
D-Bot: Database Diagnosis System using Large Language Models
Xuanhe Zhou

1
, Guoliang Li

1
, Zhaoyan Sun

1
, Zhiyuan Liu

1
, Weize Chen

1
, Jianming Wu

1

Jiesi Liu
1
, Ruohang Feng

2
, Guoyang Zeng

3

1
Tsinghua University

2
Pigsty

3
ModelBest

zhouxuan19@mails.tsinghua.edu.cn,liguoliang@tsinghua.edu.cn

ABSTRACT

Database administrators (DBAs) play an important role in manag-

ing, maintaining and optimizing database systems. However, it is

hard and tedious for DBAs to manage a large number of databases

and give timely response (waiting for hours is intolerable in many

online cases). In addition, existing empirical methods only support

limited diagnosis scenarios, which are also labor-intensive to update

the diagnosis rules for database version updates. Recently large

language models (LLMs) have shown great potential in various

fields. Thus, we propose D-Bot, an LLM-based database diagnosis

system that can automatically acquire knowledge from diagnosis

documents, and generate reasonable and well-founded diagnosis

report (i.e., identifying the root causes and solutions) within ac-

ceptable time (e.g., under 10 minutes compared to hours by a DBA).

The techniques in D-Bot include (𝑖) offline knowledge extraction

from documents, (𝑖𝑖) automatic prompt generation (e.g., knowledge

matching, tool retrieval), (𝑖𝑖𝑖) root cause analysis using tree search

algorithm, and (𝑖𝑣) collaborative mechanism for complex anom-

alies with multiple root causes. We verify D-Bot on real benchmarks

(including 539 anomalies of six typical applications), and the results

show that D-Bot can effectively analyze the root causes of unseen

anomalies and significantly outperforms traditional methods and
vanilla models like GPT-4.

PVLDB Artifact Availability:

The source code, data, technical report, and other artifacts have been made

available at https://github.com/TsinghuaDatabaseGroup/DB-GPT.

1 INTRODUCTION

Database diagnosis aims to detect, analyze, and resolve anomaly

events in database systems, thereby ensuring high data availability

and workload performance. However, database anomalies are re-

markably diverse, making it impossible to comprehensively cover

them with predefined rules [18]. As shown in Figure 1 (a), a data-

base vendor encountered over 900 anomaly events in three months,

most of which spanned various facets of database and system mod-

ules (e.g., slow query processing, locking mechanisms, improper

configurations). Furthermore, these modules exhibit complex cor-

relations with system metrics (e.g., high CPU usage may result

from concurrent commits or massive calculations). So it requires to

explore different reasoning strategies (e.g., investigating different

system views) before identifying the potential root causes.

As a result, database diagnosis is a challenging problem, where

“the devil is in the details” [11, 62]. Many companies rely on the

expertise of human database administrators (DBAs) to undertake

diagnosis tasks. Here we present a simplified example (Figure 1 (c)):

(1) Anomaly Notification. The database user notifies an anomaly,

e.g., “routine queries ... is 120% slower than the norm ...”; (2) Alert
Detection. Upon receiving the user’s notification, the DBA first

[CpuHigh alert] was
triggered, and so I need
to retrieve 5 metrics …

One query took up
60% cpu time. It may

be the bottleneck!

 Ok, I cannot find
any more causes. Let’s

write the report

2.
3.

1. 4.
5.

(c) Diagnosis by Human

(a) Anomaly Events (b) Comparison of Diagnosis Methods

 Routine workload
gets extremely slow …

 Great! I find the query
can be optimized by

adding one index …

!

Classifier
(E.g., Decision Tree, MLP, RNN)

(d) Classifier for Fixed Scenario

Fixed Numeric Metrics
inactive_memory process_blocked process_running

Selected Label
(Missing Index)

Fixed
Labeles

…

HighGeneralizability LowHigh

High

Low

D-Bot

Most

Low

High

Classifier

Metric-Based

Low

Most

High

Human

Efficiency

Expense

Supported Anomaly

Criteria \ Method

12311469304832

Normalization

 From the 5 CPU
metrics, I find some
abnormal events ..,

Figure 1: Database diagnosis is a complex problem mainly

handled by human expertise – (a) example root causes of

anomalies in a database vendor; (b) comparison of diagnosis

methods; (c) toy example of diagnosing by human DBA; (d)

example of diagnosing by machine learning classifier.

investigates the triggered alerts. For instance, the DBA discovers

a “CPU High” alert, indicating the total CPU usage exceeded 90%

for 2 minutes; (3) Metric Analysis. Next the DBA delves deeper to

explore more CPU-related metrics (e.g., the number of running

or blocked processes, the number of query calls). By analyzing

these metrics, the DBA concludes the issue was caused by some

resource-intensive queries. (4) Event Analysis. The DBA retrieves

the statistics of top-k slow queries (query templates) from database

views, and finds one query consumed nearly 60% of the CPU time.

(5) Optimization Advice. The DBA tries to optimize the problematic

query (e.g., index update, SQL rewrite) by experience or tools.

The above diagnosis process is inherently iterative (e.g., if the

DBA fails to find any abnormal queries, she may turn to investigate

I/O metrics). Besides, the DBA needs to write a diagnosis report
1

to facilitate the user’s understanding, which includes information

like root causes together with the detailed diagnosis processes.

However, there exists a significant gap between the limited ca-
pabilities of human DBAs and the daunting diagnosis issues. Firstly,
training a human DBA demands an extensive amount of time, often

ranging from months to years, by understanding a large scale of

relevant documents (e.g., database tuning guides) and the necessity

for hands-on practice. Secondly, it is nearly impossible to employ

sufficient number of human DBAs to manage a vast array of data-

base instances (e.g. millions of instances on the cloud). Thirdly, a

human DBA may not provide timely responses in urgent scenar-

ios, especially when dealing with correlated issues across multiple

1
Over 100 diagnosis reports are available on the website http://dbgpt.dbmind.cn/.

https://github.com/TsinghuaDatabaseGroup/DB-GPT
http://dbgpt.dbmind.cn/

database modules, which potentially lead to significant financial

losses. Thus, if typical anomalies can be automatically resolved, it
will relieve the burden of human DBAs and save resources.

Driven by this motivation, many database products are equipped

with semi-automatic diagnosis tools [20, 22, 29, 30, 32]. However,

they have several limitations. First, they are built by empirical

rules [11, 62] or small-scale ML models (e.g., classifiers [34]), which

have poor scenario understanding capability and cannot utilize the

diagnosis knowledge. Second, they cannot be flexibly generalized to

scenario changes. For empirical methods, it is tedious to manually

update and verify rules by newest versions of documents. And

learned methods (e.g., XGBoost [8], KNN [17]) require to redesign

the input metrics and labels, and retrain models for a new scenario

(Figure 1 (d)). Third, these methods have no inference ability as

human DBAs, such as recursively exploring system views based on

the initial analysis results to infer the root cause.

To this end, we aim to build an intelligent diagnosis system with

three main advantages [65]. (1) Precise Diagnosis. First, our sys-

tem can utilize tools to gather scenario information (e.g., query

analysis with flame graph) or derive optimization advice (e.g., index

selection), which are necessary for real-world diagnosis. However,

that is hardly supported by traditional methods. Second, it can

conduct basic logical reasoning (i.e., making diagnosis plans). (2)

Expense and Time Saving. The system can relieve human DBAs

from on-call duties to some extent (e.g., resolving typical anom-

alies that rules cannot support). (3) High Generalizability. The

system exhibits flexibility in analyzing unseen anomalies based on

both the given documents (e.g., new metrics, views, logs) and past

experience.

Recent advances in Large Language Models (LLMs) offer the

potential to achieve this goal, which have demonstrated superiority

in natural language understanding and programming [42, 43, 64, 67].

However, database diagnosis requires extensive domain-specific

skills and even the GPT-4 model cannot directly master the diagnosis
knowledge (lower than 50% accuracy). This poses three challenges.

(C1) How to enhance LLM’s understanding of the diagno-

sis problem? Despite pre-trained on extensive corpora, LLMs still

struggle in effectively diagnosing without proper prompting
2
(e.g.,

unaware of the database knowledge). The challenges include (𝑖)
extracting useful knowledge from long documents (e.g., correla-

tions across chapters); (𝑖𝑖) matching with suitable knowledge by

the given context (e.g., detecting an alert of high node load); (𝑖𝑖𝑖)
retrieving tools that are potentially useful (e.g., database catalogs).

(C2) How to improve LLM’s diagnosis performance for single-

cause anomalies? With knowledge-and-tool prompt, LLM needs

to judiciously reason about the given anomalies. First, different from

many LLM tasks [12], database diagnosis is an interactive procedure

that generally requires to analyze for many times, while LLM has

the early stop problem [13]. Second, LLM has a “hallucination”

problem [46], and it is critical to design strategies that guide LLM

to derive in-depth and reasonable analysis.

(C3) How to enhance LLM’s diagnosis capability for multi-

cause anomalies? From our observation, within time budget, a

single LLM is hard to accurately analyze for complex anomalies

2
Prompting is to add additional information into LLM input. Although LLMs can mem-

orize new knowledge with fine-tuning, it may forget previous knowledge or generate

inaccurate or mixed-up responses, which is unacceptable in database diagnosis.

(e.g., with multiple root causes and the critical metrics are in finer-

granularity). Therefore, it is vital to design an efficient diagnosis

mechanism where multiple LLMs can collaboratively tackle com-

plex database problems (e.g., with cross reviews) and improve both

the diagnosis accuracy and efficiency.

To tackle above challenges, we propose D-Bot, a database diag-
nosis system using large language models. First, we extract useful

knowledge chunks from documents (summary-tree based knowl-

edge extraction) and construct a hierarchy of tools with detailed

usage instructions, based on which we initialize the prompt tem-

plate for LLM diagnosis (see Figure 3). Second, according to the

prompt template, we generate new prompt by matching with most

relevant knowledge (key metric searching) and tools (fine-tuned

SentenceBert), which LLM can utilize to acquire monitoring and

optimization results for reasonable diagnosis. Third, we introduce a

tree-based search strategy that guides the LLM to reflect over past

diagnosis attempts and choose the most promising one, which sig-

nificantly improves the diagnosis performance. Lastly, for complex

anomalies (e.g., with multiple root causes), we propose a collabora-

tive diagnosis mechanismwheremultiple LLM experts can diagnose

in an asynchronous style (e.g., sharing analysis results, conducting

cross reviews) to resolve the given anomaly.

Contributions.We make the following contributions.

(1) We design an LLM-based database diagnosis framework to

achieve precise diagnosis (see Section 3).

(2) We propose a context-aware diagnosis prompting method that

empowers LLM to perform diagnosis by (𝑖) matching with relevant

knowledge extracted from documents and (𝑖𝑖) retrieving tools with
a fine-tuned embedding model (see Sections 4 and 5).

(3) We propose a root cause analysis method that improves the di-

agnosis performance using tree-search-based algorithm that guides

LLM to conduct multi-step analysis (see Section 6).

(4) We propose a collaborative diagnosis mechanism to improve the

diagnosis efficiency, which involves multiple LLMs concurrently

analyzing issues by their domain knowledge (see Section 7).

(5) Our experimental results demonstrate that D-Bot can accurately

identify typical root causes within acceptable time (see Section 8).

2 PRELIMINARIES

2.1 Database Performance Anomalies
R1.D2

Database Performance Anomalies refer to the irregular or unex-

pected issues that prevent the database from meeting user perfor-

mance expectations [35, 45], such as excessively high response time.

Figure 2 show four typical database performance anomalies
3
.

