
Data Min Knowl Disc (2009) 18:472–516
DOI 10.1007/s10618-009-0126-5

Incremental sequence-based frequent query pattern
mining from XML queries

Guoliang Li · Jianhua Feng · Jianyong Wang ·
Lizhu Zhou

Received: 16 May 2008 / Accepted: 20 January 2009 / Published online: 12 February 2009
Springer Science+Business Media, LLC 2009

Abstract Existing algorithms of mining frequent XML query patterns (XQPs)
employ a candidate generate-and-test strategy. They involve expensive candidate enu-
meration and costly tree-containment checking. Further, most of existing methods
compute the frequencies of candidate query patterns from scratch periodically by
checking the entire transaction database, which consists of XQPs transferred from user
query logs. However, it is not straightforward to maintain such discovered frequent
patterns in real XML databases as there may be frequent updates that may not only
invalidate some existing frequent query patterns but also generate some new frequent
query patterns. Therefore, a drawback of existing methods is that they are rather ineffi-
cient for the evolution of transaction databases. To address above-mentioned problems,
this paper proposes an efficient algorithm ESPRIT to mine frequent XQPs without
costly tree-containment checking. ESPRIT transforms XML queries into sequences
using a one-to-one mapping technique and mines the frequent sequences to gener-
ate frequent XQPs. We propose two efficient incremental algorithms, ESPRIT-i and
ESPRIT-i+, to incrementally mine frequent XQPs. We devise several novel optimi-
zation techniques of query rewriting, cache lookup, and cache replacement to improve

Responsible editor: M. J. Zaki.

G. Li (B) · J. Feng · J. Wang · L. Zhou
Department of Computer Science and Technology, Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, Beijing 100084, China
e-mail: liguoliang@tsinghua.edu.cn

J. Feng
e-mail: fengjh@tsinghua.edu.cn

J. Wang
e-mail: jianyong@tsinghua.edu.cn

L. Zhou
e-mail: dcszlz@tsinghua.edu.cn

123

Incremental sequence-based frequent query pattern mining 473

the answerability and the hit rate of caching. We have implemented our algorithms
and conducted a set of experimental studies on various datasets. The experimental
results demonstrate that our algorithms achieve high efficiency and scalability and
outperform state-of-the-art methods significantly.

Keywords XML query patterns · Frequent query patterns · XML frequent pattern
mining · Incremental mining · Sequential pattern mining

1 Introduction

XML has become a standard for information representation and exchange over the
Internet. Many researchers have studied the problem of XML indexing (Milo et al.
1999; Kaushik et al. 2002; Qun et al. 2003), XML document clustering (Aggarwal
et al. 2007), frequent XQP discovering (Chen et al. 2004; Li et al. 2006b; Yang et al.
2003a,b), and XML query caching and answering (Yang et al. 2003a; Balmin et al.
2004; Mandhani and Suciu 2005; Li et al. 2006a; Feng et al. 2007).

Discovering frequent XML query patterns (XQPs) turns out to be a significant and
effective premise of query optimization for its capability of “focus” capturing. The
rapid growth of XML repositories has provided the impetus to design and develop
systems that can store and query XML data efficiently, and thus discovering frequent
XQPs has attracted great attention recently as the answers of these queries can be
stored and cached so as to improve query performance. The advantage of caching is
that when a user refines a query by adding or removing one or more query terms,
many of the answers that have already been cached can be delivered to the user
right away. This avoids the expensive evaluation of repeated or similar queries. For a
heavily loaded backend server, these savings can be significant. This kind of middle-
tier caching has become popular for web applications using relational databases (Luo
et al. 2002). Further, the caching module can also be maintained on a different data-
base system, on a remote host. Thus, unlike the page-based buffer cache, it can be
employed in a distributed setting too. The caching system can also be employed in a
setting like distributed XQuery (Re et al. 2004) where sub-queries of a query might
refer to remote XML data sources, connected over a WAN. Here, a sub-query that hits
in the local cache will not have to be sent over the network, and the savings can be
significant.

It is a big challenge to select suitable queries for effectively caching. Existing
methods (Yang et al. 2003a,b, 2004) mine the frequent XML queries for caching.
FastXMiner (Yang et al. 2003a) and 2PXMiner (Yang et al. 2004) are the state-of-
the-art algorithms on this topic. Given the user log database composed of a set of
XML queries, they model the queries as trees with special XML query constructs like
descendant edges (‘//’) or wildcards (‘*’), and extend frequent structure mining tech-
niques to extract frequent subtrees following XML query semantics. They typically
follow a candidate generate-and-test strategy, which includes two steps: (1) enumer-
ate the candidates by extending an edge from query patterns that have been mined or
joining two frequent query patterns; and (2) test the candidates through tree-contain-
ment checking. The first step is expensive to join XQPs if there are large numbers

123

474 G. Li et al.

of frequent query patterns. The second step is rather expensive as it has been proven
to be NP-complete (Yang et al. 2003a). 2PXMiner proposes the transaction summary
structure to reduce the number of costly tree-containment tests.

Another drawback of existing methods is that they cannot handle the evolution of
log databases. They assume the user logs are static and always compute the frequencies
of candidate query patterns from scratch in order to get the up-to-date frequent query
patterns. However, the log database is frequently updated at a relatively high rate,
and existing methods are rather inefficient to mine the dynamic log database using
a from-scratch way. Moreover, it is not straightforward to maintain such discovered
frequent X Q Ps in the real XML-DBMS. Because the updates may not only invalidate
existing frequent X Q Ps but also generate some new frequent X Q Ps. Accordingly,
it is important to study the efficient algorithms for incremental updates of frequent
X Q Ps as the query collection changes. Chen et al. (2004) proposed an algorithm
increQPMiner, which incrementally mines the frequent XML queries based on the
same candidate generate-and-test strategy as FastMiner (Yang et al. 2003a).

Based on above observations, in this paper, we propose an Efficient Sequence-based
mining of frequent Pattern algoRIThm, namely ESPRIT. ESPRIT transforms XML
queries into sequences with a one-to-one mapping, and extends the well-known algo-
rithm PrefixSpan (Pei et al. 2001) to mine frequent sequences with constraint so as to
generate frequent XQPs. To facilitate the mining of evolving databases, we propose
two efficient incremental algorithms ESPRIT-i and ESPRIT-i+ to incrementally
mine frequent XML query patterns by employing novel indices and making full use
of the frequent sequences that have already been mined. To summarize, we make the
following contributions:

• We transform XQPs into sequences using a one-to-one mapping from an X Q P to
an Inverted Labeled Prüfer Sequence (ILPS). We mine frequent XQPs by mining
frequent sequences.

• We devise two novel algorithms ESPRIT-i and ESPRIT-i+ to incrementally
mine frequent XQPs from continuously updated databases. We propose two effi-
cient indices to facilitate the incremental mining and incorporate the novel indices
into our incremental algorithms.

• We examine several optimization techniques of query rewriting, cache lookup, and
cache replacement to improve the answerability and the hit rate of caching.

• We have implemented our proposed algorithms and conducted an extensive set of
experimental studies. The experimental results show that our algorithms achieve
much better performance and scalability, and outperform the state-of-the-art
approaches significantly.

The rest of this paper is organized as follows. We formalize the frequent XQP
mining problem in Sect. 2. Section 3 presents our sequence based algorithm ESPRIT
to mine frequent XQPs on static databases. In Sect. 4, we present two efficient algo-
rithms ESPRIT-i and ESPRIT-i+ to incrementally mine frequent XQPs. We present
optimization techniques to improve cache performance in Sect. 5. A thorough experi-
mental study is demonstrated in Sect. 6. Section 7 reviews related works. We conclude
the paper in Sect. 8.

123

Incremental sequence-based frequent query pattern mining 475

Fig. 1 The architecture of ESPRIT

2 Sequence-based frequent XML query pattern mining

We transform XML queries into sequences with a one-to-one mapping, and extend
algorithm PrefixSpan (Pei et al. 2001) to mine frequent sequences with constraint in
order to generate frequent XQPs. Figure 1 illustrates the overall architecture of our
strategy to mine frequent XQPs from scratch. Moreover, we can also mine the evolving
databases by making use of the mined results of the original databases. Note that the
difference between them is that the incremental mining utilizes the mined results for
efficiently discovering up-to-date frequent query patterns.

2.1 Notations

This section briefly introduces some notations for ease of presentation. XML
queries are mainly expressed with XPath or XQuery, which conform to the regu-
lar path expressions. An XML query is usually modeled as a rooted, unordered and
labeled tree.1 In an XML query tree, each vertex denotes a node of the XML query,
and each edge denotes the relationship between two nodes connected by the edge.
In addition to element label/tag names, a query pattern tree may also contain wild-
cards ‘*’ and relative paths ‘//’. The wildcard ‘*’ indicates ANY label/tag in the DTD,
while the relative path ‘//’ indicates zero or many labels (i.e., the descendant-or-self
relationship). Now, we formally model XML query patterns as a tree structure as
follows.

Definition 1 (X Q P). An XQP is modeled as a tree X Q P = <V, E>, where V is the
vertex set and E is the edge set. Each edge e = (v1, v2) indicates node v1 is the parent
of node v2. Each vertex v′s label is one of the tag values in {‘//’, ‘*’} ∪tagSet, where

1 Note that, we can also model XML queries as ordered trees. This is a special case of modeling XML
queries to unordered trees and our method can also apply to this case.

123

476 G. Li et al.

(a) (b) (c)

Fig. 2 XML query pattern. a An XPath, b a general XML query, c XQP

tagSet is the set of all element and attribute names in the schema. We define a partial
order ≺. For any label t ∈ tagSet, t ≺‘*’≺‘//’ denotes that t can be matched by ‘*’,
which in turn can be matched by ‘//’. ‘∗’ can match a single label while ‘//’ can match
zero or many labels.

Note that, for simplicity we assume that all queries are issued to an XML document,
and thus all XQPs are targeted at the same XML tree. This assumption is valid and
employed in the literature (Yang et al. 2003a). Moreover, our method can be adapted
to the case when multiple XML documents are used. To differentiate ‘/’ and ‘//’ and
make an XQP conform to a general tree, we use XQP to represent a query pattern by
taking ‘/’ and ‘//’ as nodes in XQP. For example, in Fig. 2, given an XPath (a), we
model it as a tree (b). We take the edge “//” as a node and get the XQP (c). XQPs in
(a) and (b) are equivalent. X Q Ps are represented in the form of (b) in this paper.

