equiva-
lence determination [5], and root cause detection [6].

Although LLMs have brought breakthroughs in many fields,
leveraging the capabilities of LLMs to make data management more
intelligent, simpler, and low code presents the following three chal-
lenges: hallucination (due to without real-time data and domain
knowledge for vertical domains), high cost for LLM reasoning, and
low accuracy for complicated tasks.
Challenge 1. Lack ofDomain-Specific knowledge. Firstly, LLMs
may generate incorrect information or hallucinations for vertical
domain data. Additionally, LLMs are insensitive to timeliness, mod-
els trained on old data could not promptly reflect the latest updates
in database management systems. For example, the newest version
of PostgreSQL for ChatGPT 3.5 is PostgreSQL 13.4, while the latest
one is PostgreSQL 16.2 which is released in Feb 2024. Therefore, to
effectively apply LLMs to database management, domain-specific
knowledge needs to be integrated into the model in order to avoid
hallucination and outdated information.
Challenge 2. High Cost of Interacting with LLMs. Secondly,
LLMs consume huge resources to reason the results, which involve
computation-intensive model inference or expensive API usage. For
example, GPT 4 takes minutes to do reasoning. It is important to
reduce the cost by avoiding to frequently interact with LLMs.
Challenge 3. Low Accuracy of Complicated Tasks. Thirdly,
existing LLMs may not get high-quality results for complicate tasks,
e.g., transforming NL to SQL queries (for data analytics) and pan-
das APIs (for visualization). LLMs need to comprehend the user
intention and generate the complex pipelines to process the query.
Therefore, converting intricate user requirements into instructions
that the model can understand is a challenge. Moreover, one-round
interaction may not get reasonable reasoning results and it requires
to support multi-round interaction and reasoning.

To address these challenges, we propose Chat2Data, an LLM-
enhanced data analysis platform. Chat2Data engages in natural
language (NL) and multi-round dialogues with users to reduce
the burden of interacting with the underlying data and achieve
low-code (even zero-code) ability. Chat2Data extracts domain data,
splits them into paragraphs based on their semantics, generates the

http://vdemo.dbmind.cn
https://doi.org/XX.XX/XXX.XX
http://vdemo.dbmind.cn/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


Figure 1: Chat2Data Workflow Overview.

embedding of each paragraph, and maintains these embeddings in
vector databases. Then given an NL query, Chat2Data searches the
local knowledge based on the query embedding and local knowl-
edge embedding using vector databases, and uses the search results
as prompts to input to LLMs. For unstructured data, Chat2Data
uses LLMs to summarize the results. For structured data, Chat2Data
uses LLMs to translate natural language queries into SQL queries
to analyze the data and call the pandas APIs to visualize the results.
Chat2Data also uses vector databases to cache the frequent queries,
and if the cache hits, Chat2Data directly uses the cached results to
answer the queries, thus avoiding to interact with LLMs.

2 CHAT2DATA SYSTEM DESIGN
To make data analysis more intelligent and low code, we built an in-
teractive data analysis system called Chat2Data, which utilizes the
Retrieval Augmentation Generation (RAG) for augmenting domain
knowledge, vector databases for reducing the latency, LLM tech-
niques for reasoning and inference, and LLM agent for generating
multi-round pipeline to process complicated tasks. The overview of
Chat2Data is shown in Figure 1. Chat2Data contains three main
components, including knowledge management, prompt generation
via RAG, pipeline generation via LLM agent. Specifically, the knowl-
edge management module provides domain-specific knowledge for
augmenting the LLMs. Given vertical domain data, it extracts the
knowledge, generates the embeddings for the knowledge, and stores
the embeddings and the extracted knowledge in vector databases.
It also extracts tools and their corresponding explanations and puts
them and their embeddings into vector databases, which are used
for the online inference process. The prompt generation module
extracts the user’s intent, retrieves related knowledge from the
vector database based on user intent, generates prompts with do-
main knowledge and tools, and inputs them into LLM. The pipeline
generation module transfers the complex query into multiple oper-
ations and generates a pipeline. The LLM utilizes the input query
and additional knowledge to generate results.