(1) Slow Query Execution. The database experiences longer re-
sponse time than expectancy. For example, the slow query causes

significant increase in CPU usage (system load) and query duration

time, but the number of active processes remains low.

(2) Full Resource Usage. Some system resource is exhausted, pre-

venting it accepting new requests or even causing errors (e.g., insert

failures for running out of memory). For example, the high concur-

rency workload can not only cause great CPU and memory usage,

but significantly increases the number of active processes.

3
Anomalies on the application/network sides and non-maintenance issues like database

kernel debugging and instance deployment fall outside the scope of this work.

2

Complex SQLs

Anomalies

& Root Causes

Workload Contention

…
Full Disk Space

Deadlocks
…

Long Running SQLs

Slow Query Execution

Full Resource Usage

Database Crashing

Database Hanging
…

…

Large Table Inserts

 Assigner: A critic alert occurs

Load-1min: 175% beyond threshold

Overall Metrics Finer-Grained Metric Analysis

Read / Write Rate Memory_inactive_anon_bytes

Memory_dirty_bytes

 Expert: Identify large table insert

Database Activity Analysis

 Expert: Recommend some resolving solution

INSERT INTO products VALUES

INSERT INTO products VALUES

Analysis Results

 We investigate whethe
We investigate dividing

the table data ….

Memory Relevant Metrics

System Average Load

xxx

xxx

xxx

xxx

admin

user1

admin

user1

The excessive memory usage
may be caused by intensive

inserts over a table.

Figure 2: Example of Database Diagnosis.

(3) Database Hanging.The database becomes unresponsive, which

is usually caused by long-running queries, deadlocks, or resource

contention. For example, abnormal waits in submitted transactions

cause great CPU consumption like the full resource usage anomaly,

but it also involves frequent process interrupt and switching.

(4) Database Crashing. The database unexpectedly shuts down,

causing data to become inaccessible. A typical root cause is full

disk space, which leads to an inability to write new data or perform

necessary operations, ultimately resulting in database failure and

releasing the acquired resources.

2.2 Database Performance Diagnosis
R1.D2

Database Performance diagnosis refers to the process of analyzing

and resolving above performance anomalies (usually in the form of

a series of anomaly alerts) that occur within the database system.

The primary objective of database diagnosis is to pinpoint the

underlying root causes. Here we showcase some example root causes

in standalone databases:

(1) Concurrency Workloads: Problems characterized by severe

workload contention, where multiple database operations compete

for system resources, leading to performance degradation.

(2) Query Operator Issues: Problems like inserting large tables,

fetching large volumes of data, and executing complex predicates,

which can strain the database system’s processing capabilities.

(3) Planning and Execution: Root causes in this category involve

abnormal planning times and prolonged database wait times, indi-

cating inefficiencies in query planning and execution processes.

(4) Data-specific Issues: Problems like data corruption and dead

tuples (rows that are no longer needed but remain in the physical

storage) may lead to performance problem.

(5) Database Schema and Settings: These issues related to database
schema (e.g., indexes) and configuration settings. Examples include

missing indexes and small shared buffer sizes, which can impact

query optimization and memory management.

(6) Harmful Background Tasks: Some database maintenance tasks,

like “vacuum” for storage space reclamation, can become problem-

atic when invoked too frequently (these tasks will compete system

resources with user queries).

Once the root causes are identified, a set of optimization actions
can be proposed to resolve these issues and restore normal database

operations. Here we showcase some optimization tools.

(1) Query Rewrite Tools. Since most databases are weak in logical

transformations [55] (e.g., complex predicate simplification), there

are external rewrite tools (e.g., around 120 rules in Calcite [4]) that

help to optimize slow queries.

(2) Knob Tuning Tools. Improper knob values may cause database

failures (e.g., exceeding the maximal connection number) or bad

performance (e.g., allocated working memory is too small). Thus,

there are tools that utilize rules to provide tuning suggestions [3, 53].

For instance, it increases the value of innodb_buffer_pool_size in

MySQL by 5% if the memory usage is lower than 60%.

(3) Index Tuning Tools. Similarly, there are index tuning rules

that generate potentially useful indexes [7, 25, 54, 57, 66], such as

creating composite index with columns in the same predicate.

Example 1. As shown in Figure 2, given an anomaly alert indi-
cating high memory usage, we first examine the system load (e.g.,
node_memory_total for memory usage) during the anomaly time.
The data confirms an abnormal memory utilization (over 90%). To
understand this, we further obtain the relevant memory metrics (e.g.,
node_memory_inactive_anon_bytes). Analysis of these metrics sug-
gests that the excessive memory usage may be caused by an intensive
workload that inserts data into a table. To address this, we investi-
gate if optimization strategies could help with reducing the memory
consumption (e.g., dividing table data into partitions).

2.3 Large Language Models

Next, we introduce the fundamental concepts of Large Language

Models (LLMs), including LLM architecture, LLM Prompting, and

LLM Fine-tuning, which are pivotal for harnessing their capabilities

in database diagnosis.

Transformer-Based LLMs. Existing LLMs mainly adopt the

Transformer architecture, distinguished by its attention mechanism

and feed-forward neural networks. Attention mechanism dynami-

cally weighs elements in the input, allowing the model to focus on

different parts of the text, i.e., the attention scores are computed

3

Offline Preparation

Document

Tool Kit

Knowledge Tool APIs

Anomaly
Alerts

New
Messages

Database

Historical
Messages

Observation 2: {values} Observation 3: Error

Observation 1: {values}

Observation 3: None

Thought 5: …
Action 5: Stop

Majority
Vote

Observation 4: {diagnosis}

Thought 4: …
Action 4: fetch_knowledge

Observation 6: {solution}

vote=1

vote=2

Expert Assigner

CPU Memory Workload Query

Prompt Template

New
Messages New Prompt+Historical Messages 1. CPU Expert

2. Workload Expert+

I/O

Cross
Review

Result
Refinement

Review Advice

Report Generation

CPU
Expert

…

Diagnosis Prompt Generation

Knowledge
Retrieval BM25 Tool

Matching Sentence Bert

Knowledge
Extraction

Thought 2: …
Action 2: metrics_api

Thought 3: …
Action 3: wrong api name

Thought 1: …
Action 1: cpu_usage_api

Thought 6: …
Action 6: index_tuning_api

Document Learning Tool Preparation
Expert Role
Assignment

API
Description

API
Registration

CPU
Expert

<Role> You are an expert skilled in CPU problem solving.
<Task> For anomalies, identify causes, suggest solutions.
<Steps> 1. First determine abnormal metrics; 2. Next …

Statistics

Alerts

- Expert Description:
- The anomaly alerts are {Anomaly Info}
- In this step, you can use the following tools: {Tool APIs}
- The matched knowledge is: {Knowledge}
==
(Demonstration Examples of available tool usage)

Tool Hierarchy

Tools
Reflection

Monitoring Tools Optimization Tools

Server Tools Database Tools Configuration Tools Query Tools

vmstat iostat audit warm-up knob index hint rewritekcache… …

Tree-Search Based Diagnosis Collaborative Diagnosis Mechanism

Diagnosis

Optimize query with
indexing, e.g., tbl#id…

Cross
Review

Result
Refinement

Diagnosis

Since query is solved,
try other knowledge …

Cross
Review

Result
Refinement

Diagnosis

Since query is solved,
I can stop early …

Observation Thought

Review Advice

Thought

Figure 3: Database Diagnosis in D-Bot.

as 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = softmax

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 , where 𝑄 (queries), 𝐾

(keys), and𝑉 (values) represent different aspects of the text, and 𝑑𝑘
is the dimension of the keys. In addition, LLMs include feed-forward

neural networks in each layer, which apply position-wise linear

transformations to the output of the attention layer. This combi-

nation of attention and feed-forward networks facilitate accurate

predictions of subsequent text elements.

LLM Prompting. To provide LLM with specific instructions for

guiding their response generation, we can prepend or append a

prompt 𝑃 to the input𝑋 to create a new input, denoted as𝑋 ′ = 𝑃⊕𝑋
or 𝑋 ′ = 𝑋 ⊕ 𝑃 . LLM then generates the output text based on this

modified input. Note (𝑖) prompting does not require any additional

updates to the model parameters and (𝑖𝑖) prompts can be manually

crafted or automatically learned from data [68].

LLM Fine-tuning involves adjusting the model parameters on a

small and task-specific dataset (e.g., thousands of samples). Initially,

the model parameters, denoted as 𝜃 , are inherited from the pre-

training phase. Fine-tuning aims to minimize the loss function L,

tailored to the specific task (e.g., classification or regression), over

the task-specific dataset D. It is represented as 𝜃new = 𝜃
old

− 𝛼 ·
∇L(𝜃

old
;D), where a small learning rate 𝛼 is often used to ensure

gradual parameter updates [63].

We rely on LLM prompting to guide close-sourced LLMs like

GPT-4 to diagnose (see Section 5), and utilize LLM fine-tuning to

prepare localized LLMs (see Section 8.6).

3 THE OVERVIEW OF D-BOT

We present the challenges and components in D-Bot (Figure 3).
(1) Offline Preparation. First, offline preparation equips D-BotR1.W3

with essential knowledge and tools for database diagnosis, which

involves three main steps: (𝑖) Document Learning:We conduct docu-

ment knowledge extraction by creating summary trees to represent

document structures and extracting relevant information via tree

traversal (e.g., identifying nodes with similar summaries). (𝑖𝑖) Tool
Preparation:We set up diagnosis tools by detailing API descriptions

and integrating these APIs into D-Bot for use during diagnosis. (𝑖𝑖𝑖)
Expert Role Description: We generate the role descriptions (e.g., ex-

pert character, basic diagnosis steps, available tools) of LLM experts

through the clustering of knowledge chunks, such that each LLM

expert can handle a specific area of database problems.

(2) Diagnosis Prompt Generation.With all necessary knowl-

edge and tools readily available, we create context-aware prompts

to steer the diagnosis process. Each prompt integrates five main

parts: (𝑖) Role description, which outlines the expertise and duties

of the LLM. (𝑖𝑖) Anomaly description that provides the details of

triggered alerts (e.g., occurring time, anomaly summary, severity

level). (𝑖𝑖𝑖) Diagnosis tools (e.g., monitoring, indexing, query opti-

mization) matched to the diagnosis context through a fine-tuned

Sentence-BERT model. (𝑖𝑣) Knowledge chunks pinpointed with

keyword search methods (e.g., BM25). (𝑣) Historical message that

supply essential background information (e.g., previous tool calling

results) to aid the following tree-search-based diagnosis.

(3) Tree-Search Based Diagnosis. LLM encounters challenges

like hallucination and unstable LLM responses (e.g., inaccurate API

requests, overly general analysis) that can cause diagnosis failures.

To address this problem, we introduce a specialized tree-search

strategy, which allows LLM to explore multiple possible reasoning

chains and efficiently find the most beneficial chain (based on both

the database feedback and LLM evaluations).

(4) Collaborative Diagnosis Mechanism. To manage the in-

creasing complexity and resource demands of Tree-Search Based
Diagnosis, we employ a Collaborative Diagnosis Mechanism that

enhances diagnosis efficiency by engaging multiple LLM experts.

This process involves (𝑖) identifying relevant LLM experts for a

given anomaly; (𝑖𝑖) conducting asynchronous diagnosis with these

experts (using a more focused set of tools and knowledge chunks);

(𝑖𝑖𝑖) refining diagnosis findings via cross-review and generating a

comprehensive diagnosis report for the anomaly.

4 OFFLINE PREPARATION

In this section, we explain how to prepare necessary knowledge

and tools for LLM diagnosis.