Given an XQP xqp, we denote root(xqp) as the root of xqp. Given a node q in
xqp, subtree(q) denotes the subtree rooted at q and children(q) returns the set of
children of q. Based on these notations, we review two concepts of rooted subtree and
extended subtree inclusion (Yang et al. 2003a).

Definition 2 Rooted SubTree (RST) (Yang et al. 2003a). Given an X Q P = <V, E>,
RST = <V ′, E ′> is a rooted subtree, if it satisfies, (1) root (RST)= root (X Q P); and
(2) V ′ ⊆ V and E ′ ⊆ E .

To discover frequent query patterns, one important issue is testing the occurrence
of a pattern in the database. We adopt the concept of extended subtree inclusion, a
sound approach to test the containment of different query pattern trees (Feng et al.
2006; Li et al. 2006b; Yang et al. 2003a, 2004).

Definition 3 Extended Subtree Inclusion (Yang et al. 2003a). Let subtree(p) and
subtree(q) be two subtrees from the same tree with root nodes p and q respec-
tively. subtree(p) is included/contained in subtree(q) (subtree(q) is also said to
include/contain subtree(p)), denoted by subtree(p) ⊆ subtree(q), if p ≺ q, and
subtree(p) and subtree(q) satisfy,

1. both p and q are leaf nodes; or
2. p is a leaf node and q = //, and ∃q ′ ∈ children(q), subtree(p) ⊆ subtree(q ′); or
3. both p and q are non-leaf nodes, and one of the following conditions holds:

123

Incremental sequence-based frequent query pattern mining 477

(i) ∀p′ ∈ children(p), ∃q ′ ∈ children(q), subtree(p′) ⊆ subtree(q ′); or
(ii) q = // and ∀p′ ∈ children(p), subtree(p′) ⊆ subtree(q); or

(iii) q = // and ∃q ′ ∈ children(q), subtree(p) ⊆ subtree(q ′).

Based on Definition 3, we can recursively check whether an RST is included by an
X Q P . Accordingly, we can account the occurrence of an RST in a given database of
X Q Ps transformed from user query logs. For example, Fig. 3 gives some XQPs and
RSTs. The XQPs in (d), (e), and (f) are the rooted subtrees of X Q Ps in (a), (b), and
(c) respectively. RSTc is included in X Q Pa and X Q Pb (also in X Q Pc), and RSTb is
included in X Q Pa but not in X Q Pc. Figure 4 shows the inclusion.

A transaction database D is a collection of X Q Ps,D = {X Q P1, X Q P2, . . . ,

X Q Pn}, which is transformed from a set of XML queries {q1, q2, . . . , qn}, issued
against a given XML data source. To compute the occurrences of an X Q P in D, we
use the concept of absolute support and relative support. The absolute support of a
rooted subtree RST refers to the total occurrences of X Q Ps in D which contain RST ,
denoted as ASuppD(RST). The relative support is the percentage of X Q Ps that con-
tain RST in D, denoted as RSuppD(RST) = ASuppD(RST)/|D|, where |D| is

(a) (b) (c)

(d) (e) (f)

Fig. 3 XQPs and RSTs. a XQPa, b XQPb, c XQPc, d RSTa, e RSTb, f RSTc

Fig. 4 XQP inclusion

123

478 G. Li et al.

the size of D, i.e., the number of X Q Ps in D. For example, consider the X Q Ps in
Fig. 3, we have ASuppD(RSTc) = 3 and ASuppD(RSTb) = 2 as RSTc is included
in X Q Pa and X Q Pb (also in X Q Pc); RSTb is included in X Q Pa (also in X Q Pb) but
not in X Q Pc. As there are three X Q Ps, RSuppD(RSTb) = 2

3 .
Now, we formalize the problem of frequent X Q P mining as follows.
Frequent XQP Mining Given an XQP database D and a minimum relative support

min_sup in the range of (0, 1], frequent X Q P mining finds a complete set, denoted as
F(D), of all frequent RST s in D such that for each RST in F(D), RSupp(RST) ≥
min_sup holds. We adopt the relative support as our measure of frequency in this paper.

2.2 Incremental frequent XQP mining

Traditionally, the transaction database is dynamically changing as new queries will
be added into the database. Thus, the updates of new queries may not only invalidate
some existing frequent query patterns but also generate some new frequent query pat-
terns. However, general mining algorithms always directly mine the updated database
from scratch, and thus involve too many scans on the original database D and the
incremental database d without utilizing the existing mined frequent query patterns
that have been already gotten (F(D)). To make full use of F(D), in this paper, we
study the problem of incremental frequent X Q P mining. To formalize this problem,
the concepts of incremental database and updated database (Chen et al. 2004) are
used in this paper.

Definition 4 Incremental Database and Updated Database (Chen et al. 2004). Sup-
pose that a set of new XQPs, d, is to be added into the transaction database D. The
database D is referred to as the original database, the database d as the incremental
database, and the database Du = D + d as the updated database.

Now, we introduce the problem of incremental frequent X Q P mining as follows.
Incremental Frequent X Q P Mining Given an original database D with its frequent

RST s,F(D), a minimum relative support min_sup in the range of (0, 1], and the
incremental database d. Incremental frequent X Q P mining is finds the complete set
of all frequent RST s in D + d.

Note that our algorithms can be extended to handle the case of deletions. For dele-
tions, frequent sequences may cause to be infrequent after deletions. We only need
scan the deleted portion and update the corresponding frequencies.

2.3 Frequent subsequence mining

2.3.1 Sequencing

We transform X Q Ps to sequences with a one-to-one mapping and mine frequent
sequences to generate frequent X Q Ps. Many sequencing methods have been
proposed for XML indexing, such as depth-first and Prüfer (Rao and Moon 2004;
Wang et al. 2003). Prüfer sequence (Rao and Moon 2004; Kwon et al. 2005) and
ViST (Wang et al. 2003) are succinct tree encoding methods.

123

Incremental sequence-based frequent query pattern mining 479

Prüfer (1918) proposed a method that constructed a one-to-one correspondence
between a labeled tree and a sequence by removing nodes from the tree one at a time.
One can generate a labeled tree’s Prüfer sequence by iteratively removing nodes from
the tree until only two nodes remain. Consider a labeled tree with nodes {1, 2, . . . , n}.
At step i , one can remove the leaf with the smallest label and set the i th element of
the Prüfer sequence to be the label of this leaf’s parent. The sequence of a labeled tree
is clearly unique and has length n − 2. In fact, one can construct a Prüfer sequence
of length n − 1 by continuing the removal of nodes until only one node is left. Any
numbering scheme can be used to label an XML document tree as long as it associates
each node with a unique number. This guarantees a one-to-one mapping between the
tree and the sequence.

Rao and Moon (2004) used the post-order to uniquely number tree nodes. The
sequence consisting of post-order numbers is called Numbered Prüfer Sequence (NPS)
(Rao and Moon 2004). When each number in an NPS is replaced by its corresponding
tag, a new sequence that consists of XML tags can be constructed, and this sequence
is called Labeled Prüfer Sequence. On the basis of Labeled Prüfer Sequence (LPS),
Extended Labeled Prüfer Sequence (ELPS) and Extended Numbered Prüfer Sequence
(ENPS) can be constructed by extending leaf nodes of the document tree with dummy
child nodes as in Rao and Moon (2004). Clearly the leaf node labels of the original tree
are kept in ELPS. However, NPS, LPS, ELPS and ENPS are not suitable to mining
frequent X Q Ps as the first node in the sequences is not the root node. We introduce
Inverted Labeled Prüfer Sequence (ILPS) and Inverted Numbered Prüfer Sequence
(INPS), which invert the ELPS and ENPS respectively. ILPS (INPS) contains the
same information provided by ELPS (ENPS).

Note that ILPS captures the parent–child and the sibling–order relationships, which
can facilitate the mining of frequent X Q Ps. It is easy to figure out that post-order
preserves the sibling–order relationship and ILPS keeps the parent–child and the ances-
tor–descendant relationships (Lemma 1). Note that some properties in Lemma 1 are
supplementary to those in Rao and Moon (2004) and build upon some of the results
already provided in Rao and Moon (2004).

Lemma 1 Suppose (e1, e2, . . . , em) and (n1, n2, ..., nm) are respectively ILPS and
INPS of an XQP. ∀i, j, 1 ≤ i < j ≤ m, we have,

1. If ni > ni+1, ei is the parent of ei+1; and
2. If ni < n j , e j is an ancestor of ei ; and
3. If ni > n j and � ∃t, i < t < j, ni > nt > n j , ei is the parent of e j .

Proof We first prove (1). As ni > ni+1, ei+1 must be removed before ei according to
the removal-based sequencing method. As ei+1 and ei are neighbors, ei is the parent
of ei+1 according to the post-order encoding scheme.

We then prove (2). As ni < n j , ei must be removed before e j . According to
the sequencing method, all the nodes, which have larger post-order than ni , must be
removed after ei , thus those nodes must be before ei in INPS based on the construction
method of INPS. As i < j and ni < n j , e j must be an ancestor of ei .

We finally prove (3). As ni > n j , ei must be removed after e j . ei may be an ancestor
of e j or a following sibling of e j . As � ∃t, i < t < j, ni > nt > n j , ei must be the

123

480 G. Li et al.

(a)

(c)

(b)

Fig. 5 An example X Q P and RST . a XQP, b RST, c sequences

parent of e j , as there is no node between ei and e j which has larger post-order than
n j . �

Example 1 In Fig. 5, we construct LPS and NPS of the corresponding X Q P and
RST according to the removal-based sequencing method. ELPS can be constructed
by inserting leaf nodes, i.e., e, c, c, e, into the corresponding positions of LPS. We
note that the leaf node must be preceding and neighboring its parent. We can get ILPS
of Fig. 5a, adedcacabe by inverting its ELPS ebacacdeda. ILPS of the RST in
Fig. 5b is adcabe, and its INPS is 764721.

Consider ILPS and INPS of the RST in Fig. 5b, adcabe and 764721. As n2(6) >

n3(4), e2 = d is a parent of e3 = c according to Lemma 1(1); as n3(4) < n4(7), e3 = c
is a descendent of e4 = a according to Lemma 1(2); as n1 > n4, and n2 �> n4 and
n3 �> n4, e1 = a is the parent of e4 = c according to Lemma 1(3).

2.3.2 Standardization of X Q Ps

Note that the sequences of the equivalent XQPs may be different. The reason is that
ILPS keeps the sibling order, but general XML queries do not require it. For example,
the four XML queries in Fig. 6 are equivalent, and their absolute support should be
four. But their ILPSs are not the same, and the absolute support of each query is one.