2.1 Offline Data and Knowledge Preparation
The offline vertical domain data and knowledge preparation pro-
vides the knowledge and APIs required to initialize our systems,

which will be used to generate prompts to augment the query.
The offline data and knowledge preparation first collects relevant
knowledge and APIs. Then for the knowledge (and text explana-
tions for APIs), Chat2Data splits the knowledge into text chunks
based on their semantics. Then for each text chunk, Chat2Data
selects an embedding model, generates an embedding, and inserts
the embedding into vector databases. Later, for online query pro-
cessing, Chat2Data generates embedding for the query, uses the
vector databases to search relevant knowledge and APIs in order
to generate effective prompts and input the prompt to the LLMs in
order to improve the inference quality.

(1) Knowledge Data Collection: This component collects vari-
able data sources, supporting both structured data and unstructured
data. For structured data, it collects structured data from relational
database or tabular data uploaded by users. It provides NL-based
data analysis tasks on structured data. For unstructured data, it
accepts the unstructured data uploaded by users, and supports
NL-based data retrieval and summarization.

(2) Paragraph Splitting: To address the hallucination problem,
we utilize the vertical domain data to augment the answers of user
queries. Thus it is important to retrieve the most important and
relevant domain data. However, the vertical domain data may be
scattered and it is vital to split the domain data into text chunks
based on their semantics. A naive paragraph-based split method
may not achieve high-quality partitions. To address this problem,
we propose a learning-based model to partition the domain data.We
split the domain data into sliding window, generate an embedding
for each slidewindow, and select thewindowwith high independent
semantics as partitions, i.e., the window embedding is standalone
and different from other windows.

(3) Embedding Model Selection: The embedding model is
important to the retrieval quality. We first select the widely-used
embedding models and thousands of datasets with different data
distributions, and train a classification model to predict the best
embedding model for each data distribution. Then given a new
domain data, we use the model to select the most appropriate model.

(4) Tools: This component collects the relevant APIs (e.g., data-
base APIs, local pandas APIs) for data analysis and visualization
tasks. Note that for each APIs, we need to add an explanation in
order to make LLMs understand the APIs.

(5) Vector Database: To facilitate the domain knowledge re-
trieval, we use the vector databases to accelerate the efficiency.
Given a query embedding, the vector database can efficiently find
the most similar data embeddings based on embedding similarity
functions. Moreover, the vector databases also need to support both
predicate filter and vector search to improve the recall.

(6) Prompt Template Preparation: This component prepares
effective templates, where each template contains instructions (e.g.,
translating NL to SQL queries), some examples (e.g., NL2SQL pairs),
domain knowledge explanation, API explanation, etc. The prepared
templates will be used for online query processing.

(7)Model Fine-tuning. To better grasp domain knowledge, the
LLM can be fine-tuned to improve the result quality. In this case,
we prepare some training examples with ground truth. Moreover,
we may also need to provide human feedback to improve the fine-
tuning quality. For example, for NL2APIs, which transforms NL



queries to pandas APIs, we generate many pairs of NL and APIs,
and we use these pairs to fine-tune the models, e.g., LLama2 [3].

2.2 Online Query Inference
Query Pre-processor Module: Given an online query, Chat2Data
first utilizes the embedding model to transform queries into cor-
responding vectors. Furthermore, Chat2Data analyzes the query
intent and decides whether to use a single-round processing or a
multiple-round processing based on the task difficulty. If it can be
answered in a single round, Chat2Data then generates the prompts
by searching the domain knowledge and APIs using the vector
databases and inputting these prompts to LLMs. If it has to be
answered by multiple rounds, Chat2Data uses LLM agents to gen-
erate a multiple-round pipeline. Moreover, to reduce the overhead
of frequently interacting with LLMs, we also use a cache layer
to improve the performance. Chat2Data first checks whether the
query is cached in the cache layer using the vector databases. If so,
Chat2Data directly uses the cached results to answer the query;
otherwise interacts with LLMs and caches the frequent queries.