4.1 Document Learning

We first decide the knowledge format that is suitable to use in LLM

prompting. Next, we introduce the extractionmethod to obtain such

4

Anomaly Context: The CPU load was extremely high.
Please investigate the cause to prevent such incidents.

✓

❌

Retrieved Texts

Text 2 = " Please see Chapter 1.1
for high CPU load. "

Retrieved Knowledge Chunk
Metrics: [cpu_usage, query_id …]
Content: " If the CPU usage is high,
use 'pt stat activity’ to get the query
ID of the running SQL … "

D-BotTraditional RAG

Text 1 = " It focuses on three main
causes: high CPU load, ..."

Figure 4: Comparison of knowledge extraction methods.

knowledge chunks from given documents. Finally, we showcase

the obtained knowledge chunks and their clustering results.

R3.D4

4.1.1 Knowledge Format. Similar to the diagnosis evidence in Fig-

ure 2, given some documents, the desired knowledge chunk is

composed of four parts: (i) “Name” helps LLM to understand the

overall function; (ii) “Content” explains how the root cause can

impact the database performance (e.g., performance degradation

due to an excessive number of dead tuples); (iii) “Metrics” is a list
of involved metric names, used for knowledge matching in prompt

generation (Section 5.1); (iv) “Steps” provides the detailed procedure
of analyzing with the relevant metrics. This allows the LLM to

imitate and perform step-by-step analysis.

4.1.2 Knowledge Extraction. Next we explain how to extract such

knowledge from documents. In database diagnosis, the relevant

documents have two characters, i.e., (𝑖) most documents are of long

context involved diversified aspects (e.g., both resource and config-

uration issues are discussed in maintenance guide) and (𝑖𝑖) some

paragraphs are correlated with each other. For example, the con-

cept of “bloat-table” appearing in “many_dead_tuples” (like Chapter

3.2) is explained in another section (like Chapter 1.1.3). Existing

document splitting and RAG approaches cannot divide diagnosis

documents based on their semantic content. This often results in

chunks that are either incomplete or entirely irrelevant, leading

to erroneous diagnosis. For instance, traditional RAG erroneously

retrieves incomplete chunk that merely refers to other chunks (e.g.,

“see Chapter 1.1” in Figure 4) and fails to give useful analysis.

Although there are already some long-context LLMs [2] that

support long documents as input, they cannot ensure the quality

of answered knowledge. For instance, recent studies [26] showMeta.D1

that most existing LLMs cannot accurately complete tasks like line

retrieval when processing documents containing tens of thousands

of tokens, not to mention the processing of diagnosis materials

with hundreds of thousands of tokens. Besides, they involve high

computational cost. Thus, we propose an algorithm that extracts

deterministic knowledge chunks from long-length documents.

Step1: Chapter Splitting. Instead of directly splitting documents

into fixed-length segments, we divide them based on the chapter

structures and their content (e.g., applications split by keywords

like “tenant examples”). If a block exceeds the maximum block

size (e.g., 4k tokens) that the LLM can handle, we further divide

it recursively into smaller blocks. This allows LLMs to accuratelyR2.O2,

R2.D2 summarize or extract the knowledge using appropriate prompts

(e.g., “do not miss any details”).

Step2: Summary Tree Construction. Next, based on the chapter

relations, we initialize a tree structure, where the root node is the

1

Documents

1.1
 \

1.1.1

1.2

1.3

1.1.2 1.3.1…

 Summary

Summarize the key aspects of the given
document text: (1) The workflow and the
characteristic; (2) The application scenarios...

Prompt
 Chapter Text

Reference

Chapter Splitting

Summary Generation

Knowledge Extraction

Similar Node
Matching

Knowledge
Decoding

Matched Nodes

Chapter Text

Blocks Summary Tree (ST)

Tree Initialization

Figure 5: Summary tree based knowledge extraction.

Figure 6: Clustering results of extracted knowledge.

document title and other nodes denote split document blocks. For

each node 𝑖 , its child node denotes a subsection of chapter 𝑖 and

node 𝑖 includes two parts: (1) the content of chapter 𝑖 and (2) the
summary of chapter 𝑖 , which is created by feeding the content into

LLM with a summarization prompt, i.e., 𝑝𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒 = Summarize
the provided chunk briefly · · · Your summary will serve as an index
for others to find technical details related to database maintenance
· · · Pay attention to examples even if the chunks cover other topics.

The generated summary acts as a textual index of the node 𝑖 ,

enabling the matching of blocks with similar content or relations

like cross references.

Step3: Knowledge Extraction. After generating the summary tree,

LLM parses each document block 𝑖 (with content from both node 𝑖

and its child nodes) and compares it with the summaries of other

blocks having similar content, which is guided by the extraction

prompt, i.e., 𝑝𝑒𝑥𝑡𝑟𝑎𝑐𝑡 = “Given a chunk summary, extract diagnosis
experience from the chunk. If uncertain, explore diagnosis experience
in chunks from child nodes or chunks with similar summaries.”

This way, knowledge that correlates with the key points from

the summaries are detected. For each detected knowledge 𝐶𝑖 , we

decide whether to keep 𝐶𝑖 in a hybrid manner. Specifically, if LLM

indicates a low likelihood that 𝐶𝑖 is redundant (compared with

existing knowledge), we will incorporate it. Otherwise, we will

conduct a manual examination of 𝐶𝑖 , where 𝐶𝑖 can be kept if we

discover any new insights, even though 𝐶𝑖 has significant overlap

5

with some existing knowledge. In this way, we can ensure the
inclusion of most diagnosis knowledge and reduce the potential for
redundant information.

4.1.3 Clustering Results of Extracted Knowledge. We showcase 188

knowledge chunks extracted from 81 pages of documents, including

the general diagnosis guides, cases, and detailed reports
4
. To derive

insights from this diverse set of knowledge chunks, we (𝑖) convert
the chunks into numerical vectors using a pre-trained embedding

model (e.g., Ada-002 [2]); and (𝑖𝑖) apply the DBSCAN algorithm [23]

to group knowledge chunks by the similarity of their text embed-

dings; and (𝑖𝑖𝑖) reduce the dimensionality of the text embeddings

(to three dimensions) using Principal Component Analysis (PCA).

In this way, we can visualize the knowledge extraction results in

Figure 6, which illustrates that the knowledge distribution largely
aligns with the types of root causes (Section 2.2).

It is evident that a knowledge chunk can be relevant to multiple

topics (e.g., slow queries may get involved in both CPU and operator

analysis). Thus, effective utilization and communication of these

knowledge chunks (e.g., experts from different topics) are vital for

the following diagnosis.

4.2 Tool Preparation

Apart from knowledge, human DBAs need to frequently interact

withmonitoring and optimization tools (e.g., database views, system

commands, index tuning tools). To facilitate effective LLM diagnosis,

it’s essential to ensure LLM understand the complex API functions

within available tools.

First, we establish a structured hierarchy to classify and orga-

nize “categories-tools-APIs”, where “APIs” represent the specific

functions of a tool. For example, an index selection tool would

be categorized under “optimization”, with “configuration tool” as

its tool type, and “heuristic_index_selection” as an example API

(Figure 3). This hierarchy aids in organizing and understanding the

diverse range of database tools.

Second, for each tool function, we provide a detailed utiliza-
tion specification (in the form of function comment). This includes

the function’s explanation, its parameters, and relevant use cases

(for Section 5.2). For instance, the function explanation for “heuris-

tic_index_selection” could be “Automatically select cost-reduction
indexes based on query patterns and workload. Arguments include
query frequency, data volume, index storage constraints, ...”.

Finally, we dynamically register tool functions by iterating

through APIs in the given tool modules, obtaining each API’s func-

tion names along with their utilization specifications.

5 DIAGNOSIS PROMPT GENERATION

Next we explain how to automatically generate diagnosis prompts

by matching with the extracted knowledge and tools.

5.1 Knowledge Retrieval

Apart from knowledge that offers general diagnosis processes (in-

cluded in the prompt template), most knowledge chunks are only

useful under specific context. such as the analysis of abnormal CPU

metrics (Figure 7). Thus, for a given context (e.g., with 5 abnormal

4
github.com/TsinghuaDatabaseGroup/DB-GPT/tree/main/doc2knowledge/docs

Anomaly: The node’s CPU usage was extremely high. Please
investigate the cause to prevent such incidents.

Thought: Investigate metrics like node_procs_running …
Action: obtain_metric_values
Arguments: {metrics: [“node_procs_running”, …], time: ..}

Thought: Knowledge indicates inefficient query execution …
Action: optimize_index_selection
Arguments: {start_time: …, end_time: …, db_name: …}

Thought: The anomaly is caused by high CPU usage …
Action: Finish

Observation1: The metrics
contain abnormal pattern: …

Observation2: The service is
unavailable

Matched Knowledge:

cpu_resource_contention
Diagnosis Failure

Early

Stop

Early

Stop

Next

Output 2

Output 1

Result 1 Result 2

LLM Inference

Matching

LLM Inference

(Step 1)

(Step 2)

Figure 7: Example multi-step diagnosis by LLM.

CPU metrics), we adopt the approximate algorithm BM25 [48] to

rank the most relevant knowledge chunks. Specifically, the BM25

algorithm ranks a set of knowledge chunks based on their “metrics”

attribute, computed as:

Score(𝐷,𝑄) =
𝑛∑︁
𝑖=1

IDF(𝑞𝑖) ·
𝑓 (𝑞𝑖 , 𝐷) · (𝑘1 + 1)

𝑓 (𝑞𝑖 , 𝐷) + 𝑘1 · (1 − 𝑏 + 𝑏 · |𝐷 |
avgDL

)
(1)

where 𝐷 is a knowledge block, 𝑄 is a set of abnormal metrics

(by anomaly detection algorithms like KS-Test [5]), 𝑓 (𝑞𝑖 , 𝐷) is the
frequency of the metric 𝑞𝑖 in 𝐷 , avgDL is the average knowledge

block length, 𝑘1 and 𝑏 are free hyper-parameters. IDF(𝑞𝑖) is the
inverse document frequency of the metric 𝑞𝑖 , computed as:

IDF(𝑞𝑖) = ln

(
𝑁 − 𝑛(𝑞𝑖) + 0.5

𝑛(𝑞𝑖) + 0.5
+ 1

)
(2)

where 𝑁 is the total number of extracted knowledge chunks, and

𝑛(𝑞𝑖) is the number of documents containing metric 𝑞𝑖 .

The advantage of this approach is that we can match knowledge

chunks even when the names or meanings of the metrics involved

are not exactly the same and easily apply the extract knowledge

across different monitoring tools or even systems.

5.2 Tool Matching

Different from matching knowledge chunks with abnormal metrics,
database tools involve complex APIs and the API names may not

be directly relevant to the context (e.g., APIs like sort_remove for
slow queries). In this way, both the BM25 algorithm and general

embedding models [47] may have relatively high error rates.

Meta.D1

Thus,

we propose to fine-tune a more powerful pre-trained Sentence-

BERT model [47] that accurately matches suitable tools for an

diagnosis context. This procedure includes two main steps, i.e.,

model fine-tuning and tool matching.