To address this issue, we introduce a concept of standard form and transform the
XML queries into their standard forms. Given two X Q Ps,xqp1 and xqp2, if the
root label of xqp1 is smaller than that of xqp2 in lexicographical order, we say xqp1
is smaller than xqp2; Otherwise, we sort their children in lexicographical order and
compare the subtrees rooted at their children one by one. If we find a subtree of xqp1
is smaller than that of xqp2, we say xqp1 is smaller than xqp2. For example, we
have a[b][c]/d is smaller than b/d, a[b][c]/d is smaller than a[b]/d, and a[b/c]/d is
smaller than a[b/d]/d.

Definition 5 Standard Form Given an X Q Pxqp,xqp is a standard form if for any
node in xqp, the subtrees rooted at its children are sorted.

123

Incremental sequence-based frequent query pattern mining 481

Fig. 6 Four equivalence queries

Given an X Q P , we can get its standard form as follows. For the node which only
has leaf children, we sort its children by their labels in lexicographical order. For
the node which has non-leaf children, we sort its children by comparing the subtrees
rooted at the children. For example, the four queries in Fig. 6 can be normalized to
their standard form, X Q Pi . Accordingly, all the equivalent queries can be transformed
into a unique standard form and we use the sequence of the standard form to represent
the equivalent queries.

Given an xqp, its sequencing cost is O(|xqp|) as shown in Rao and Moon (2004),
where |xqp| is the number of nodes in xqp. Here, we give the standardizing cost in
Lemma 2.

Lemma 2 Given an X Q Pxqp, the cost of standardizing xqp is O(|xqp|2).

Proof We standardize an X Q P from leaf nodes to the root. For the node which only
has leaf children, we only need compare their children and sort the children in lex-
icographical order. For the node which has non-leaf children, we need compare the
subtree rooted at such children. Note that the subtree must have been standardized
and the nodes with the same parent must be sorted. Thus, we only need traverse the
subtree in pre-order and compare corresponding nodes. In the worst case, we at most
compare all the node pairs in xqp, and thus the complexity of standardizing xqp is
O(|xqp|2). �

Moreover, there is a one-to-one mapping between equivalent queries and a certain
I L P S as formalized in Lemma 3.

Lemma 3 There is a one-to-one mapping between equivalent X Q Ps and ILPSs.

Proof It is easy to figure out that any X Q P can be uniquely represented by an I L P S
according to the sequencing method. On the other hand, according to the standard-
ization of X Q Ps, all the equivalent X Q Ps have a same I L P S. Hence, there is a
one-to-one mapping between equivalent X Q Ps and I L P Ss. �

123

482 G. Li et al.

2.3.3 Valid subsequence

Let S = e1, e2, . . . , en denote a sequence with length n. Given two sequences Sa =
a1, a2, . . . , an and Sb = b1, b2, . . . , bm(n ≤ m), if there exists 1 ≤ i1 < i2 <

· · · < in ≤ m, a1 = bi1 , a2 = bi2 , . . ., and an = bin ,Sb is called a supersequence
of Sa .Sa is said to be a subsequence of Sb. Some subsequences may be invalid as
they may not represent an RST of an X Q P and even cannot follow a tree structure
constraint. Denote RST L(RST N) as the ILPS (INPS) of an RST. For example, in
Fig. 5, RST L = adcabe is a subsequence of X Q P L = adedcacabe. It can represent
a valid RST of this X Q P . However, some sequences (e.g., aeace) cannot represent
a valid RST . To address this issue, we introduce the concept of valid subsequence.

Definition 6 Valid Subsequence. Given an X Q P and its ILPS S,Sa is a valid sub-
sequence of S, iff Sa is a subsequence of S and the subtree that Sa represents is an
RST of the X Q P .

We can test whether a subsequence is a valid subsequence by checking ancestor–
descendant and sibling–order relationships. Note that any subsequence must follow
the sibling–order relationship. Thus, we only need check whether the nodes in the
subsequence are connected by checking their INPSs in Lemma 4.

Lemma 4 Consider an INPS S = S1, S2, . . . , Sn .Sa = s1, s2, . . . , sm is a subse-
quence of S(s1 = Si1 , s2 = Si2 , . . ., and sm = Sim). Sa is a valid subsequence of S, if
it satisfies,

1. s1 = max(S1, S2, . . . , Sn)2; and
2. ∀k, 1 ≤ k < m, sk > sk+1 and � ∃t, ik < t < ik+1 and Sik > St > Sik+1 .

Proof Suppose the X Q P w.r.t. S is xqp. As s1 = max(S1, S2, . . . , Sn), s1 is the root
of xqp. We only need to prove that the subtree w.r.t. Sa is a connected subtree of the
X Q P . We prove it by mathematical induction. Suppose s2, s3, . . . , sk connect to s1, we
prove that sk+1 also connects to s1, that is, sk+1 is a descendant of s1. If sk > sk+1, Sik

is the parent of Sik+1 . As � ∃t , such that ik < t < ik+1 and Sik > St > Sik+1 , sk+1 is a
child of sk according to Lemma 1. Thus, sk+1 connects to sk . As sk connects s1, sk+1
also connects s1. If sk+1 > sk, sk+1 must be an ancestor of sk according to Lemma 1.
As sk connects to s1, its ancestors must also connect to s1, that is, sk+1 connects to s1.
Thus, Sa=s1, s2, . . . , sm represents a rooted subtree, and Sa is a valid subsequence. �

We give a running example to show how to check whether a subsequence is valid.
For example, in Fig. 5, adcabe(764721) is a valid subsequence of adedcacabe as
it can represent a connected subtree. However, aeace(75731) is not a valid subse-
quence of adedcacabe, because there is an item d(6) between a(7) and e(5) (break
the connection).

To compute the occurrence of a valid subsequence in a sequence database, we
introduce the concept of subsequence inclusion, which corresponds to extended sub-
tree inclusion in Definition 3.

2 For ease of presentation, in this paper, given a sequence Sa = s1, s2, . . . , sm , Sa can refer to ILPS or
INPS if there is no ambiguous.

123

Incremental sequence-based frequent query pattern mining 483

Definition 7 Subsequence Inclusion. Given two sequences s and S. Their ILPSs are
s1, s2, . . . , sp and S1, S2, . . . , Sm , and their INPSs are n1, n2, . . . , n p and N1, N2, . . . ,

Nm respectively. s is included/contained in S, if (1) there exists 1 ≤ i1 ≤ i2 ≤ · · · i p ≤
m, s.t. s1 ≺ Si1 , s2 ≺ Si2 , . . . , sp ≺ Si p ; (2) ‘//’ matches zero or many labels; (3) ‘//’
cannot match any leaf label; (4) “*” can match any label; (5) if nk < nk+1, sk+1 must
be a leaf node. If there is no label in S that does not appear in s, s is said to be properly
included in S.

To better understand our concepts, we give a running example in Example 2.

Example 2 In Fig. 2, RST L
c = abe, X Q P L

a = a//cab//ebd, X Q P L
b = a ∗ dca ∗ e.

RST L
c is included in X Q P L

a and X Q P L
b , where (i1, i2, i3) are (4,5,7), (5,6,7) respec-

tively. Especially, in X Q P L
b , b is matched by *. abe is not properly included in X Q P L

a ,
because there is no item in abe to match d in X Q P L

a . abe is properly included
in RST L

a (ab//e). RST L
b = a ∗ dc, is included in X Q P L

a , where (i1, i2, i3, i4) is
(1,2,2,3). Especially, ‘*’ and d are both matched by ‘//’.

Consider the test whether a/b/ f is included in a/b//e. If it is unknown that there
exists a path a/b/ f//e, it cannot be concluded that the first path is included in the
second path. This is because it is possible for a DTD declaration to include a/b/d/e
but not a/b/ f//e. To address this issue, it is needed to take into account the DTD
and perform expansions of the X Q Ps. Interested readers are referred to Yang et al.
(2003a) for the details.

2.3.4 Frequent valid sequence mining

We transform a user log database with a set of X Q Ps to a sequence database with a
set of corresponding sequences. A sequence database SDB contains a set of tuples in
the form of (Sid,S), where Sid is the identifier of a sequence S. The absolute support
of a valid subsequence vs is the number of tuples that contain vs in SDB, denoted by
ASupp(vs). The relative support is the percentage of tuples that contain vs in SDB,
denoted by RSupp(vs), where RSupp(vs) = ASupp(vs)/|SDB|.

Now we introduce the problems of frequent valid subsequence mining and incre-
mental frequent valid subsequence mining.

Frequent Valid Subsequence Mining. Given a sequence database D and a minimum
relative support min_sup in the range of (0, 1], frequent valid subsequence mining
finds a complete set of all frequent valid subsequences vseqs in D.

Incremental Frequent Valid Subsequence Mining. Given an original sequence data-
base D with its frequent valid subsequence set F(D), a minimum relative support
min_sup in the range of (0, 1], and an incremental database d for D. Incremental fre-
quent valid sequence mining finds the complete set of all frequent valid subsequences
vseqs in D + d.

Note that frequent X Q P mining problem can be transformed to frequent valid sub-
sequence mining problem, and incremental frequent X Q P mining problem can be
transformed to incremental frequent valid subsequence mining problem. In this paper,
we mine frequent sequences for generating frequent XQPs.

123

484 G. Li et al.

3 ESPRIT: an efficient sequence based frequent XML query pattern mining
algorithm

This section proposes ESPRIT, an Efficient Sequence based frequent XML query
PatteRns mining algorIThm. ESPRIT transforms XQPs to sequences and mines fre-
quent sequences to generate frequent XQPs by extending algorithm PrefixSpan (Pei
et al. 2001).

3.1 Preprocessing

Given a set of user’s XML queries, Q = {q1, q2, . . . , qm}, extracted from user query
logs. In the preprocessing phase, ESPRIT first transforms the input XML queries into
their standard forms as described in Section 2.3.2, and then constructs the sequence
database D by transforming queries into their sequence representations (I L P S and
I N P S). Accordingly, we can get the sequence database D = {S1,S2, . . . ,Sn}. We
note that n ≤ m as there may be some equivalent queries in Q.

For example, in Fig. 7a, b respectively depict the original database D and the incre-
mental database d. We can transform the X Q Ps in Fig. 7 into their sequences as
illustrated in Table 1. Table 1 shows the corresponding sequence databases. We take
these sequences as our running example throughout this paper.