(1)PromptGeneration viaRAG:Given a user query, Chat2Data
pre-loads the necessary models or tools from the knowledge man-
agement module. For tasks like unstructured data query, two types
of dialogue modes are provided: (𝑖) LLM dialogue mode, using
the fine-tuned LLM model and (𝑖𝑖) Knowledge base mode, us-
ing a RAG-enhanced LLM model. Based on the user’s selection,
Chat2Data loads the corresponding model from the knowledge
management module. For the Knowledge base mode, users first set
parameters like LLM temperature, number of knowledge matches,
knowledge match score threshold, and history of dialogue discourse.
Chat2Data utilizes vector databases to search relevant knowledge
and then generates prompts based on these knowledge. For tasks
like structured data analytics, Chat2Data searches relevant knowl-
edge. Considering the case of translating NL to SQL, traditional
LLMs may not capture the local data schema and local data values.
Chat2Data will search relevant schemas and values as prompts to
input to LLMs. Moreover, Chat2Data also detects the query intent
based on LLMs. According to the query intent, Chat2Data also
searches relevant APIs, e.g., pandas API for data analytics, and asks
LLMs to call relevant APIs to process the query request.

(2)PipelineGeneration via LLM:With the knowledge-enhanced
LLM model, user inputs are transformed into sequences of APIs.
This extracted pipeline could be matched with corresponding data
and rules stored in the knowledge base, allowing for rewriting
and optimizing the transformed pipeline. In this case, Chat2Data
executes the processes provided by the request parser module to
handle and fulfill user requests. Our system is capable of: (i) uti-
lizing knowledge or tools stored in the knowledge base module to
further determine the required data sources and optimize the exe-
cution pipeline; (ii) executing the current pipeline and evaluating
the quality of the generated results with user feedback; (iii) for
unsatisfied outcomes, leveraging models from the knowledge base
module to re-generate new execution pipelines. Chat2Data also
designs an effective scoring method to evaluate the results based on
previous queries and LLMs feedback. If the scoring function gives
a low value, Chat2Data will regenerate new pipelines to refine the
answers; otherwise Chat2Data will return the current answers.

Figure 2: Vertical Domain Data and Knowledge Management

(3)EffectiveCaching viaVectorDatabases: Chat2Data caches
frequently asked questions to the cache layer. Chat2Data generates
the embeddings of user queries, and caches the embedding and
corresponding answers with high frequency in the cache. Given a
query, Chat2Data first generates an embedding of the query, finds
highly similar queries in the cache, and returns the cached answers
to the query; if Chat2Data cannot find similar queries, Chat2Data
will input the query to LLMs. To improve the cache hit and knowl-
edge search hit, Chat2Data also designs a multi-way search method
to improve the recall, which not only uses embeddings but also uses
keyword search and BM25 to improve the matching possibility.

3 DEMONSTRATION SCENARIOS
In this section, we present the implementation and scenarios of
Chat2Data. For vector databases, we use milvus. For LLMs, we use
ChatGPT API and also fine-tune LLama2. For pipeline generation
agent, we extend LangChain framework to support unstructured
data retrieval and structured data analysis. For vertical domain data,
Chat2Data allows users to upload extra data (e.g., database or files),
generate knowledge bases, and customize knowledge-enhanced
LLM with just a few clicks.

Our demonstration aims to demonstrate the capability of Chat2Data
to surpass traditional data analysis systems. Next, we will describe
three scenarios in Chat2Data’s demo. The first scenario demon-
strates the knowledge management module. Then we showcase the
user’s interaction with the interface for unstructured data retrieval
and summarization. The third scenario presents the interface for
users to execute structured data analysis tasks.

3.1 Knowledge Management
In this scenario, we utilize the product knowledge from Apple1.
First, we click the “Create Knowledge Base” button (❶) to create
a new knowledge base named “Apple Products Support”, fill in
the relevant information about the knowledge base (❷), and select
the embedding model to use (m3e-base). After clicking the create
button, we could use buttons located on the left (❸) to manage the
knowledge base. Chat2Data allows users to upload various types

1https://www.apple.com/



Figure 3: Unstructured Data Retrieval and Summarization.

of files (e.g., JSON, excel, PDF). We upload several PDF files which
contain knowledge for Apple products. After offline knowledge
preparation processing, these uploaded files will be transferred
into vector data, and saved in the vector database. The created
knowledge base will be displayed in the “Knowledge Base List”
(❹). In addition, Chat2Data provides a “retrieval testing” button to
check whether the knowledge retrieval is successful, and a “Setting”
button to modify or delete the current knowledge base.

3.2 Unstructured Data Retrieval and
Summarization

This scenario involves performing unstructured data retrieval and
summarization tasks. By clicking the “LLM Chat” and “K Chat”
buttons on the left sidebar(❶), users could switch the two modes of
fine-tuned LLM and knowledge-augmented LLM. The configuration
settings for these two modes are shown in Figure 3 (❷).