• Sentence-BERT Fine-tuning: Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} denote the
set of diagnosis contexts, and 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚} denote the set of
database tools. We aim to fine-tune a pre-trained Sentence-BERT

model to comprehend the relational context between anomalies and

6

https://github.com/TsinghuaDatabaseGroup/DB-GPT/tree/main/doc2knowledge/docs

database tools. The fine-tuning process is performed with a labeled

dataset 𝐷 = {(𝑠𝑖 , 𝑡 𝑗 , 𝑦𝑖 𝑗)}𝑛,𝑚𝑖=1, 𝑗=1, where 𝑦𝑖 𝑗 is the label indicating
the relevance of tool 𝑡 𝑗 for a diagnosis context 𝑠𝑖 . The objective

function is computed by cross-entropy loss:

L = −
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑦𝑖 𝑗 log(𝑝𝑖 𝑗) + (1 − 𝑦𝑖 𝑗) log(1 − 𝑝𝑖 𝑗), (3)

where 𝑝𝑖 𝑗 is the predicted probability that tool 𝑡 𝑗 is relevant for

anomaly 𝑠𝑖 , obtained by passing the concatenated embeddings of

𝑠𝑖 and 𝑡 𝑗 through a sigmoid function. Note, since representative

anomalies are hard to collect, we sample paths (“[Category]-[Tool]-

[API]”) from the tool hierarchy (Section 4.2) and generate diversified

anomalies from each path.

Meta.D1 • Suitable Tool Matching: After fine-tuning, the model is em-

ployed to match the appropriate database tools for a new diagnosis

context 𝑠 . The matching score between diagnosis context 𝑠 and

database tool 𝑡 𝑗 is computed as the cosine similarity between their

embeddings, i.e.,

sim(𝑠, 𝑡 𝑗) =
emb(𝑠) · emb(𝑡 𝑗)

| |emb(𝑠) | |2 | |emb(𝑡 𝑗) | |2
, (4)

where emb(.) denotes the embedding function of the fine-tuned

Sentence-BERT model. The set of recommended database tools 𝑇

for diagnosis context 𝑠 is obtained by selecting the top-𝑘 tools with

the highest matching scores:

𝑇 = arg top𝑘 {sim(𝑠, 𝑡 𝑗)}𝑚𝑗=1 . (5)

Finally, the selected top-𝑘 tools are integrated into the prompt,

including their names, function descriptions, and argument lists,

based on which LLMs can generate calling requests and obtain tool

execution results to enhance root cause diagnosis.

6 TREE SEARCH FOR LLM DIAGNOSIS
Meta.D1,

R1.W1,

R1.D1

As shown in Figure 7, LLMs employing basic chain of thought meth-

ods [56, 60] are prone to mistakes such as (𝑖) generating incorrect

tool calling request or encountering request failures (e.g., service

temporarily unavailable) and (𝑖𝑖) stopping diagnosis early without

carefully examining the proposed root causes. Although there are

some tree of thought methods [59], they have three limitations (Ta-

ble 1). First, they only use the basic outputs of LLMs as tree nodes,

without integrating diagnosis-specific tree nodes like knowledge-

based analysis. Second, they generate new tree nodes arbitrarily,

leading to unnecessary or useless explorations. Third, they rely

on basic search algorithms like width-first search, which cannot

flexibly expand the tree based on the diagnosis status of existing

tree nodes, resulting in great computation wastes or incomplete

diagnosis (given the constraints like time limit). Therefore, we aim

to solve these problems through a tree-search based algorithm de-

signed for diagnosis, allowing LLMs to reconsider previous actions

if the current action fails or no valuable root causes are identified.

Step 1: Tree Initialization.We initiate by constructing a searchMeta.D2,

R1.W2,

R2D3

tree starting with an “Action Input” root node, which contains the

task’s objectives (e.g., “In each state, you first give some thought
to analyze the situation now, together with some tool API calls to
actually change the state to the next state. ...”) and relevant input

information, such as general knowledge (e.g., common diagnosis

Table 1: Comparison of Tree Search Methods

Tree of Thought [59] Tree Search (D-Bot)

Node

Type

LLM’s own outputs

Knowledge-based

LLM Analysis / Tool Usage

Node

Generation

Random Generation

Nodes derived from

document experience / tools

Node

Scoring

Pure LLM Voting

Database Feedback + Iterative

Confidence Evaluation

Search

Algorithm

Fixed Order Search

Scenario-based

Search + Reflection

steps) and available tool APIs. This initial step guides LLM to explore

potential actions, facilitating the addition of new tree nodes.

Step 2: Tree Node Scoring. To expand the initial search tree,

we first assess the benefit scores of all existing leaf nodes based

on three criteria: (𝑖) instant benefit feedback from the database,

(𝑖𝑖) long-term benefit using knowledge-augmented LLMs, and (𝑖𝑖𝑖)
selection frequency. Meta.D2,

R1.D3,

R2.M2

(1) Instant benefit is calculated by, (𝑖) when the node’s output

contains solutions, simulating anomalies in the database (see Sec-

tion 8.2), deploying the proposed solutions (via optimization tools),

and measuring the reduction in workload costs; and (𝑖𝑖) the Instant
Benefit is set to zero otherwise.

(2) Long-term benefit is evaluated by LLMs with localized knowl-

edge base. With existing leaf nodes as candidates, we prepare de-

tailed prompt (e.g., “You first analyze all the candidates. Then give
your choice of the best candidate ...”) to guide LLM evaluators in

their assessment, focusing on (𝑖) closeness to task completion (e.g.,

the presence of root causes or solutions), (𝑖𝑖) performance (e.g.,

the value of instant benefit), and (𝑖𝑖𝑖) efficiency (e.g., overlap rate

with the analysis results of the ancestor nodes). Through multiple

rounds of voting, the long-term benefit of a leaf node is quantified

as the total number of valid votes.

(3) Selection frequency is computed as the maximum number of

times an ancestor node has been selected, plus one.With these three

criteria, we apply formulas like the UCT function [37] to calculate

the overall benefit scores of leaf nodes.

Step 3: Tree Node Generation.Next, we expand new child nodes

of one existing tree node with the highest benefit score (randomly

selecting one if there are multiple tied ones). This involves prompt-

ing LLM with information from the selected node to suggest new

and valid actions in four main sub-steps:

(1) Action Generation: With the information in the selected node

as input, LLM generates a “new message” as suggested action.

(2) Action Parsing And Validation: We dissect the new message

into segments (e.g., using “\n” as a delimiter), examine whether the

first three segments separately starting with “Thought”, “Action”,
and “Action Input”. If so, this message indicates a legal action. In

contrast, this message is an illegal action and we require LLM to

regenerate (e.g. for at most three times before switching to other

nodes or terminating exploration).

(3) Tree Node Creation: We generate a new node, containing (𝑖)
the diagnosis state of its parent node, (𝑖𝑖) the message generated

by LLM, and (𝑖𝑖𝑖) the outcome, either the execution result (for a

tool node) or the knowledge retrieval result (for a knowledge node),

derived from executing the command synthesized from the “Action”

and “Action Input” segments.

7

(4) Tree Expansion: We append this new node as a child of the

selected tree node, facilitating its expansion and the ongoing update

of the search tree.

Step 4: Existing Node Reflection. For each node in the path

from the root node to the selected node, we utilize LLM to reassess

the benefits of taking the action (e.g., prompting with “make some re-
flection to inherit to later trails”), which are appended to the prompt

of child node and affect LLM evaluation during benefit score compu-

tation. Nodes deemed to contain no useful information are marked

as “pruned” to enhance diagnostic efficiency.

Step 5: Terminal Condition.We repeat the above Steps 2-4. If

no new root causes (leaf nodes with valid actions) are identified for

a set number of iterations (e.g., 20 steps), the algorithm terminates

by outputting the root causes and solutions of the leaf node with

the highest benefit score.

Table 2: Comparison of Multi-Agent Methods

LLM

agents

Cooperation

Strategy

Cross

Reviews

Local

LLMs

MetaGPT [19] Static

One-To-One

Conversation

× ×

ChatDev [39] Static

One-To-One

Conversation

× ×

AgentVerse [10] Static

One-To-Many

Conversation

× ×

D-Bot Dynamic

Asynchronous

Communication

✓ ✓

7 COLLABORATIVE DATABASE DIAGNOSIS

With tool learningR3.D4 and tree search algorithm, single LLM’s di-

agnosis accuracy can be greatly improved. Nevertheless, we find

single LLMs have trouble in resolving complex anomalies with

multiple causes (e.g., looping over limited causes and struggling to

find additional ones). Although there are some multi-agent frame-

works [10, 19, 39], they (𝑖) lack efficient communication strate-

gies

Meta.D1,

R1.W1,

R1.D1

and (𝑖𝑖) do not support backwards feedback augmented by

diagnosis knowledge. To address this, we propose a collaborative

mechanismwheremultiple LLMs, each equippedwith tools and tree

search algorithms, work collectively to tackle complex cases [10].

Step1: Expert Preparation.We initialize 7 LLM experts by the

knowledge clustering results (Section 4). Each expert is equipped

with different knowledge and necessary tools in the prompt.

Step2: Expert Assignment. Next, to avoid resource waste and

improve diagnosis efficiency, we assign appropriate experts to di-

agnose. That is, given an anomaly, we first generate a description

of the anomaly (e.g., time period, alert types, severity level). Next,

based on the anomaly description, Expert Assigner utilizes an LLM

(e.g., GPT-4) to select a set of most relevant experts. For example,

CPU Expert for the Load_High alert and Memory Expert for the
Out_of_Memory alert. Note we adopt LLM rather than rules, which

is more flexible to plugin new alert rules or expert roles.

Step3: Asynchronous Diagnosis. The chosen experts simul-

taneously diagnose (Section 6). Despite utilizing a common LLM,

each expert is uniquely equipped with role-specific settings and

domain knowledge. We enhance the diagnosis process with an asyn-

chronous communication mechanism [24], which is built on the

publish-subscribe model. That is, experts “publish” their findings or

updates, which are then automatically “delivered” to other experts

who have “subscribed” to these specific types of updates (e.g., all

the reset selected experts).

This mechanism allows for the efficient and non-blocking infor-

mation exchange (e.g., metric analysis, tool outputs, results) among

LLM experts. For instance, the CPU Expert might post a finding

about abnormal CPU load patterns of slow queries, triggering an

event-driven notification to other experts. This event-driven ap-

proach enables the memory expert to promptly detect memory

swap activities potentially caused by these slow queries.

Step4: Cross Review. Traditional multi-agent frameworks adopt

a sequential pipeline, where one agent’s mistakes cannot be cor-

rected by the next. Instead, D-Bot introduces a cross-review mecha-

nism. This allows all participating LLM experts spot and fix other’s

diagnosis errors and leads to more accurate diagnosis.

[Current summary 𝑠𝑡−1]
- I know the start and end time of the anomaly.

[New Record 𝑟𝑡]

Thought: Now that I have the start and end time of ...

Action: is_abnormal_metric

Action Input: {“start_time”: 1684600070, ...}

Observation: “The metric is abnormal”

[New summary 𝑠𝑡]

- I know the start and end time of the anomaly.

- I executed is_abnormal_metric, and CPU usage is abnormal.

• Incremental Message Summarization. For an expert, it requires

dozens of iterations to provide in-depth analysis, resulting in ex-

tensive analysis records. Therefore, it is crucial to effectively sum-

marize the key information from these records. To achieve this, we

progressively summarize the lines of a record (𝑟𝑡), which includes

inputs for specific tools and the corresponding results, or relevant

knowledge. Specifically, for each step 𝑡 , we maintain a running sum-

mary (𝑠𝑡−1), encapsulating previous actions and outcomes. Upon

generating the new record 𝑟𝑡 , an LLM is assigned to incorporate

the main idea of 𝑟𝑡 into 𝑠𝑡−1, leading to the new summary 𝑠𝑡 .