3.2 Valid subsequence extension

Existing sequence mining algorithms construct a sequence tree to mine frequent
sequences. Assume there is a lexicographical ordering � among the set of items (i.e.,

(a)

(b)

Fig. 7 A running example a the original database D and b the incremental database d

123

Incremental sequence-based frequent query pattern mining 485

Table 1 X Q Ps and the
corresponding ILPS and INPS of
the X Q Ps in Fig. 7

SDB XQP Sid ILPS INPS

D xqp1 1 acaabd 543521
xqp2 2 a//eab 43241
xqp3 3 acdcbab 5434251

d xqp4 4 acabd 43421
xqp5 5 a//ea f 43241
xqp6 6 a//ea∗d 543521

the labels in tagSet and ‘*’, ‘//’), I, in the input sequence database (e.g., in our running
example, one possible items ordering can be a � b � c � d � e � f � ∗ � //).
Conceptually, the complete search space of sequence mining forms a sequence tree
with the tree nodes of X Q Ps. The process of constructing the sequence tree is as
follows. The root node of the tree is the root of the give XML document. (If there
are multiple documents, the root is a dummy node.) Node N at level L in the tree is
extended by adding one item to get a child node at the next level L + 1 and the chil-
dren of node N are generated and arranged according to the chosen lexicographical
ordering. Recursively, we can construct the sequence tree as shown in Fig. 8. In Fig. 8,
each node contains a frequent sequence and keeps its corresponding absolute support.
As an assumption, min_sup is 1

2 in all the examples of this paper.
Apparently, not all the frequent sequences in Fig. 8 correspond to valid tree struc-

tures. For instance, “ad” is not a valid frequent sequence though with support of 2,
because “ad” is not a valid subsequence according to Lemma 4. Following we will
briefly introduce the valid frequent sequence enumeration method, and discuss how to
push the parent–child relationship constraint into the sequence enumeration to make
sure each mined frequent sequence is a valid sequence.

3.2.1 Frequent sequence enumeration

Given a sequence database, most of previous frequent pattern mining algorithms (Pei
et al. 2001) have elaborated that the depth-first searching is more efficient in mining
long patterns than the breadth-first searching. Thus, we also traverse the X Q Ps in
depth-first order. Pei et al. (2001) introduced an efficient pseudo-projection method
for enumerating frequent sequences. In this paper, a similar pseudo-projection method
is adopted in order to reduce space complexity. A certain node in the sequence tree

Fig. 8 The lexicographic
frequent sequence tree in D

123

486 G. Li et al.

is always treated as a prefix sequence. By adding one item in I, a prefix sequence
can grow to be a longer sequence as its child node. With respect to the corresponding
prefix sequence, some items are not locally frequent. As our goal is to mine the fre-
quent sequences, we only need to extend a prefix sequence using the set of its locally
frequent items based on the downward closure property (Agrawal and Srikant 1994).
To the best of our knowledge, to identify the local frequent items w.r.t a certain prefix,
a well-known method is to build the projected database for the prefix and scans the
projected database to count the local items. We employ the concept of the projected
sequence of a given prefix sequence.

Definition 8 Projected Sequence (Pei et al. 2001). Given an input sequence S, which
contains a prefix Si = e1, e2, . . . , ei , the remaining part of S after we remove the first
instance of the prefix Si in S is called the projected sequence w.r.t. prefix e1, e2, . . . , ei

in S.

Definition 9 Projected Database (Pei et al. 2001). Given an input sequence data-
base SDB, the complete set of projected sequences in SDB w.r.t. a prefix sequence
e1, e2, . . . , ei is called the projected database w.r.t. prefix e1, e2, . . . , ei in SDB.

For example, consider the sequence database in Table 1, the projected sequence
of prefix sequence ab w.r.t. sequence xqp1(acaabd) is d. The projected database of
prefix sequence ab w.r.t. D is {d, φ, ab}.

Now, we introduce the idea of pseudo-projection. Instead of physically constructing
the projected database, we only need to keep a set of pointers, one for each projected
sequence, pointing at the starting position in the corresponding projected sequence.
By following the set of pointers, it is easy to locate the set of projected sequences.
And by scanning forward each projected sequence w.r.t. a prefix Sp and count the
items, which is the so-called forward-extension step (Wang and Han 2004), we will
find the locally frequent items w.r.t. prefix Sp, which can be used to extend prefix Sp

in order to get longer frequent prefix sequences. For example, consider D in Table 1,
suppose Sp = ac, the set of its local frequent items is {a, b, d} as shown in Fig. 8.
However, how to extend local frequent valid items remains an issue for discovering
frequent valid sequences. To address this issue, we introduce the technique of valid
subsequence extension in Sect. 3.2.2.

3.2.2 Valid subsequence extension

There may be many subsequences of a certain sequence, but not all of them are
meaningful from the user/application point of view. As some of subsequences cannot
represent subtrees of an X Q P . Although we can check whether a subsequence is a
valid subsequence according to Lemma 4, it needs to traverse the whole sequence. To
effectively mine the frequent valid sequences, we always add a valid item to extend
a sequence. An item is valid if (1) its parent appears in the prefix sequence; or (2) its
parent is ‘//’ and its grandparent appears in the prefix sequence; or (3) it has already
appears in the prefix sequence. Definition 10 gives a formal description.

Definition 10 Valid Local Item. Given a prefix sequence S and its projected sequence
P S, where SL = e1, e2, . . . , ei and SN = n1, n2, . . . , ni ; P SL = pe1, pe2, . . . , pe j

123

Incremental sequence-based frequent query pattern mining 487

and P SN = ne1, ne2, . . . , ne j , a local item e w.r.t. this prefix sequence is called a
valid local item, if e satisfies:

1. ∃m, 1 ≤ m ≤ j, e ≺ pem, nem−1 = ni and nem < ni (pe0 = ei); or
2. ∃m, 2 ≤ m ≤ j, e ≺ pem, pem−1 = ‘//′, nem−2 = ni and nem < ni (pe0 = ei);

or
3. ∃m, 1 ≤ m ≤ j, e ≺ pem, nem > ni .

The local items that satisfy (1)/(2) are the children of ei . In (2) ‘//’ matches zero label.
The local items that satisfy (3) are ei ’s ancestors, which can be proved as Lemma 4.

Based on this notation, we introduce the technique of valid local item enumeration.
We employ the depth-first method to enumerate the local item as follows. The root
node is initialized as the first frequent sequence s1. Then we check whether each local
item e of the given prefix sequence s1 is a valid local item; if so, we count the num-
ber of the sequences that contain the valid local item e, i.e., ASupp(s2 = s1 • e). If
RSupp(s2) ≥ min_sup, s2 is a frequent sequence. We iteratively enumerate the valid
local items until there is no valid local item. When enumerating a valid local item,
item ‘//’ in a projected sequence can match any zero or more labels or ‘*’, and ‘*’ can
match any one label in tagSet. We note that the sequence extension framework in
our approach follows left most extension as formalized in Lemma 5, which complies
with the right most extension strategy adopted in Yang et al. (2003a) and Zaki (2002).
It removes redundancies in frequent valid sequence mining. We will experimentally
prove that this strategy is efficient to extend a valid local item in Sect. 6.

Lemma 5 Given a valid local item e w.r.t. a prefix sequence e1, e2, . . . , ei , whose
parent is em(1 ≤ m ≤ i), the tree node corresponding to em must be on the left most
path of the subtree corresponding to prefix e1, e2, . . . , ei .

Proof We first prove that ei must be on the left most path of the subtree corresponding
to prefix e1, e2, . . . , ei , and we prove it by contradiction.

Suppose ei is not on the left most path, there must exist an integer j such that j < i
and e j is on the left most path. According to the construction of INPS, e j must be
removed before ei , and in the ILPS e j must be after ei , which conflicts with j < i ,
thus ei must be on the left most path.

According to Definition 10, e must be a child or an ancestor of ei , as a result,
em , which is ei or an ancestor of ei , must be on the left most path of the subtree
corresponding to prefix e1, e2, . . . , ei . �
Example 3 Consider the three sequences of D in Fig. 7, xqpL

a = a//cab//ebd and
xqpL

b = a ∗ dc. Suppose the current prefix sequence is a. As ‘//’ can match ‘*’, ‘*’
is a valid item w.r.t. a for xqpL

a ; as ‘//’ can match zero or more labels, its projected
sequence can be cab//edb or //cab//ebd. Thus, a is extended to a∗. Then the next
item d is checked. It is not a valid item w.r.t. cab//edb, because the item d in this
projected sequence does not satisfy the semantics of the valid local item as described
in Definition 10. However, it is a valid item w.r.t. //cab//ebd, because item d can be
matched by ‘//’. Accordingly, a ∗ dc is included in a//cab//ebd.

123

488 G. Li et al.

Fig. 9 ESPRIT algorithm

3.3 ESPRIT algorithm

By integrating standardization, sequencialization, valid sequence extension and fre-
quent sequence enumeration, we derive our algorithm, ESPRIT, as shown in Fig. 9,
which avoids costly tree containment testing and prunes the unrelated search space
efficiently under the local item’s validity checking. ESPRIT enumerates the complete
set of frequent sequences by extending frequent valid local items, which is similar to
the pseudo-projection-based PrefixSpan algorithm (Pei et al. 2001). ESPRIT takes
the sequence database of sequences transformed from user query logs as described in
Sect. 3.1 as input and outputs the frequent valid sequences.

ESPRIT first initializes the frequent sequence set as φ (line 2) and then calls its
subroutine getValidFrequentSequence to identify frequent valid subsequences (line
3), which is a recursive function to get frequent valid sequences by extending valid
items.

getValidFrequentSequence is used to mine the frequent valid subsequences
recursively. Given a certain prefix P S, if it is non-empty, getFrequentValidSe-
quence adds it into F(D) (line 7), scans the projected database DP S w.r.t. P S and
identifies the frequent valid local items through getFrequentValidLocalItems based
on Definition 10 (line 8). For each frequent valid local item ei , which can be cho-
sen in lexicographical order, getFrequentValidSequence grows P S to get a new

123

Incremental sequence-based frequent query pattern mining 489

Fig. 10 Valid sequence extension in D

prefix P Si by extending a valid local item ei (line 10), scans DP S once again to build
the pseudo-projection database DP Si for each new prefix P Si (line 11), adds P Si into
the result set (line 12), and calls itself to recursively get the frequent valid sequences
(line 13). Furthermore, one can easily figure out that the order of the frequent sequence
enumeration is consistent with the depth-first traversal of the frequent sequence tree.
To better understand our algorithm, we walk through our algorithm with a running
example.