We choose the “Apple Products Support” knowledge base to illus-
trate Chat2Data’s unstructured data retrieval and summarization
ability. In LLM Chat mode, asking questions such as “how to use
Apple Vision Pro in Mac”, and Chat2Data provides better answers.
As shown in Figure 3 (❸), comparing the answers generated by
these two modes, we find that in LLM Chat mode, LLMs are in-
sensitive to timeliness. The data used to train the model does not
contain relevant information about this product. Therefore, LLM
Chat mode cannot provide effective answers to this question. In
contrast, in K-Chat mode, our system can provide effective answers
to this question by retrieving it in the additional knowledge base
and summarising them to provide better answers.

3.3 Structured Data Analysis
This scenario involves demonstrating the structured data analysis
processing. We use the “Netflix Movies and TV Shows” dataset2
to illustrate the process of structured data analysis. This dataset
consists of listings of movies and TV shows available on Netflix.
It contains the details such as the title, country, cast, directors,
2https://www.kaggle.com/datasets/shivamb/netflix-shows

Figure 4: Structured Data Analysis.
ratings, etc. We click the “Add a database” button to establish a
connection to the database(❶). Some connection information, such
as database username and host, should be provided(❸). Once suc-
cessfully connected to the database, this interface will display the
database’s Data Definition Language (DDL) information. We can
input the requirements with natural language into the dialogue
box. For example, we want to analyze the release year of TV shows.
After clicking the query execution button below, Chat2Data will
generate prompts by extracting the database schema and values,
and get the SQL query described by natural language. After ex-
ecuting the query, Chat2Data will display the query results and
visualization results. As shown in Figure 4 (❸), Chat2Data shows
the generated SQL, query result, visualization result and a brief
visualization description.

ACKNOWLEDGMENTS
This paper was supported by National Key R&D Program of China
(2023YFB4503600), NSF of China (61925205, 62232009, 62102215),
Zhongguancun Lab, Huawei, TAL education, and Beijing National
Research Center for Information Science and Technology (BNRist).
Guoliang Li is the corresponding author.

REFERENCES
[1] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Compre-

hensive Experimental Evaluation. Proc. VLDB Endow. 16, 8 (2023), 1992–2004.
[2] Nan Tang, Ju Fan, Fangyi Li, and et al. 2021. RPT: Relational Pre-trained Trans-

former Is Almost All You Need towards Democratizing Data Preparation. Proc.
VLDB Endow. 14, 8 (2021), 1254–1261.

[3] Hugo Touvron, Louis Martin, Kevin Stone, and et al. 2023. Llama 2: Open
Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023). https:
//doi.org/10.48550/ARXIV.2307.09288 arXiv:2307.09288

[4] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
Learning-based? A Hybrid Query Optimizer for Query Plan Selection. Proc. VLDB
Endow. 15, 13 (2022), 3924–3936. https://doi.org/10.14778/3565838.3565846

[5] Fuheng Zhao, Lawrence Lim, Ishtiyaque Ahmad, Divyakant Agrawal, and Amr El
Abbadi. 2023. LLM-SQL-Solver: Can LLMs Determine SQL Equivalence? arXiv
preprint arXiv:2312.10321 (2023).

[6] Xuanhe Zhou, Guoliang Li, and et al. 2023. D-bot: Database diagnosis system
using large language models. arXiv preprint arXiv:2312.01454 (2023).

[7] Xuanhe Zhou, Guoliang Li, Jianhua Feng, and et al. 2023. Grep: A Graph Learning
Based Database Partitioning System. SIGMOD (2023).

[8] Xuanhe Zhou, Zhaoyan Sun, and Guoliang Li. 2024. DB-GPT: Large Language
Model Meets Database. Data Science and Engineering (2024), 1–10.

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.14778/3565838.3565846

	Abstract
	1 Introduction
	2 Chat2Data System Design
	2.1 Offline Data and Knowledge Preparation
	2.2 Online Query Inference

	3 Demonstration Scenarios
	3.1 Knowledge Management
	3.2 Unstructured Data Retrieval and Summarization
	3.3 Structured Data Analysis

	Acknowledgments
	References