• Review Advice. Next, each expert gives the improvement advice

based on the diagnosis results and summarized procedures of other

experts. The review prompt is written like 𝑝𝑟𝑒𝑣𝑖𝑒𝑤 = “Please review
the above diagnosis results, and give necessary advice to correct the
incorrect analysis or unclear results.”

•Diagnosis Refinement.After the cross-review, each expert reeval-
uates their initial diagnosis and even conducts more inferences (e.g.,

calling tools to analyze more relevant metrics or settings). In this

way, they can incorporate additional evidence, revising hypotheses,

or overlooked aspects in the diagnosis results.

Step5: Report Generation.Based on the refined diagnosis results

of selected experts, Expert Assigner generates detailed diagnosis R3.D4

report for the given anomaly, including (𝑖) title (summary of the

anomaly); (𝑖𝑖) anomaly date; (𝑖𝑖𝑖) detailed anomaly description

(from alerts); (𝑖𝑣) root causes (within diagnosis results); (𝑖𝑣) solu-
tions (within diagnosis results); (𝑣) summarized diagnosis process.

8 EXPERIMENT RESULTS

With the carefully preparedmicro benchmark, we conduct extensive

experiments to evaluate the proposed techniques in D-Bot.
8

Table 3: Micro Benchmark Statistics. The applications cover ten typical root causes (introduced in Section 2.2).

Application

Sync

Commits

Many

Inserts

High

Updates

Many

Deletes

Index

Missing

Redundant

Indexes

Large

Data Insert

Large

Data Fetch

Poor

Join

Correlated

Subquery

Cases

Internet of Things ✓ × × × × × × × × × 83

E-Commerce × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 211

Financial ✓ ✓ × × × ✓ ✓ ✓ ✓ × 31

Business Intel. × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 20

File Sharing × ✓ ✓ × × ✓ ✓ ✓ ✓ × 47

Social Meida ✓ × × × × × × × × ✓ 147

8.1 Environment Setup

Database.We implement D-Bot in PostgreSQL 12.5, using (𝑖) the
pg_stat_statements plugin for tracking frequent queries, and (𝑖𝑖)
the hypopg plugin for creating hypothetical indexes [1].

LLMs. Prompt-based LLMs include GPT-4-0613 and gpt-3.5-turbo-

16k [2], where the temperature is set to 0 in favor of reproduction.

Fine-tuned LLMs include Llama 2, CodeLlama and Baichuan 2.
Evaluated Methods. The evaluated methods include: (1) Hu-
manDBA. A human DBA with 2 years working experience analyze

the root causes. (2) D-Bot (GPT-4) is the version of D-Bot driven
by GPT-4-0613 (within a limit of 8,192 tokens for each inference),

which serves as 8 expert roles with different domain knowledge

(Section 4.1.3). (3) D-Bot (GPT-3.5) is the version of D-Bot pow-
ered by the GPT-3.5 model. In case of exceeding the token limits,

we use gpt-3.5-turbo-16k (a maximum of 16,385 tokens). (4) DNN
utilizes a two-layer neural network with ReLU activation to clas-

sify the input abnormal metric vectors into one or multiple root

causes [21]. (5) DecisionTree employs the decision tree algorithm to

label the root causes for the input metric values [51]. (6) Random
Forest: This model uses an ensemble of decision trees (10 trees) to

balance between bias and variance. (7) XGBoost: This model ap-

plies gradient boosting that is effective for sparse data and is set

up with 10 gradient boosted trees (n_estimators=10). (8) KNN: For
the clustering-based method, we determine the optimal number

of neighbors through cross-validation (testing up to 49 neighbors

for best accuracy), and the selected best parameter (best_k=9) is

used to predict on scaled test data. (9) GPT-4 model that does not

utilize the techniques in D-Bot, which (𝑖) inputs suitable task de-

scription and demonstration examples and (𝑖𝑖) outputs the root
causes. (10) GPT-3.5. Similarly, we test the performance of GPT-3.5

model without techniques in D-Bot.
AblationMethods.We offer variants ofD-Bot for ablation analysis:
(1) NoKnowledge is D-Bot (GPT-4) that does not utilize the extracted
knowledge. (2) NoTreeSearch is D-Bot (GPT-4) that adopts the chain-
of-thought reasoning (e.g., LangChain [6]). (3) SingleLLM is D-Bot
(GPT-4) that utilizes single LLM to diagnose.

8.2 Micro Diagnosis Benchmark

Based on works like [20, 31], we design a micro benchmark that

offers (𝑖) diversified anomaly scenarios (e.g., different applications,

workloads, and anomaly types), (𝑖𝑖) executable scripts, (𝑖𝑖𝑖) clear
scenario descriptions (e.g., “In a database of an e-commerce platform,
91 users simultaneously perform searches · · · ”), together with (𝑖𝑣)
evaluation metrics that can reflect the diagnosis performance.

Anomaly Cases. As shown in Table 3, we include a diverse set

of simulated applications: (𝑖) Internet of Things (IoT) applications
mainly have the “highly commits” anomalies, caused by handling

a lot of incoming data from sensors; (𝑖𝑖) E-commerce applications
exhibit multiple anomalies (e.g., “highly updates” and “large data

fetch”), possibly caused by concurrent updates to product databases

and high volume data retrievals during sales; (𝑖𝑖𝑖) Financial applica-
tions involve anomalies like “poor joins”, suggesting complex trans-

actional operations; (𝑖𝑣) Business Intelligence applications mainly

involve “redundant index” and “missing index” anomalies, empha-

sizing the importance of optimizing data access paths; (𝑣) File Shar-
ing applications (e.g., Dropbox, Google Drive) often encounter the

“large data fetch” anomaly, caused by data retrievals of multimedia

content. (𝑣𝑖) Social Media applications (e.g., MySQL originally for

Twitter) predominantly face the “highly commits” anomaly when

read and write data quickly. Different from IoT, they also involve

complex queries that cause the “correlated subquery” anomaly.

AnomalyDistribution.There are 254 anomalieswith single causes

and 285 with multiple causes. Single-cause anomalies mainly re-

sult from “Missing Indexes”. Other common causes include “Many

Updates” and “Redundant Indexes”, pointing to widespread inef-

ficiencies in database operations and data schemas. Multi-cause

anomalies are more diverse. The combination of “Sync Commits”

and “Many Inserts” is the most frequent, occurring twice as often

as any other combination like “Poor Join + Many Updates”. Resolv-

ing these anomalies typically requires 13 to 16 actions in D-Bot,
suggesting a moderate complexity in the diagnosis process.

Evaluation Metrics. We adopt two metrics for practical diagnosis

evaluation. First, like works [28, 34], we use Result Accuracy (Acc)

to quantify the precision of recommended root causes, i.e.,

Acc =

{
𝐴𝑐−𝜎 ·𝐴𝑤

𝐴𝑎
, if 𝐴𝑎 > 0 ∧𝐴𝑐 ≥ 𝜎 · 𝐴𝑤

0, otherwise

where 𝐴𝑐 denotes the number of correct causes, 𝐴𝑎 denotes the

total number of causes,𝐴𝑤 denotes the number of wrongly detected

causes, and 𝜎 is a hyper-parameter with 0.1 as the default value,

because we identify redundant causes is less harmful than missing
causes and restrict to at most 4 root causes for an anomaly.

Second, Human Evaluated Accuracy (HEval) shares the same

equation as Acc. However, 𝐴′
𝑐 in HEval denotes number of causes

that (𝑖) are correctly detected and (𝑖𝑖) the analysis process also

makes sense (human evaluation). HEval is vital to provide reliable
diagnosis for online usage.

9

Table 4: Performance on different anomalies.

Diagnosis Single Cause Anomaly Multi-Cause Anomaly

Method Acc HEval Acc HEval

HumanDBA 0.955 0.720 0.487 0.806

D-Bot (GPT-4) 0.754 0.500 0.655 0.669

D-Bot (GPT-3.5) 0.542 0.370 0.533 0.493

DNN 0.352 N/A 0.036 N/A

DecisionTree 0.331 N/A 0.086 N/A

GPT-4 0.351 0.39 0.105 0.151

GPT-3.5 0.266 0.2 0.144 0.130

8.3 Performance Comparison

We compare D-Bot with three types of baselines, including manual

diagnosis (HumanDBA), existing machine learning methods (DNN ,

DecisionTree), and origin LLMs (GPT-4, GPT-3.5) across six applica-

tions. For each application, we sample ten testing anomalies from

the micro benchmark. The remaining anomalies are used as the

training samples for DNN , DecisionTree. The performance results

are illustrated in Figures 8-9.

Diagnosis Performance.D-Bot achieves competitive performance

as HumanDBA, such as outperforming HumanDBA with an accu-

racy of 80% (D-Bot (GPT-3.5)) for the Social Media application. D-Bot
also demonstrates significant performance gains over the rest base-

lines (e.g., accuracy improvements ranging from 8% to 54% against

DNN and DecisionTree). The reasons are three-fold.
First, D-Bot can judiciously utilize tools and provide informed

diagnosis. For instance, It identifies specific problems such as “high
memory usage due to heavy use of UPDATE and INSERT operations
over the same tables” by querying the pg_stat_statements view. Con-
versely, the baselines struggle to detect the root causes, often de-

faulting to generic advice such as “resolve resource contention issues”,
which lack the specificity needed for actionable improvements, ren-

dering them less effective in practical applications. For the baselines,

Random Forest achieves the highest accuracy among the baselines

(57.1% in average), but still performs worse than D-Bot (e.g., 73.2%
for D-Bot (GPT-4)). By constructing multiple trees and using their

average predictions, Random Forest significantly reduces the risk

of overfitting, making it much more robust across diverse samples.

Besides, baselines like Random Forest are good at regression tasks

involving numeric labels, beneficial for addressing hallucination

issues observed in GPT-4 and GPT-3.5.
Second, D-Bot (GPT-4) owns contextual comprehension (LLM)

and tree-search reasoning capability. For instance, with the re-

flection mechanism, D-Bot (GPT-4) can follow the most beneficial

chain of actions (e.g., calculating the total cost of a plan and de-

ciding the optimization actions). In contrast, the baselines only

input with basic abnormal metric values, perform general anal-

ysis, and often overlook underlying causes. For instance, in an

INSERT_LARGE_DATA case, GPT-4 merely identifies an increased

count of running processes using the node_procs_running metric,

resulting in an early diagnosis termination. Moreover, DNN and

DecisionTree cannot leverage textual data, leading to their inability

to resolve complex anomalies such as Poor Join.
Third, D-Bot (GPT-4) utilizes the document knowledge to learn

the analysis of potential performance bottlenecks like correlated-

subquery structure. We find GPT-4 and GPT-3.5 tend to make unsup-

ported hypotheses, leading to inaccurate diagnostics. For example,

upon detecting SORT operations in logged queries, GPT-3.5 inaccu-
rately attributes the bottleneck to “frequent reading and sorting of
large data volumes”, missing query structure problems. Compared to

HumanDBA, D-Bot (GPT-4) is more careful in capturing important

details that help find the root causes. For example, in Social Media,
D-Bot (GPT-4) does better than HumanDBA by collecting data from

various sources (such as multiple system metrics and how query

operators consume resources). This helps uncover problems like

high I/O issues caused by concurrent inserts, which HumanDBA
might ignore when focusing on a few slow queries. R3.W2,

R3.D1Apart from the proposed Acc metric, we have compared the per-

formance under standard precision, recall, F2 score metrics [16] and

there are some new findings. First, D-Bot (GPT-4) has a higher recall
but lower precision than HumanDBA due to its ability to use diverse

knowledge bases but suffers from using inappropriate tools, causing

more false positives. Second, D-Bot outperforms original LLMs by

using specific diagnostic tools rather than vague tips, leading to

higher recall and precision. Third, D-Bot achieves a better F2 score
than other learning methods, balancing recall and precision well. In

contrast, DNN creates too many potential causes, and DecisionTree
misses many new anomalies.