Example 4 Figure 10 shows how to enumerate the valid local items. Consider the
three sequences in D as shown in Table 1. Suppose that the current frequent valid
prefix sequence is a, the corresponding projected sequences of the three sequences are
caabd, //eab and cdcbab respectively. To reduce the storage space, only a pointer
is recorded for each projected sequence instead of the whole sequence. In this paper,
the starting position of the projected sequence in the original sequence is preserved.
It is obvious that c is a valid local item for caabd(as5(a) > 4(c)) and cdcbab (as
5(a) > 4(c)). However, c is not a valid item for //eab as there is no ac//e in the DTD.
Hence, RSupp(ac) = 2/3 > 1/2, and thus it is a frequent valid sequence. Then, we
check whether item a is a valid item for aabd, dcbab w.r.t. ac, and there are two
items w.r.t. a which are both valid items for aabd. There are two projected sequences
abd and bd for aabd, however only one of them is frequent in this running example.
Note that we can prune many branches using our valid local item based method. For
example, we can prune nodes aa and ad from Fig. 8, as there are no valid sequences
for the two nodes. Compared Fig. 8 with Fig. 10, our method prunes 5 nodes.

3.4 ESPRIT versus FastXMiner

Traditional frequent subtree mining approaches such as FastXMiner (Yang et al. 2003a)
and 2PXMiner (Yang et al. 2004) generate a large number of candidate subtree struc-
tures and have to perform a lot of costly subtree containment testing. Instead, to
reduce the costly subtree containment testing, we exploit the parent–child checking
scheme to identify the frequent sequences, which checks the parent–child relation-
ship in sequences by both forward and backward strategies. It is obvious that the

123

490 G. Li et al.

parent–child checking is much cheaper than the containment testing of tree structured
data. That is the key why we exploit the frequent sequence mining to resolve the
problem of frequent XQP mining.

We analyze the complexities of FastXMiner and ESPRIT. FastXMiner initially
enumerates all the frequent 1-edge RSTs by scanning the database. In the subsequent
passes, it generates the frequent (k + 1)-edge RSTs from the frequent k-edge RSTs in
two phases as follows (Yang et al. 2003a). In the first phase, it generates the candidate
set Ck+1 by using the previously found frequent set Fk by (1) extending an edge or
(2) joining two frequent k-edge RSTs to generate (k +1)-edge RSTs. Any unqualified
candidate RST is pruned. The frequency for each candidate RST is counted, and those
RSTs that do not satisfy the minimal support criteria are pruned. The candidate set
Ck+1 contains all RSTs to be matched with the XQPs in the database. In the second
phase, it refines Ck+1 to get Fk+1 by checking if RSTk+1 in Ck+1 is valid through
tree-containment testing. This test is based on the extended tree inclusion, which has
been proven to be NP-complete (Yang et al. 2003a). 2PXMiner proposes the trans-
action summary structure to reduce the number of costly tree inclusion tests beyond
FastXMiner. However, it still joins frequent XQPs and checks tree-containment.

ESPRIT firstly extends a valid local item from the root, which is the same as enu-
merating 1-edge RSTs in FastXMiner. Note that we can use the DTD of an XML
document to guide the enumeration (Yang et al. 2003a). Thus, the complexity is the
number of elements in the DTD. Then, ESPRIT always extends valid local items
based on the mined frequent sequences, which is the same as extending an edge to
generate (k +1)-edge RSTs in FastXMiner. In addition, FastXMiner needs to join dif-
ferent RSTs. The complexity is O(k ∗|TRst |2), where TRst is the set of frequent RSTs.
It is very expensive if there are large numbers of frequent XQPs.3 Finally, ESPRIT
checks whether the valid local item is frequent. We only need check whether the local
item is valid in the sequences in the projected database based on Definition 10, and
count the number. The complexity of checking whether a local item is valid in an xqp
is O(|xqp|). Note that we need not test whether the sequence is valid subsequence
based on Lemma 4 and Definition 7, which is similar to tree-containment testing and
thus is very expensive. While FastXMiner needs to check whether the frequent RST
in Ck+1 is valid by tree-containment checking, which is NP-complete (Yang et al.
2003a). Accordingly, ESPRIT is more efficient than FastXMiner and 2PXMiner. We
will experimentally prove that our method is more efficient and it is linear with the
size of query patterns in Sect. 6.

4 Incremental mining of frequent XML query patterns

Generally, the transaction database is frequently updated as some queries are added
to the database. Such updates may invalidate some existing frequent query patterns
and generate new frequent query patterns. Although we can mine the new frequent
query patterns on the updated database using ESPRIT from scratch, it is only efficient

3 Even if they only join the RSTs with the same number of edges, in the worst case the complexity is still
O(k ∗ |TRst |2).

123

Incremental sequence-based frequent query pattern mining 491

for the static transaction database but inefficient for the evolving transaction database
as it cannot make use of the frequent sequences which have already been mined. To
address this issue, we propose effective index structures and algorithms in this section.

4.1 F-index and Q/F-index

To facilitate the incremental mining of frequent valid subsequences, we introduce two
novel indices in this section.

Suppose F(D),F(d), and F(Du) are the sets of frequent sequences of D, d, and
Du respectively. The original database D has been already mined and F(D) has been
gotten according to our algorithm ESPRIT. To get the frequent valid subsequences
of the updated database, we first mine the incremental database d using our algorithm
ESPRIT and get F(d), and then generate the set of up-to-date frequent sequences
F(Du) by checking F(D) and F(d). We can classify the valid sequences (abbreviated
as vseqs) in F(D) and F(d) into four categories:

1. F(D) ∩ F(d) all of the vseqs that are frequent in both D and d.
2. F(D) − F(d) all of the vseqs that are frequent in D but infrequent in d.
3. F(d) − F(D) all of the vseqs that are frequent in d but infrequent in D.
4. Others all of the vseqs that are infrequent in both D and d.

Lemma 6 vseqs in the first category must be frequent in the updated database Du.
vseqs in the fourth category cannot be frequent in the updated database Du.

Proof It is obvious and we omit the proof. �
Consider the sequences in the first categories or in the fourth categories, we can

check whether they are frequent or not in Du efficiently as formalized in Lemma 6.
However, it is not straightforward to check whether the sequences in the second cate-
gories or the third categories are frequent. We need to check whether each sequence
in F(D) − F(d) is still frequent in Du , and whether each sequence in F(d)-F(D) is
a new frequent sequence of Du .

For each sequence vseq in F(D)-F(d), we first scan d to count the number of
sequences that contain vseq (ASuppd(vseq)) using our algorithm ESPRIT, and then

check whether ASuppD(vseq)+ASuppd (vseq)
|Du | ≥ min_sup holds; if so, this sequence must

be frequent; otherwise, this sequence is infrequent. Similarly, we can check whether
each sequence in F(d)-F(D) is frequent.

Although this approach is much more efficient than mining the updated database
from scratch, it may involve some unnecessary scans on D and d. For example, con-
sider the sequences in Table 1, abd is frequent in d and infrequent in D. Although
only xqpL

1 (acaabd) contains abd, we have to scan all the sequences in D to count
ASuppD(abd). To address this issue and scan D and d as few as possible, we construct
two novel indices for the original database and the incremental database to efficiently
generate the up-to-date frequent valid subsequences of Du . For ease of presentation,
we begin by introducing some notations.

Definition 11 Direct Prefix Sequence. Given a sequence S = e1, e2, . . . , ei ,S ′ =
e1, e2, . . . , ei−1 is called the direct prefix sequence of S.

123

492 G. Li et al.

Definition 12 Path Prefix Sequence. Given a sequence S = e1, e2, . . . , en,S ′ =
ei1 , ei2 , . . . , eim is a path prefix sequence of S, where 1 ≤ i1 < i2 < · · · < im ≤ n, if
S and S ′ satisfy,

1. ei1 = max(e1, e2, . . . , en);
2. ∀k, 1 ≤ k < m, eik > eik+1 , and � ∃ j, ik < j < ik+1, e j > eik+1 .

If S �= S ′,S ′ is called a proper path prefix sequence of S.

A path prefix sequence ei1 , ei2 , . . . , eim represents a path from ei1 to eim w.r.t its
corresponding X Q P , that is, ei1 is the root of the X Q P , and ∀k, 1 ≤ k < m, eik is
the parent of eik+1 . For example, consider the sequence xqp1 = acaabd in Table 1,
its direct prefix sequence is acaab and its path prefix sequence is abd. abd is a proper
path prefix sequence of acaabd.

Definition 13 Quasi Frequent Sequence. A sequence S is a frequent sequence if
RSupp(S) ≥ min_sup; A sequence S is a quasi frequent sequence if its direct
prefix sequence is frequent. The quasi frequent sequence that is not frequent is called
a quasi-frequent/frequent sequence (abbreviated as Q/F sequence).

For example, consider xqpL
1 = acaabd. acaab is the direct prefix sequence of

xqpL
1 . abd is the proper path prefix sequence of xqpL

1 . acab is a quasi-frequent
sequence w.r.t D and it is also a frequent sequence. acabd is a Q/F sequence w.r.t D.

We note that if a sequence S is not a quasi-frequent sequence, it cannot be a frequent
sequence, which complies with the apriori property. Accordingly, we can employ the
apriori property to skip the non-frequent sequences. That is, if a sequence is not a
quasi-frequent sequence, we need not scan the projected database to count its support
as we can assure that it is not a frequent sequence.

To facilitate the identifying of frequent valid subsequences, we construct F-index
and Q/F-index for the original database and the incremental database, which can
improve the performance of mining frequent valid subsequences. F-index maintains
each frequent sequence and Q/F-index maintains each Q/F sequence of the data-
base. Sequences in F-index or Q/F-index (called F&Q/F-index) are sorted in lex-
icographical order and each sequence maintains its absolute support and an I DList ,
which records a set of tuples (Sid, Pointer), where Sid is the identifier of its super-
sequences and Pointer is used to record its corresponding projected sequence in the
database. Given a certain frequent sequence or Q/F sequence, its supersequences and
projected sequence can be gotten according to the I DList efficiently.

The salient feature of F&Q/F-index is that, for any sequence in F&Q/F-index ,
we have to scan the database to check whether it is frequent during mining the frequent
valid sequences, and thus we can preserve them to facilitate the mining of up-to-date
frequent sequences. During mining the frequent valid subsequences, once ESPRIT
finds that a valid sequence vseq is frequent or quasi-frequent, ESPRIT records the
I DList and ASupp of this vseq and inserts them into the corresponding F&Q/F-
index , which is similar to record a table in dynamic programming. To better understand
F&Q/F-index , we give a running example.