Diagnosis Overhead. (1) Diagnosis Time. HumanDBA needs one

to two hours to write a diagnosis report even for typical anomalies.

This time is mainly consumed in devising solutions like indexing

and query rewriting, even when the root cause is relatively straight-

forward. Instead, D-Bot, takes ten to several minutes to diagnose

relatively complex anomalies (e.g., 5.38 minutes for a composite

anomaly 𝑘 with two root causes). By testing across 15GB, 37GB, and

100GB databases, we find D-Bot performs well with low diagnosis

overhead (separately with 4.33 / 5.89 / 4.93 minutes). Because D-Bot
can efficiently interact with pre-equipped tools (context embedding)

and enhance the efficiency (collaboration of multiple LLMs). And

the utilized tools are plugins like hypopg (building hypothetical

indexes rather than actually deploying them) and cost estimators,

which are not sensitive to data scaling. However, an increase in

query numbers will take up more LLM tokens to describe the work-

load information and cause high higher inference time (e.g., 22,000

queries for 24.8% more inference time). Traditional classifiers have

lowest diagnosis time, as they simply map limited metrics to pre-

defined causes. (2) Diagnosis Expense. Traditional classifiers and
D-Bot are more economical than HumanDBA. DNN and Decision-
Tree require minimal system resources. And D-Bot can save much

manpower at a minimal financial cost (e.g., 1.8 dollar for diagnosing

the anomaly 𝑘 with 40k LLM tokens).

Finding 1. D-Bot achieves a remarkable improvement over base-
lines (8% to 54%) due to its advanced contextual understanding
and knowledge and tool utilization, and even competes closely
with human expertise.

Performance for Different Anomalies. D-Bot (GPT-4), while
having lower accuracy in single cause anomalies (0.754), shows a

remarkable consistency in multi-cause anomalies with an accuracy

of 0.655. This consistency is also reflected in the HEval scores (0.500
and 0.669, respectively), suggesting that D-Bot (GPT-4) maintains

10

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

0.80.77
0.7

0.44

0.24

0.430.44
0.29

0.36
0.23

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

1.0

0.73
0.60.60

0.300.36
0.270.26

0.46

0.24

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

1.0

0.77

0.3

0.60

0.18

0.68
0.58

0.44

0.260.21

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

0.8

0.66

0.3
0.21

0.450.450.460.42

0.12
0.26

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

0.8
0.73

0.50.41

0.58
0.650.63

0.340.28
0.21

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

0.70.72
0.8

0.19

0.64
0.790.76

0.64

0.280.25

(a) IoT (b) E-Commerce (c) Financial (d) Business Intelligence (e) File Sharing (f) Social Media

HumanDBA
D-Bot(GPT-4)

D-Bot(GPT-3.5)
DNN

DecisionTree
Random Forest

XGBoost
KNN

GPT-4
GPT-3.5

Figure 8: Performance Comparison (Result Accuracy).

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.730.77

0.55

0.180.14
0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.92

0.530.51

0.26
0.09

0.0

0.2

0.4

0.6

0.8

1.0
Hu

m
an

 A
cc

ur
ac

y
(H

Ev
al

)
0.96

0.77

0.30
0.160.11

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.78

0.52
0.35

0.080.15

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.77
0.57

0.38
0.240.17

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.670.720.72

0.200.18

(a) IoT (b) E-Commerce (c) Financial (d) Business Intelligence (e) File Sharing (f) Social Media

HumanDBA D-Bot(GPT-4) D-Bot(GPT-3.5) GPT-4 GPT-3.5

Figure 9: Performance Comparison (Human Evaluation). We do not include DNN and DecisionTree because they either have the

black-box problem or fail to provide root cause analysis that is easy to understand by humans.

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.77

0.39 0.35

0.02
0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.53

0.15

0.34
0.24

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.77

0.17 0.19
0.32

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.52
0.41

0.18 0.19

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.57

0.18 0.12 0.12

0.0

0.2

0.4

0.6

0.8

1.0

Hu
m

an
 A

cc
ur

ac
y

(H
Ev

al
)

0.72

0.19
0.11

0.18

(a) IoT (b) E-Commerce (c) Financial (d) Business Intelligence (e) File Sharing (f) Social Media

D-Bot(GPT-4) NoKnowledge NoTreeSearch NoMultiLLM

Figure 10: Ablation Study (Human Evaluation)

stable performance across different types of anomalies. D-Bot (GPT-
3.5) and other methods like DNN , DecisionTree, GPT-4, and GPT-3.5
show a general trend of lower performance in both Acc and HEval,
especially in multi-cause anomalies, highlighting the complexity of

these scenarios that require advanced diagnosis methods like D-Bot.
Meanwhile, for HumanDBA, the HEval scores are relatively high

for both single (0.720) and multi-cause anomalies (0.806), demon-

strating the necessity of understanding human experience.

Finding 2. D-Bot provides a more balanced and reliable perfor-
mance across diverse and complex anomaly types.

LLM Factors. The performance gap between D-Bot (GPT-4) and D-
Bot (GPT-3.5) is significant, with D-Bot (GPT-4) outperforming D-Bot
(GPT-3.5) by up to 30% in accuracy and stability in applications. D-
Bot (GPT-4) excels in generating precise tool calling commands and

comprehensive diagnosis summaries. For instance, it adeptly iden-

tifies complex queries involving large table fetches, a task where

D-Bot (GPT-3.5) often falls short. In contrast, D-Bot (GPT-3.5) is
prone to producing more generalized and sometimes inaccurate

action commands, leading to less effective outcomes.

8.4 Ablation Study

As shown in Figure 10, we verify the effectiveness of threemain com-

ponents in D-Bot, i.e., document knowledge matching (NoKnowl-
edge), tree-search-based reasoning (NoTreeSearch), and multi-agent

diagnosis (SingleLLM).

8.4.1 Document Knowledge Matching. Without the relevant knowl-

edge in the prompt, LLM experts mainly rely on expert settings (i.e.,

role, task, steps) to call tools and analyze root causes. When com-

paring NoKnowledge to D-Bot, we observe a decrease in diagnosis

accuracy ranging from 19.2% to 64.1%. We have two observations.

First, NoKnowledge produces significantly more redundant root

causes (e.g., 2.05 times against D-Bot (GPT-4)), as it can’t clearly tell

apart relevant root causes using just the context. For instance, root

causes like “many inserts” and “large data insert” both involve insert

operations, but identifying them correctly requires specific knowl-

edge about details like the number of insert operations and table

sizes. Second, like the baselines, NoKnowledge often provides very

general diagnoses (e.g., “abnormal patterns in CPU processes”) and

fails to accurately identify many anomalies. Moreover, we also find

that, although LLMs like GPT-4 are pre-trained on open corpora,

they need external knowledge matching (fine-tuning is limited in

updating knowledge) for specialized tasks like database diagnosis.

11

8.4.2 Tree Search Based Diagnosis. NoTreeSearch diagnoses less

effectively than D-Bot (GPT-4), showing a performance decrease by

over 35.85%. It verifies that tree search plays an important role in

correcting wrong knowledge matching or tool API callings (actions

for extending child nodes), which significantly enhances the diag-

nosis accuracy, particularly for single-cause anomalies that involve

various reasoning choices. For instance, in scenarios such as identi-

fying specific query-related issues or optimizing database knobs,

tree search enables D-Bot (GPT-4) to navigate through multiple

potential solutions and pinpoint the most effective one.

8.4.3 Multi-Agent Diagnosis. Our analysis verifies the effective-
ness of multi-agent mode (D-Bot (GPT-4)) over single-agent mode

(single). For instance, in the IoT application, D-Bot (GPT-4) achieves
a 77.27% success rate in identifying root causes, a substantial in-

crease from the 75.45% success rate of SingleLLM . Besides, our tests

on average diagnosis time revealed that D-Bot (multi-agent mode)

is more efficient compared to SingleLLM (single-agent mode). The

reasons are two-fold. First, D-Bot employs more than two experts in

average (at most three), which utilize different metrics and domain

knowledge to explore root causes and derive more root causes than

SingleLLM . And these root causes are further examined, selected

and refined during cross-review. Thus, D-Bot achieves higher di-
agnosis accuracy than SingleLLM . Second, although D-Bot takes
time to select experts and conduct cross-reviews, the asynchronous

mechanism reduces the iteration turns of tree-search algorithm in

single experts, which generally take most diagnosis time. And so

D-Bot is also more efficient than SingleLLM in diagnosis time.

Finding 4. Techniques proposed in D-Bot are crucial to boost
diagnosis accuracy by reducing redundant root causes and en-
hancing precise anomaly identification.

8.5 Evaluation on Hyper-Parameters

Next we evaluate the impact of hyper-parameters in D-Bot, in-
cluding (𝑖) the maximal number of retrieved knowledge chunks

(denoted as Knowledge chunk Numbers), (𝑖𝑖) the maximal number

of matched tool APIs (denoted as Tool API Numbers), and (𝑖𝑖𝑖) the
maximal number of explored diagnosis paths during tree search,

which a critical hyper-parameter that affects the diagnosis turns

(denoted as Tree Search Paths).

1 2 3 4 5
Knowledge Chunk Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

150

200

250

300

350

400

Di
ag

no
sis

 L
at

en
cy

 (S
ec

on
ds

)

Figure 11: The Effectiveness of chunk_num parameter.

Knowledge Chunk Numbers. As shown in Figure 11, the di-

agnosis accuracy gets better when the knowledge chunk number

increases from 1 to 2, but unexpectedly decreases when more than

2 chunks are used. There are two reasons. First, unlike RAG texts,

the knowledge chunks in D-Bot are self-contained; each one pro-

vides a relatively complete analysis for an anomaly context (e.g.,

analyzing the root causes of severe CPU contention). Thus, 1 to

2 retrieved chunks are optimal for use in D-Bot. Second, to add

additional knowledge chunks (e.g., 3 to 5), we need to loosen the

threshold (e.g., from 0.4 to 0.5) for similarity search, which could

lead to retrieving potentially irrelevant knowledge chunks. This

increase in irrelevant information can mislead the diagnosis process

(e.g., network analysis for a standalone database).

3 8 13 18 23 28
Tool API Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

150

200

250

300

350

400

Di
ag

no
sis

 L
at

en
cy

 (S
ec

on
ds

)

Figure 12: The Effectiveness of tool_num parameter.

Tool API Numbers. As show in Figure 12, there are no obvi-

ous performance or overhead gains with the increase of tool APIs.

First, agents in D-Bot are designed to represent more specific, finer-

grained diagnosis sub-areas, thereby eliminating the need to call

many tools to complete a comprehensive diagnosis (e.g., 2 to 3 tools

at most). Second, too many tools increase the risk of calling the

useless tools, where the agent may not find the root causes within

limited steps. Meanwhile, too few tools also may cause agents to

make up some facts and cause diagnosis failures.

1 2 3 4 5
Tree Search Paths

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lt
Ac

cu
ra

cy
 (A

cc
)

200

300

400

500

600

700

800

900

1000

Di
ag

no
sis

 L
at

en
cy

 (S
ec

on
ds

)

Figure 13: The Effectiveness of search_paths parameter.

Tree Search Paths. As shown in Figure 13, D-Bot achieves better
performance with search_paths increasing from 1 to 4, but the diag-

nosis overhead also significantly increases after the search_paths is
higher than 3. First, during tree search, higher search_paths means

D-Bot can try out more diagnosis paths that potentially gain higher

database benefits, which can increase the diagnosis success rate.

However, in each path, the LLM agent can conduct at most 24 di-

agnosis steps, and thus is costly if the value of search_paths is too
large. Thus, generally we set the search_paths as 2 or 3 for relatively
complex anomalies.

8.6 Model Fine-tuning

Preparation.We first record the diagnosis processes of D-Bot (GPT-
4) consisting of 5 sub-tasks (e.g., tool calling) and 2819 samples in

total (see Figure 14(a)). We mix them together as a multi-task fine-

tuning dataset. Specifically, the model input includes the prompt

and historical messages, and we fine-tune LLMs to simulate the

correspondingD-Bot (GPT-4) response (after cleansed). LLMs are im-

plemented using PyTorch and BMTrain [63], trained on a machine

with 503 GB RAM and 1 NVIDIA A100 GPU.

Training Procedure. We fine-tune three localized SOTA LLMs.

As shown in Figure 14(b), all LLMs converge within 10 epochs. We

12

(a) Subtasks in Finetuning Samples (b) Training Loss for Localized LLMs

(c) Testing Results (Acc)

e-commerce

financialIoT

BI

file sharing social media

0 0.2 0.4 0.6 0.8 1

GPT-4
Baichuan2
CodeLlama

(d) Testing Results (HEval)

e-commerce

financialIoT

BI

file sharing social media

0 0.2 0.4 0.6 0.8 1

GPT-4
Baichuan2
CodeLlama

Loading [MathJax]/extensions/MathMenu.js

e-commerce

financialIoT

BI

file sharing social media

0 0.2 0.4 0.6 0.8 1

D-Bot(GPT-4)
D-Bot(Baichuan2)
D-Bot(CodeLlama)

e-commerce

financialIoT

BI

file sharing social media

0 0.2 0.4 0.6 0.8 1

D-Bot(GPT-4)
D-Bot(Baichuan2)
D-Bot(CodeLlama)

Figure 14: Performance of Model Finetuning.

then manually select the best epoch checkpoints (i.e., 4th epoch

for Llama 2, 1st epoch for CodeLlama, 10th epoch for Baichuan
2). Note the obvious loss reduction does not mean increasing model
performance. We find many epoch checkpoints with low losses

often over-fit the fine-tuning data (e.g., losing the text generation

capabilities and tending to generate short confusing responses).

Besides, Llama 2 cannot generate reasonable diagnosis results (Acc
equals 0 for most cases) even in the best epoch.

Performance Comparison. As shown in Figure 14(c)-(d), the

demonstrated LLMs after fine-tuning achieve comparable perfor-

mance to GPT-4 in 27 test cases. We have several observations. First,

CodeLlama performs best in financial, IoT and BI applications, be-

cause CodeLlama is specialized for code generation, which is more

sensitive to metrics and queries. For instance, it can accurately

identify slow queries involving multiple JOINs as root cause. Sec-
ond, Baichuan2 performs best for file application, which can assign

suitable experts (e.g., Memory Expert), and analyze root causes in

detail (e.g., pointing out disk I/O under-provisioned in the hardware

configuration). However, the HEval performance of Baichuan2 in
financial application significantly degrades. For example, the model

may list many root causes but does not give well-founded analysis.

Third, GPT-4 performs best for e-commerce and media applications,

and shows balanced performance across all applications. Moreover,

the localized LLMs show less generalizability to unfamiliar anom-

alies. For instance, the number of samples with delete operations
as root causes is much smaller than others, causing the fine-tuned

LLMs to often fail in these cases.

Finding 5. D-Bot using localized SOTA LLMs can achieve com-
parable diagnosis performance to D-Bot (GPT-4), but their
generalizability is greatly affected by the fine-tuning samples.

9 RELATEDWORK

Database Diagnosis. Existing works mainly rely on empirical

rules and classification methods to analyze root causes. The ADDM

tool [11] maintains a graph of database resource modules, based

on which they estimate the query execution time and infer the

bottlenecks. DBSherlock [62] utilizes a decision-tree-like method

to construct predicates (in the form of 𝐴𝑡𝑡𝑟 > 𝑘). ISQUAD [34]

generates root causes by clustering queries with their metric vectors.

However, these methods require great human intervention (e.g.,

designing rules, features, labels). Besides, they lack some critical

capabilities (e.g., accepting new contextual information, analyzing

query logs) for real-world diagnosis. Although there are some LLM-

based methods that incorporate maintenance knowledge [31], they

focus on general chatbot tools (e.g., Q&A exercises) and also fail to

conduct scenario-specific diagnosis.

LLM Agents. Recent works have shown LLMs, when coupled

with memory mechanisms and advanced tools, can imitate human-

like interactions and decision-making in real world [41, 50, 59].

First, the augmentation of LLM agents with a variety of tools —

ranging from web browser [36, 40] and wikipedia search [52, 61], to

code interpreter [9, 15, 33] and multifaceted toolsets [44, 49] — has

significantly enhanced LLM’s adaptability. Besides individual agent

skills, there is increasing interest in coordinating multiple LLM

agents to utilize collective intelligence [14, 19, 27, 38, 58]. Notably,

AgentVerse [10] shows that teamwork among multiple LLM agents

can perform better than single agents in many tasks. D-Bot presents
an LLM-powered diagnosis system in the multi-agent paradigm.

10 CONCLUSION

In this paper, we proposed a database diagnosis system leveraging

large language models (LLMs). We conducted offline knowledge

extraction from documents and prepared function APIs from exist-

ing tools. We matched with suitable knowledge and APIs into LLM

prompt for online diagnosis, and we proposed a tree search-based

algorithm to accurately and effectively utilize tools and conduct

analysis with knowledge. We designed a collaborative diagnosis

mechanism that improved the efficiency with the collaboration

of multiple LLMs. Experimental results showed D-Bot achieved
remarkable improvements over baselines and human DBAs.

ACKNOWLEDGMENTS

We thank (1) Wei Zhou for tool plugin assistant and his careful

proofreading and valuable revision advice, (2) Dongfeng Li for

anomaly simulation support, (3) Xiaohui Nie, Dan Pei, Binyuan

Hui, Chen Qian, Yu Shen for their valuable advice on this re-

search. We thank the anonymous reviewers for their careful

reading of our manuscript and their many insightful comments

and suggestions. This paper was supported by National Key R&D

Program of China under Grant Number 2023YFB4503600, NSF of

China (61925205, 62232009, 62102215), and Zhongguancun Lab.

13

REFERENCES

[1] 2023. HypoPG. Retrieved December 1, 2023 from https://github.com/HypoPG/

hypopg

[2] 2023. OpenAI. Retrieved December 1, 2023 from https://openai.com/

[3] 2023. PGTune - calculate configuration for PostgreSQL based on the maximum
performance for a given hardware configuration. Retrieved December 1, 2023

from https://pgtune.leopard.in.ua/

[4] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and

Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized

query processing over heterogeneous data sources. In Proceedings of the 2018
International Conference on Management of Data. 221–230.

[5] Vance W Berger and YanYan Zhou. 2014. Kolmogorov–smirnov test: Overview.

Wiley statsref: Statistics reference online (2014).
[6] Harrison Chase. 2022. LangChain. https://github.com/hwchase17/langchain.

[7] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index

Selection Tool for Microsoft SQL Server. In VLDB. 146–155.
[8] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In sigkdd. 785–794.
[9] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2022. Pro-

gram of Thoughts Prompting: Disentangling Computation from Reasoning for

Numerical Reasoning Tasks. CoRR abs/2211.12588 (2022). https://doi.org/10.

48550/arXiv.2211.12588 arXiv:2211.12588

[10] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian,

Chi-Min Chan, Yujia Qin, Yaxi Lu, Ruobing Xie, Zhiyuan Liu, Maosong Sun,

and Jie Zhou. 2023. AgentVerse: Facilitating Multi-Agent Collaboration and

Exploring Emergent Behaviors in Agents. CoRR abs/2308.10848 (2023). https:

//doi.org/10.48550/arXiv.2308.10848 arXiv:2308.10848

[11] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Gra-

ham Wood. 2005. Automatic Performance Diagnosis and Tuning in Oracle. In

Second Biennial Conference on Innovative Data Systems Research, CIDR 2005, Asilo-
mar, CA, USA, January 4-7, 2005, Online Proceedings. www.cidrdb.org, 84–94.

http://cidrdb.org/cidr2005/papers/P07.pdf

[12] Ning Ding, Shengding Hu,Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng,

and Maosong Sun. 2021. Openprompt: An open-source framework for prompt-

learning. arXiv preprint arXiv:2111.01998 (2021).
[13] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi,

and Noah Smith. 2020. Fine-tuning pretrained language models: Weight ini-

tializations, data orders, and early stopping. arXiv preprint arXiv:2002.06305
(2020).

[14] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mor-

datch. 2023. Improving Factuality and Reasoning in Language Models through

Multiagent Debate. CoRR abs/2305.14325 (2023). https://doi.org/10.48550/arXiv.

2305.14325 arXiv:2305.14325

[15] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,

Jamie Callan, and Graham Neubig. 2023. PAL: Program-aided Language Models.

In International Conference on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA (Proceedings of Machine Learning Research, Vol. 202),
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan

Sabato, and Jonathan Scarlett (Eds.). PMLR, 10764–10799. https://proceedings.

mlr.press/v202/gao23f.html

[16] Cyril Goutte and Eric Gaussier. 2005. A probabilistic interpretation of precision,

recall and F-score, with implication for evaluation. In European conference on
information retrieval. Springer, 345–359.

[17] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNN

model-based approach in classification. In CoopIS. Springer, 986–996.
[18] Li Hai-Xiang, Li Xiao-Yan, Liu Chang, and et al. 2021. Systematic definition

and classification of data anomalies in DBMS (English Version). arXiv preprint
arXiv:2110.14230 (2021).

[19] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao

Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,

Lingfeng Xiao, and Chenglin Wu. 2023. MetaGPT: Meta Programming for

Multi-Agent Collaborative Framework. CoRR abs/2308.00352 (2023). https:

//doi.org/10.48550/ARXIV.2308.00352 arXiv:2308.00352

[20] Shiyue Huang, ZiweiWang, Xinyi Zhang, Yaofeng Tu, Zhongliang Li, and Bin Cui.

2023. DBPA: A Benchmark for Transactional Database Performance Anomalies.

Proc. ACM Manag. Data 1, 1 (2023), 72:1–72:26. https://doi.org/10.1145/3588926

[21] Lianyuan Jin and Guoliang Li. 2021. AI-based Database Performance Diagnosis.

Journal of Software 32, 3 (2021), 845–858.
[22] Prajakta Kalmegh, Shivnath Babu, and Sudeepa Roy. 2019. iQCAR: inter-Query

Contention Analyzer for Data Analytics Frameworks. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold,

Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 918–935.

https://doi.org/10.1145/3299869.3319904

[23] Kamran Khan, Saif Ur Rehman, Kamran Aziz, Simon Fong, and Sababady Saras-

vady. 2014. DBSCAN: Past, present and future. In ICADIWT 2014. IEEE, 232–238.
[24] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging

system for log processing. In Proceedings of the NetDB, Vol. 11. Athens, Greece,

1–7.

[25] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep

Reinforcement Learning. In CIKM. ACM, 2105–2108. https://doi.org/10.1145/

3340531.3412106

[26] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez,

Ion Stoica, Xuezhe Ma, and Hao Zhang. 2023. How Long Can Context Length

of Open-Source LLMs truly Promise?. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following.