123

Incremental sequence-based frequent query pattern mining 493

Table 2 F&Q/F-index

(a) F-index of D
F-Sequence ab ac aca1 acab

ASupp 3 2 2 2
I DLists 1, 6|2, nil|3, nil 1, 3|3, 3 1, 5|3, 7 1, 6|3, nil

(b) Q/F-index of D
Q/F-Sequence abd aca2 acabd acb acd a//

ASupp 1 1 1 1 1 1
I DLists 1,nil 1,4 1,nil 3,6 3,4 2,3

(c) F-index of d

F-Sequence ab abd ac a f a// a//e a//ea a//ea f

ASupp 2 2 2 2 2 2 2 2
I DLists 4,5|,6,6 4,nil|,6,nil 4,3|6,6 5,nil|6,6 5,3|6,3 5,4|6,4 5,5|6,5 5,nil|6,6

(d) Q/F-index of d

Q/F-Sequence aca a f d a∗ a//ea f d

ASupp 1 1 1 1
I DLists 4,4 6,nil 6,6 6,nil

Example 5 Table 2a–d illustrate the F&Q/F-index of the original database D and
the incremental database d respectively. In database d, abd is a valid subsequence
of xqp4 = acabd, and abd is also a valid subsequence of xqp6 = a//ea ∗ d, as
∗ can match any label. Thus, ASupp(abd) = 2 and abd is a frequent sequence in
the incremental database d. ASupp of a//e in the F-index of the incremental data-
base d, denoted as Fd -index , is 2, which denotes that there are two sequences that
contain a//e in the incremental database d. The IDList of a//e is (5,4) and (6,4),
which means that its supersequences are xqp5 and xqp6, and the two corresponding
projected sequence are, the subsequence of xqp5 obtained from the 4-th item to the
last item and the subsequence of xqp6 obtained from the 4-th item to the last item.

4.2 Incremental sequential pattern mining for frequent XQP mining

In this section, we propose an efficient incremental algorithm, ESPRIT-i . The pur-
pose of incremental mining is to discover the set of all the frequent vseqs of the
updated database with minimal re-computation. Without loss of generality, suppose
the original valid frequent sequences have been already gotten and F&Q/F-index
has been built.

We first mine the incremental database d using ESPRIT, and then obtain the fre-
quent vseqs of the updated database Du through merging the original mined results
of D, i.e., F(D), and the mined results of d, i.e., F(d). Since the sequences in F(D) or
F(d) are sorted in lexicographical order, F(D) ∩ F(d) can be gotten through merge-
joining F(D) and F(d), the complexity of which is O(|F(D)| + |F(d)|). In addition,
we need to check whether vseqs in F(D) − F(d) = F(D) − F(D) ∩ F(d) and

123

494 G. Li et al.

F(d) − F(D) = F(d) − F(D) ∩ F(d) are frequent in Du . To mine the frequent
sequence efficiently, we sort vseqs in F(D) − F(d) and F(d) − F(D) by |vseq|
in ascending order. Without loss of generality, we only introduce how to determine
whether the sequences in F(D)−F(d) are frequent. The same method can be applied
to process the sequences in F(d) − F(D).

∀vseq ∈ (F(D) − F(d)), vseq cannot be frequent in the incremental databse d.
Suppose DPvseq and PPvseq are the direct prefix sequence and the proper path
prefix sequence of vseq. As |DPvseq| < |vseq| and |PPvseq| < |vseq|, whether
DPvseq or PPvseq are frequent in Du has been processed as we mine the sequences
in ascending order by the number of items in the sequence. If one of PPvseq (if any)
and DPvseq is infrequent, it is obvious that vseq is infrequent based on the a priori
property. Otherwise, we need to scan the Q/F-index of the incremental database d,
i.e., Q/Fd -index , or the F-index of the updated database Du , i.e., FDu

-index , to
check whether vseq is frequent as follows.

1. If vseq is in Q/Fd -index , we can get AsuppDu
(vseq) and vseqDu

.I DList
according to Q/Fd -index . We have,

ASuppDu
(vseq) = ASuppF(D)(vseq) + ASuppQ/Fd -index (vseq) (1)

vseqDu
.I DList = vseqF(D).I DList ∪ vseqQ/Fd -index .I DList (2)

As the sequences in Q/F−index are sorted in lexicographical order, it is easy to
get ASuppQ/Fd -index (vseq) and vseqQ/Fd -index .I DList . Moreover, ASuppF(D)

(vseq) a nd vseqF(D).I DList can be easily gotten according to the F-index
of D.

2. Otherwise, vseq is not in Q/Fd -index . Suppose DPvseq is the direct prefix
sequence of vseq, where vseq=DPvseq• e. DPvseq must be frequent in Du

and thus it is in FDu
-index . We scan each projected sequence P S_DPvseq

of DPvseq based on DPvseqFDu

-index .I DList obtained from FDu
-index ,

check whether the item e is a valid item of P S_DPvseq w.r.t. DPvseq, and count
the number of DPvseq that contain the valid item e, i.e., ASuppd (DPvseq).
Finally, we record DPveqd .I DList . Accordingly, we can get ASuppDu

(vseq)
and vseqDu

.I DList as follows.

ASuppDu
(vseq) = ASuppd(vseq) + ASuppF(D)(vseq) (3)

vseqDu
.I DList = vseqd .I DList ∪ vseqF(D).I DList (4)

Based on above observations, we devise an efficient algorithm ESPRIT-i to incre-
mentally mine the frequent valid subsequences (Fig. 11). ESPRIT-i first mines fre-
quent valid subsequences of the incremental database d by calling our algorithm
ESPRIT (line 2), gets F(D) ∩ F(d) (line 4) and adds the merged results to F(Du)

(line 5). Finally, ESPRIT-i calls its subroutine getFreqVSeqs to get the frequent
valid subsequences in F(D) − F(d) and F(d) − F(D) (lines6–7).
getFreqVSeqs identifies the frequent valid sequences in F(D)−F(d) or F(d)−

F(D). For each sequence vseq in F = F(D) − F(d) (or F(d) − F(D)),

123

Incremental sequence-based frequent query pattern mining 495

Fig. 11 ESPRIT-i algorithm

123

496 G. Li et al.

getFreqVSeqs checks whether the path prefix sequence (DPvseq) and the direct
prefix sequence (PPvseq) of vseq are in FDu

-index (line 14). If so, vseq may
be frequent in Du ; otherwise, it cannot be. Then, getFreqVSeqs checks whether
vseq is in Q/Fdb-index . If so, it computes the absolute support of vseq according
to the corresponding Q/F-index (line 16); otherwise, scans the F&Q/F-index of
Du , which has been already constructed, to count the absolute support (line 21). If
vseq is frequent, getFreqVSeqs adds it to the result (line 24). Finally, if vseq is
frequent or quasi-frequent, getFreqVSeqs inserts vseq into the F&Q/F−index
of Du by calling buildF&Q/F-Index (line 26). To better understand our algorithm, we
walk through the algorithm with a running example.

Example 6 Consider the F&Q/F-index of D and d in Table 2. As F(D) = {ab; ac;
aca; acab} andF(d) = {ab; abd; ac; a f ; a//; a//e; a//ea; a//ea f }, we haveF(D)

∩F(d) = {ab; ac},F(D)−F(d) = {aca; acab} andF(d)−F(D) = {abd; a f ; a//;
a//e; a//ea; a//ea f }. According to Lemma 6, all the sequences in F(D)∩F(d) must
be frequent in Du . We only need to check whether the sequences in F(D) − F(d)

and F(d) − F(D) are frequent. Consider vseq=abd in F(d) − F(D), we have
DPvseq= ab, which is the direct prefix sequence of vseq. DPvseq is frequent in
Du and abd is quasi-frequent in Du . As abd is in Q/F-index of D, we have

ASuppDu
(vseq) = ASuppd(vseq) + ASuppQ/FD-index (vseq) = 3;

vseqDu
.I DList = vseqd .I DList ∪ vseqQ/F-indexD .I DList

= {(1, nil), (4, nil), (6, nil)}.

Thus, abd is frequent in Du . Similarly, aca, acab, a//, a//e, a//ea are also fre-
quent inDu , andF(Du) = (F(D)∩F(d))∪{aca; acab}∪{abd; a//; a//e; a//ea} =
{ab; abd; ac; aca; acab; a//; a//e; a//ea}. The F-index of Du is illustrated in
Table 3.

4.3 Interactively mining frequent sequences

ESPRIT-i can avoid unnecessary scans of the original database and the incremen-
tal database. However, it mines the incremental database independently and does not
interact with the original database fully. It may involve additional scans on the incre-
mental database. For example, consider the sequences in Table 1, a//ea f is frequent

Table 3 F-index of Du

F-Sequence ab abd ac aca

ASupp 5 3 4 3
I DList 1, 6|2, nil|3, nil|4, 5|6, 6 1, nil|4, nil|6, nil 1, 3|3, 3|4, 3|6, 6 1, 5|3, 7|4, 4

F-Sequence acab a// a//e a//ea

ASupp 3 3 3 3
I DList 1, 6|3, nil|4, 5 2, 3|5, 3|6, 3 2, 4|5, 4|6, 4 2, 5|5, 5|6, 5

123

Incremental sequence-based frequent query pattern mining 497

in the incremental database d, and the incremental database d has to be scanned to
check whether a//ea f d is frequent when mining database d. However, a//ea f is not
a frequent sequence of the updated database and thus a//ea f d cannot be frequent in
Du even if we do not scan the incremental database according to the a priori property.

To address this issue, ESPRIT-i+ is proposed to mine the incremental database
by interacting with the original database, which can improve ESPRIT-i effectively
as it avoids scanning the unnecessary items in the original databases. The idea behind
ESPRIT-i+ is that, during mining the incremental database d, we can make full use
of the mining results of the original database to discover frequent valid subsequences
of the updated database.

ESPRIT-i+ enumerates the set of frequent valid subsequences by extending valid
local items, which is similar to the pseudo-projection-based ESPRIT. When enu-
merating a valid local item e w.r.t. a frequent valid prefix sequence DPvseq, we
first compute the absolute support of vseq=DPvseq• e in the incremental database
d(ASuppd(vseq)) by counting the number of projected sequences w.r.t. DPvseq
that have a valid local item e, and then compute ASuppDu

(vseq) by considering the
following two cases.

1. RSuppd(vseq) ≤ min_sup.
In this case, the necessary condition for vseq to be frequent in Du is that vseq
is frequent in D. That is, if vseq is not in F-index of D, it cannot be frequent in
Du . Thus, we compute ASuppDu

(vseq) according to the F-index of D,

ASuppDu
(vseq) = ASuppd(vseq) + ASuppFD-index (vseq). (5)

vseqDu
.I DList = vseqd .I DList ∪ vseqFD-index .I DList. (6)

ASuppd(vseq) and vseqd .I DList can be gotten through extending valid local
items.

2. RSuppd(vseq) > min_sup.
(i) vseq is frequent in D, that is, it is in F-index of D. vseq must be fre-

quent in Du of this case. Thus we compute ASuppDu
(vseq) based on the

F-index of D,

ASuppDu
(vseq) = ASuppd(vseq) + ASuppFD-index (vseq). (7)

vseqDu
.I DList = vseqd .I DList ∪ vseqFD-index .I DList. (8)

(ii) vseq is quasi-frequent but infrequent in D, that is, it is in Q/F-index of
D. We need to compute ASuppDu

(vseq) to determine whether vseq is
frequent in Du according to Q/F-index of D,

ASuppDu
(vseq) = ASuppd(vseq) + ASuppQ/FD-index (vseq). (9)

vseqDu
.I DList = vseqd .I DList ∪ vseqQ/FD-index .I DList. (10)

(iii) vseq is not quasi-frequent in D, that is, it is not in F&Q/F-index of D. As
we have inserted DPvseq into the F&Q/F-index of Du , we scan the pro-

123

498 G. Li et al.

jected sequences w.r.t. DPvseq in Du to count ASuppD(vseq) and record
vseqD .I DList according to DPvseqD .I DList based on F-index of Du .
Thus, we compute ASuppDu

(vseq) according to the the entry of DPvseq
in the F-index of Du ,

ASuppDu
(vseq) = ASuppd(vseq) + ASuppD(vseq); (11)

vseqDu
.I DList = vseqd .I DList ∪ vseqD.I DList. (12)

Based on ASuppDu
(vseq), we can check whether vseq is frequent in Du . Accord-

ingly, we devise a novel algorithm ESPRIT-i+ to incrementally mine the frequent
valid sequences of Du by interacting with the original database as illustrated in Fig. 12.
ESPRIT-i+ first calls its subroutine getFreqVseqsInteract to identify the frequent
valid sequences (line 3), and then validates whether the frequent sequences in D that
do not appear in d are still frequent in Du (line 6). Finally, ESPRIT-i+ builds the
F&Q/F-index (line 7).

getFreqVseqsInteract iteratively identifies the frequent valid sequences by
calling itself. For each prefix frequent valid sequence, P S, if P S is non-empty, get-
FreqVseqsInteract adds into the result set F(Du) (line 12). Then, getFreqVseqs-
Interact computes the set of valid local items w.r.t. P S (line 13). For each such
item, ei , getFreqVseqsInteract calls algorithm getUpdatedFrequentValidLocal-
Item (Fig. 13) to check whether the valid item ei is frequent w.r.t. P S. If ei is a frequent
valid item, getFreqVseqsInteract generates a new frequent valid sequence P Si (line
16), gets the pseudo projected sequence w.r.t. P Si (line 17), adds P Si in to the result
set F(Du) (line 18), inserts P Si into the F&Q/F-index of Du (line 19), and calls
itself to find frequent valid sequences (line 20).

getUpdatedFrequentValidLocalItem is used to check whether a given valid item
is frequent in the updated database Du as shown in Fig. 13. getUpdatedFrequent-
ValidLocalItem first extends DPvseq by adding item ei to generate a new sequence
vseq and scans the incremental database d to count the number of occurrences that
vseq appears in d (line 3). If the relative support of vseq is no larger than min_sup,
getUpdatedFrequentValidLocalItem only needs to scan the F-index of D and
then computes the absolute support of vseq by adding ASuppFD-index (vseq) and
ASuppd(vseq) (line 6); otherwise, getUpdatedFrequentValidLocalItem checks
whether vseq is frequent in three aspects (lines 8–17). If vseq is in F-index of D,
getUpdatedFrequentValidLocalItem computes the absolute of vseq by summing
up ASuppFD-index (vseq) and ASuppd(vseq) (line 9); if vseq is in Q/F-index of
D, getUpdatedFrequentValidLocalItem computes the absolute of vseq by sum-
ming up ASuppQ/FD-index (vseq) and ASuppd(vseq) (line 11); otherwise scans the
sequences in DPvseqD .I DList according to F-index of Du (line 16) and com-
putes the absolute support of vseq (line 17). Thus, based on the absolute support of
vseq, if vseq is frequent, getUpdatedFrequentValidLocalItem returns true (line
19); otherwise returns false (line 21).

The Border algorithm (Aumann et al. 1999) is similar to our ESPRIT-i . ESPRIT-i
extends a valid item to generate valid subsequence while the Border algorithm extends
an item to generate frequent subsequences. Moreover, ESPRIT-i need consider the

123

Incremental sequence-based frequent query pattern mining 499

Fig. 12 ESPRIT-i+ algorithm

case of ‘//’ and ‘*’. ESPRIT-i+ efficiently mines the incremental database by interact-
ing with the original database, which can improve ESPRIT-i effectively as it avoids
scanning the unnecessary items in the original databases.

5 Cache lookup and replacement

This section proposes several novel techniques of query rewriting, cache lookup and
cache replacement to enhance the answerability of caching.

123

500 G. Li et al.

Fig. 13 getUpdatedFrequentValidLocalItem algorithm

5.1 Query rewriting

Frequent X Q Ps capture the frequent queries issued in the past and they form the
ideal candidates for caching. However, for a certain frequent X Q P , it is a challenge to
select which nodes and their answers for caching. Note that, the more nodes selected
to cache, the higher hit rate is, but the more storage space is needed to cache them.
Selecting more nodes of a certain frequent query or more frequent queries to cache is
an alternative with limited memory.

In addition, selecting which node for caching will influence the performance of
the underlying XML-DBMS. For example, in Fig. 14, consider that C X Q Pi and
C X Q Pii are cached X Q Ps , where the dashed nodes of C X Q Pi and C X Q Pii (and
their corresponding answers) are selected to cache. Although a new query N X Q P
is issued with a returned node b, which is contained in C X Q Pi and C X Q Pii (if we
do not consider the returned node), it cannot be answered by their answers (Mandh-
ani and Suciu 2005). As the cached results do not contain the results of b. However,
we can integrate C X Q Pi and C X Q Pii into C X Q Piii and cache C X Q Piii and its

123

Incremental sequence-based frequent query pattern mining 501

Fig. 14 Three cached X Q Ps: C X Q Pi , C X Q Pii , C X Q Piii and a new XQP, N X Q P

corresponding answers. Accordingly, only C X Q Piii and the answers of the returned
node b w.r.t. C X Q Piii are cached. Note that, we can utilize C X Q Piii to answer
C X Q Pi and C X Q Pii as follows. We first retrieve the elements w.r.t. c or d, and then
check whether the elements w.r.t. c or d are children of the cached elements for b.
Finally, we return the elements which are children of the cached elements for b. This
strategy not only saves the storage space, but also can improve the answerability so
as to answer many more queries, e.g., C X Q Pi , C X Q Pii and N X Q P . Accordingly,
we integrate the equivalent queries to enhance the answerability of caching in this
paper. However, it is not easy to integrate multiple random X Q Ps, which is beyond
the scope of this paper. Interested readers are referred to our prior works (Li et al.
2006a) for more details.

5.2 Cache lookup

It is important to efficiently find a suitable X Q P in the cache to answer a new query. A
cached query Cv and a query Cq having the same I L P S is not a necessary condition
for Cv to answer Cq , but only a sufficient condition. This paper gives a weak sufficient
condition for Cv to answer Cq , which can improve the cache hit rate without involving
a lot of computations. We begin by introducing two concepts.

Definition 14 Query-Axis. Given an X Q P , its query axis is the path from the root
node to the returned node. Nodes on this path are called “axis nodes”, while the others
are called “predicate nodes”.

Definition 15 Preds(xqp, k). Given an X Q P xqp, Preds(xqp, k) denotes the
k-th axis node with its predicates. xqpk is the path from the k-th axis node to the last
axis node of xqp including the corresponding predicates. Query-Axis sequence is the
corresponding sequence of Query-Axis.

We can obtain Query-Axis sequence of an X Q P through its X Q P L , which is the
path prefix sequence (as described in Definition 12) of the subsequence of X Q P L

that is obtained from the first item to the first position where the returned node of
the X Q P appears in the sequence. We define Preds(xqp, k) sequences and xqpk
sequences, which can also be obtained from xqpL . In our approach, given a cached

123

502 G. Li et al.

query, we cache the axis nodes and the answers of the axis nodes which satisfy the
query. This strategy can improve the answerability of caching, but does not involve
too much storage space for preserving the answers. To better understand our method,
we give a running example.

Example 7 Consider the X Q Ps in Fig. 14, the query axis of C X Q Pi is a/b/c.
The query axis nodes of C X Q Pii are a, b, and d. We cache the answers of the
axis nodes. The query-axis sequence of C X Q Pi is abd. Preds(C X Q Pii , 1) =
a[d].Preds(C X Q Pii , 2) = b[c/x][e//z].Preds(C X Q Pii , 3) = d[y].C X Q Pii

2 =
b[c/x][e//z]/d[y].

Based on the concepts of Query-Axis and Preds(xqp, k), we introduce a weak
sufficient condition of Cv to answer Cq .

Lemma 7 A cached query V can answer a new query Q, denoted as V → Q, if

1. Query-Axis sequence of V is a prefix of that of Q; and
2. ∀k, 1 ≤ k ≤ m, Preds(Q, k) sequence is properly included in that of Preds

(V, k), where m is the total number of the axis nodes in V .

Proof As the Query-Axis sequence of V is a prefix of that of Q and each Preds(Q, k)

is properly included in Preds(V, k), V must be contained in Q. In addition, all the
results of axis-nods of V are cached, therefore we can answer Q using V . �

Given a new query Q, to determine whether a cached view V can answer Q, we
first check whether (1) of Lemma 7 is true, the complexity of which is the number of
nodes in the query axis of V . If (1) is true, we check whether (2) is true. The check
of whether Preds(Q, i) is properly included in Preds(V, i) is much easier than the
check of whether QL is properly included in V L . If both (1) and (2) are true, we can
reconstruct V to answer Q as follows.