[27] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and

Bernard Ghanem. 2023. CAMEL: Communicative Agents for "Mind" Exploration

of Large Scale Language Model Society. CoRR abs/2303.17760 (2023). https:

//doi.org/10.48550/arXiv.2303.17760 arXiv:2303.17760

[28] Zeyan Li, Nengwen Zhao, Mingjie Li, et al. 2022. Actionable and interpretable

fault localization for recurring failures in online service systems. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 996–1008.

[29] Ping Liu, Shenglin Zhang, Yongqian Sun, Yuan Meng, Jiahai Yang, and Dan

Pei. 2020. FluxInfer: Automatic Diagnosis of Performance Anomaly for Online

Database System. In 39th IEEE International Performance Computing and Com-
munications Conference, IPCCC 2020, Austin, TX, USA, November 6-8, 2020. IEEE,
1–8. https://doi.org/10.1109/IPCCC50635.2020.9391550

[30] Xiaoze Liu, Zheng Yin, Chao Zhao, Congcong Ge, Lu Chen, Yunjun Gao, Dimeng

Li, Ziting Wang, Gaozhong Liang, Jian Tan, and Feifei Li. 2022. PinSQL: Pinpoint

Root Cause SQLs to Resolve Performance Issues in Cloud Databases. In 38th IEEE
International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,
May 9-12, 2022. IEEE, 2549–2561. https://doi.org/10.1109/ICDE53745.2022.00236

[31] Yuhe Liu, Changhua Pei, Longlong Xu, Bohan Chen, Mingze Sun, Zhirui Zhang,

Yongqian Sun, Shenglin Zhang, Kun Wang, Haiming Zhang, et al. 2023. OpsEval:

A Comprehensive Task-Oriented AIOps Benchmark for Large Language Models.

arXiv preprint arXiv:2310.07637 (2023).

[32] Xianglin Lu, Zhe Xie, Zeyan Li, Mingjie Li, Xiaohui Nie, Nengwen Zhao,

Qingyang Yu, Shenglin Zhang, Kaixin Sui, Lin Zhu, and Dan Pei. 2022. Generic

and Robust Performance Diagnosis via Causal Inference for OLTP Database

Systems. In 22nd IEEE International Symposium on Cluster, Cloud and Inter-
net Computing, CCGrid 2022, Taormina, Italy, May 16-19, 2022. IEEE, 655–664.
https://doi.org/10.1109/CCGrid54584.2022.00075

[33] Killian Lucas. 2023. Open Interpreter. https://github.com/charlespwd/project-

title.

[34] Minghua Ma, Zheng Yin, Shenglin Zhang, and et al. 2020. Diagnosing Root

Causes of Intermittent Slow Queries in Large-Scale Cloud Databases. Proc. VLDB
Endow. 13, 8 (2020), 1176–1189. https://doi.org/10.14778/3389133.3389136

[35] Haroon Malik and Elhadi M Shakshuki. 2016. Towards identifying performance

anomalies. Procedia Computer Science 83 (2016), 621–627.
[36] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina

Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu

Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew

Knight, Benjamin Chess, and John Schulman. 2021. WebGPT: Browser-

assisted question-answering with human feedback. CoRR abs/2112.09332 (2021).

arXiv:2112.09332 https://arxiv.org/abs/2112.09332

[37] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. 2017. DUCT: An upper

confidence bound approach to distributed constraint optimization problems.

ACM Transactions on Intelligent Systems and Technology (TIST) 8, 5 (2017), 1–27.
[38] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy

Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra

of Human Behavior. CoRR abs/2304.03442 (2023). https://doi.org/10.48550/arXiv.

2304.03442 arXiv:2304.03442

[39] Chen Qian, Xin Cong, Cheng Yang,Weize Chen, Yusheng Su, and et al. 2023. Com-

municative Agents for Software Development. arXiv preprint arXiv:2307.07924
(2023).

[40] Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin,

Xu Han, Ning Ding, Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan Liu,

Maosong Sun, and Jie Zhou. 2023. WebCPM: Interactive Web Search for Chinese

Long-form Question Answering. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, Anna Rogers, Jordan L. Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, 8968–8988. https:

//doi.org/10.18653/v1/2023.acl-long.499

[41] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni

Zeng, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong

Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen,

Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu,

Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi

Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu,

Heng Ji, Zhiyuan Liu, and Maosong Sun. 2023. Tool Learning with Foundation

Models. CoRR abs/2304.08354 (2023). https://doi.org/10.48550/arXiv.2304.08354

arXiv:2304.08354

[42] Yujia Qin, Shengding Hu, Yankai Lin, and et al. 2023. Tool learning with founda-

tion models. arXiv preprint arXiv:2304.08354 (2023).

14

https://github.com/HypoPG/hypopg
https://github.com/HypoPG/hypopg
https://openai.com/
https://pgtune.leopard.in.ua/
https://github.com/hwchase17/langchain
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://arxiv.org/abs/2211.12588
https://doi.org/10.48550/arXiv.2308.10848
https://doi.org/10.48550/arXiv.2308.10848
https://arxiv.org/abs/2308.10848
http://cidrdb.org/cidr2005/papers/P07.pdf
https://doi.org/10.48550/arXiv.2305.14325
https://doi.org/10.48550/arXiv.2305.14325
https://arxiv.org/abs/2305.14325
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/ARXIV.2308.00352
https://doi.org/10.48550/ARXIV.2308.00352
https://arxiv.org/abs/2308.00352
https://doi.org/10.1145/3588926
https://doi.org/10.1145/3299869.3319904
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.48550/arXiv.2303.17760
https://doi.org/10.48550/arXiv.2303.17760
https://arxiv.org/abs/2303.17760
https://doi.org/10.1109/IPCCC50635.2020.9391550
https://doi.org/10.1109/ICDE53745.2022.00236
https://doi.org/10.1109/CCGrid54584.2022.00075
https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title
https://doi.org/10.14778/3389133.3389136
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://doi.org/10.48550/arXiv.2304.03442
https://doi.org/10.48550/arXiv.2304.03442
https://arxiv.org/abs/2304.03442
https://doi.org/10.18653/v1/2023.acl-long.499
https://doi.org/10.18653/v1/2023.acl-long.499
https://doi.org/10.48550/arXiv.2304.08354
https://arxiv.org/abs/2304.08354

[43] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,

Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie

Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023. Tool-

LLM: Facilitating Large Language Models to Master 16000+ Real-world APIs.

arXiv:2307.16789 [cs.AI]

[44] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai

Lin, Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing

Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.

ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world

APIs. CoRR abs/2307.16789 (2023). https://doi.org/10.48550/arXiv.2307.16789

arXiv:2307.16789

[45] Raji Ramachandran, R Nidhin, and PP Shogil. 2018. Anomaly detection in role

administered relational databases—A novel method. In ICACCI. IEEE, 1017–1021.
[46] Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A Survey of Hallucination in

Large Foundation Models. arXiv preprint arXiv:2309.05922 (2023).
[47] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
[48] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance

framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[49] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,

Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer:

Language Models Can Teach Themselves to Use Tools. CoRR abs/2302.04761

(2023). https://doi.org/10.48550/arXiv.2302.04761 arXiv:2302.04761

[50] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and

Shunyu Yao. 2024. Reflexion: Language agents with verbal reinforcement learn-

ing. Advances in Neural Information Processing Systems 36 (2024).
[51] Yan-Yan Song and LU Ying. 2015. Decision tree methods: applications for classi-

fication and prediction. Shanghai archives of psychiatry 27, 2 (2015), 130.

[52] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.

2023. Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-

Intensive Multi-Step Questions. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, Anna Rogers, Jordan L. Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, 10014–10037. https:

//doi.org/10.18653/v1/2023.acl-long.557

[53] Immanuel Trummer. 2022. DB-BERT: A Database Tuning Tool that "Reads

the Manual". In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and

Amr El Abbadi (Eds.). ACM, 190–203. https://doi.org/10.1145/3514221.3517843

[54] Gary Valentin, Michael Zuliani, Daniel C. Zilio, GuyM. Lohman, and Alan Skelley.

2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.

In ICDE. 101–110.
[55] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,

Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. Wetune: Automatic discovery

and verification of query rewrite rules. In Proceedings of the 2022 International
Conference on Management of Data. 94–107.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-

ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[57] Kyu-Young Whang. 1987. Index Selection in Relational Databases. Foundations
of Data Organization (1987), 487–500.

[58] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang

Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. AutoGen:

Enabling Next-Gen LLM Applications via Multi-Agent Conversation Frame-

work. CoRR abs/2308.08155 (2023). https://doi.org/10.48550/arXiv.2308.08155

arXiv:2308.08155

[59] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan

Cao, and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate

Problem Solving with Large Language Models. In NeurIPS, Alice Oh,

Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and

Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/

271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html

[60] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.

arXiv preprint arXiv:2210.03629 (2022).
[61] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R.

Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Act-

ing in Language Models. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.
https://openreview.net/pdf?id=WE_vluYUL-X

[62] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock: A Perfor-

mance Diagnostic Tool for Transactional Databases. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and

Sam Madden (Eds.). ACM, 1599–1614. https://doi.org/10.1145/2882903.2915218

[63] Guoyang Zeng, XuHan, Zhengyan Zhang, Zhiyuan Liu, Yankai Lin, andMaosong

Sun. 2023. OpenBMB: Big Model Systems for Large-Scale Representation Learn-

ing. In Representation Learning for Natural Language Processing. Springer Nature
Singapore Singapore, 463–489.

[64] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan

Wang, Lei Shen, Andi Wang, Yang Li, et al. 2023. Codegeex: A pre-trained

model for code generation with multilingual evaluations on humaneval-x. arXiv
preprint arXiv:2303.17568 (2023).

[65] Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. 2023. Llm as dba. arXiv preprint
arXiv:2308.05481 (2023).

[66] Xuanhe Zhou, Luyang Liu, and et al. 2022. Autoindex: An incremental index

management system for dynamic workloads. In ICDE. IEEE, 2196–2208.
[67] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,

Harris Chan, and Jimmy Ba. 2022. Large Language Models Are Human-Level

Prompt Engineers. (2022). arXiv:2211.01910 http://arxiv.org/abs/2211.01910

[68] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,

Harris Chan, and Jimmy Ba. 2022. Large language models are human-level

prompt engineers. arXiv preprint arXiv:2211.01910 (2022).

15

,

https://arxiv.org/abs/2307.16789
https://doi.org/10.48550/arXiv.2307.16789
https://arxiv.org/abs/2307.16789
https://doi.org/10.48550/arXiv.2302.04761
https://arxiv.org/abs/2302.04761
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.1145/3514221.3517843
https://doi.org/10.48550/arXiv.2308.08155
https://arxiv.org/abs/2308.08155
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/pdf?id=WE_vluYUL-X
https://doi.org/10.1145/2882903.2915218
https://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Database Performance Anomalies
	2.2 Database Performance Diagnosis
	2.3 Large Language Models

	3 The Overview of D-Bot
	4 Offline Preparation
	4.1 Document Learning
	4.2 Tool Preparation

	5 Diagnosis Prompt Generation
	5.1 Knowledge Retrieval
	5.2 Tool Matching

	6 Tree Search For LLM Diagnosis
	7 Collaborative Database Diagnosis
	8 EXPERIMENT RESULTS
	8.1 Environment Setup
	8.2 Micro Diagnosis Benchmark
	8.3 Performance Comparison
	8.4 Ablation Study
	8.5 Evaluation on Hyper-Parameters
	8.6 Model Fine-tuning

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