As the Query-Axis sequence of V is a prefix of that of Q, any axis node in V
must be in Q. Suppose the number of axis nodes in V is m. For each axis node of V ,
denoted as AVi , if the predicates of AVi in V are different from those of AQi in Q, we
get the answers of AVi through querying AQi on the cached results of AVi ; otherwise,
the answers of AQi are exactly the cached answers of AVi . Then, we generate the
answers of the m-th axis node of Q by retrieving the answers of AVm , which satisfy
the path of Q from the 1-th axis node to the m-th axis node. Finally, we generate the
final answers of Q through querying Qm based on the answers of the m-th axis node.
Interested readers are referred to our previous works (Li et al. 2006a) for the details
about how to reconstruct V to answer Q.

5.3 Cache replacement

As the frequent query patterns are more likely to be issued subsequently, we cache
the recently discovered frequent query patterns. When cache replacement is needed,
we first replace the infrequent query patterns and their corresponding answers. If the

123

Incremental sequence-based frequent query pattern mining 503

space for admitting the new query result is still not sufficient, the cached results corre-
sponding to some frequent query patterns will be replaced according to replacement
policies.

Inspired from L FU and L RU , in this paper, we integrate L FU and L RU into
L F RU and propose a novel cache replacement based on L F RU . We always replace
the least frequently and recently used query. In our approach, the cached queries are
classified into two categories according to the visited time. One category is the recent
20% visited queries and the other category is the other 80% queries. We assign the
two parts with two importance ratios, α and β.

Suppose the queries in the database is {q1, q2, . . . , qn}, we record the visited
frequency fi , the recent visited time ti , the execution cost ci and the occupied size
si for each query qi . We always first replace query qi if (γi ∗ fi ∗ ci)/si is minimal
among all such queries, where

γi =
{ α

β
if qi is in the category of 20% recent queries

1 otherwise

We note that recently issued queries are more important, therefore α
β

should be
larger than 1. We set it to 4 in the experiments as the algorithm achieves the highest
performance at this point. When the number of new queries increases to 10% of that
of original queries, we use incremental algorithms ESPRIT-i /ESPRIT-i+ to incre-
mentally mine the updated database and cache the up-to-date frequent queries while
the XML-DBMS is not busy. We will experimentally demonstrate the effectiveness of
our proposed techniques in Sect. 6.

6 Experimental study

This section evaluates the performance of our proposed algorithms and demonstrates
the efficiency and scalability of our approaches in mining frequent XQPs.

To the best of our knowledge, FastXMiner (Yang et al. 2003a) and 2PXMiner (Yang
et al. 2004) are the most efficient algorithm for frequent XQP discovery. increQP-
Miner (Chen et al. 2004) is the state-of-the-art algorithm to incrementally mine fre-
quent XQPs. We compared ESPRIT with state-of-the-art algorithm FastXMiner (Yang
et al. 2003a) and 2PXMiner (Yang et al. 2004) on static databases, and compared our
incremental algorithms ESPRIT-i /ESPRIT-i+ with the best algorithm increQPMin-
er (Chen et al. 2004) on evolving databases. We used different datasets by varying
different values of min_sup and the numbers of selected queries.

The datasets we used are real-world data DBLP,4 SigmodRecord,5 TreeBank,6 and
synthetic data XMark.7 All the queries generated from the datasets followed the default
Zipfian distribution. According to the DTDs of these three datasets, some ‘//’ and ‘*’

4 http://dblp.uni-trier.de/xml/.
5 http://www.sigmod.org/record/xml/.
6 http://www.cs.washington.edu/research/xmldatasets/.
7 http://www.xml-benchmark.org/.

123

http://dblp.uni-trier.de/xml/
http://www.sigmod.org/record/xml/
http://www.cs.washington.edu/research/xmldatasets/
http://www.xml-benchmark.org/

504 G. Li et al.

Table 4 The characteristics of
XQPs we used in the
experiments

Datasets Average # of nodes Max depth Max fan-out

XMark 8.4 11 11
DBLP 7.6 8 12
SigmodRecord 5.4 5 4
TreeBank 9.2 16 8

nodes are added to construct the X Q Ps. Each XQP has 0.3 probability containing ‘//’
and 0.8 probability containing ‘*’. Different characteristics of X Q Ps are shown in
Table 4. There were 100–1000K queries. The number of transactions was about 100
and the size of each transaction was about 32 MB. In contrast, the average number of
nodes, maximum depth, and fan-out of X Q Ps reflect the complexity of the queries.
All the experiments were carried out on a computer with Pentium 2.4 GHz and 2GB
RAM running Windows XP. All the algorithms were implemented in C++.

6.1 Comparison on static databases

6.1.1 Evaluation of minimum support on static databases

In this section, we compared ESPRIT with FastXMiner and 2PXMiner by varying the
values of min_sup on static databases. In the comparison, we chose 100K X Q Ps for
min_sup in the range of 0.2% and 2.5%, and 500K X Q Ps for min_sup in the range
of 2% and 12% in every dataset as our experimental inputs. Figures 15, 16, 17, and
18 show the experimental results of ESPRIT, FastXMiner and 2PXMiner on static
databases by varying different values of min_sup on different datasets. Even if on the
dataset with nested structures (TreeBank), our method still achieves higher efficiency.

We observe that ESPRIT outperforms FastXMiner and 2PXMiner on each dataset
significantly, and 2PXMiner is better than FastXMiner. ESPRIT is about 5–15 times
faster than FastXMiner, and is about 3–8 times faster than 2PXMiner. This is because,
FastXMiner and 2PXMiner always need to match an increasing number of frequent
X Q P candidates and involves costly tree-containment testing, while ESPRIT avoids

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

2.521.510.50.2

E
L

ap
se

d
T

im
e(

s)

(a) min_sup (%) - 100K

FastXMiner
2PXMiner

ESPRIT

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

12108642

E
L

ap
se

d
T

im
e(

s)

(b) min_sup (%) - 500K

FastXMiner
2PXMiner

ESPRIT

Fig. 15 Evaluation on static databases by varying min_sups (SigmodRecord dataset)

123

Incremental sequence-based frequent query pattern mining 505

 0

 40

 80

 120

 160

 200

 240

 280

2.521.510.50.2

E
L

ap
se

d
T

im
e(

s)

(a) min_sup (%) - 100K

FastXMiner
2PXMiner

ESPRIT

 0

 200

 400

 600

 800

 1000

 1200

12108642

E
L

ap
se

d
T

im
e(

s)

(b) min_sup (%) - 500K

FastXMiner
2PXMiner

ESPRIT

Fig. 16 Evaluation on static databases by varying min_sups (DBLP dataset)

 0

 50

 100

 150

 200

 250

 300

2.521.510.50.2

E
L

ap
se

d
T

im
e(

s)

(a) min_sup (%) - 100K

FastXMiner
2PXMiner

ESPRIT

 0

 200

 400

 600

 800

 1000

 1200

 1400

12108642

E
L

ap
se

d
T

im
e(

s)

(b) min_sup (%) - 500K

FastXMiner
2PXMiner

ESPRIT

Fig. 17 Evaluation on static databases by varying min_sups (XMark dataset)

 0

 50

 100

 150

 200

 250

 300

 350

 400

2.521.510.50.2

E
L

ap
se

d
T

im
e(

s)

(a) min_sup (%) - 100K

FastXMiner
2PXMiner

ESPRIT

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

12108642

E
L

ap
se

d
T

im
e(

s)

(b) min_sup (%) - 500Ka

FastXMiner
2PXMiner

ESPRIT

Fig. 18 Evaluation on static databases by varying min_sups (TreeBank dataset)

redundant sequences testing by dynamic enumeration and pruning after the parent–
child constraint is applied based on our proposed sequence enumeration technique.

6.1.2 Scalability on static datasets

We evaluated the scalability of our algorithms by varying the number of X Q Ps on
the three datasets and fixing min_sup at 1%.

123

506 G. Li et al.

 0

 100

 200

 300

 400

 500

3025201510

E
L

ap
se

d
T

im
e

(s
)

(a) # of queries (*10000) - SigmodRecord

FastXMiner
2PXMiner

ESPRIT

 0

 100

 200

 300

 400

 500

 600

 700

 800

3025201510

E
L

ap
se

d
T

im
e

(s
)

(b) # of queries (*10000) - DBLP

FastXMiner
2PXMiner

ESPRIT

Fig. 19 Evaluation on static databases by varying numbers of queries (min_sup = 1%)

Figure 19 shows the performance results obtained on DBLP and SigmodRecord by
varying numbers of X Q Ps. ESPRIT has better scalability compared with FastXMin-
er and 2PXMiner. On SigmodRecord (Fig. 19a), when the number of X Q Ps is two
million, ESPRIT costs only about 25s while FastXMiner costs 320s and 2PXMiner
costs 150s. This is so because, (1) ESPRIT need not join frequent XQPs; and (2)
ESPRIT avoids the expensive tree-containment testing.

6.2 Comparison on synthetic databases

We evaluate different algorithms on synthetic datasets. We generate different synthetic
datasets as follows. In the DTD of the dataset, each node has k children with distinct
labels (except the root node and leaf nodes). The DTD has l levels. Figure 20 illus-
trates the DTD structure. We vary k to change the fan-out of the datasets, and vary l
to change the depth of the datasets. We select 100K queries from different datasets
and randomly add ‘//’ and ’*’ nodes in the queries. Figure 21 shows the experimental
results by varying k and fixing l = 6. Figure 22 illustrates the experimental results by
varying l and fixing k = 4.

Fig. 20 DTD of synthetic
datasets

r

a b

a b a b

k

k

l

123

Incremental sequence-based frequent query pattern mining 507

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 2 3 4 5 6 7 8 9 10 11 12

E
L

ap
se

d
T

im
e

(s
)

k

FastXMiner
2PXMiner

ESPRIT

Fig. 21 Evaluation on different datasets by varying k(l = 6, min_sup = 1% and |D| = 100K)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 3 4 5 6 7 8 9 10 11 12

E
L

ap
se

d
T

im
e

(s
)

l

FastXMiner
2PXMiner

ESPRIT

Fig. 22 Evaluation on different datasets by varying l(k = 4, min_sup = 1% and |D| = 100K)

We observe that with the increase of k, the elapsed time of FastXMiner and
2PXMiner increases sharply. While ESPRIT increases a little. This is so because,
the two previous algorithms need join many frequent XQPs. The larger k, the more
numbers of XQPs need to be joined. It is very expensive to join frequent XQPs if there
are large numbers of frequent XQPs. On the other hand, the elapsed time of the three
methods is nearly linear with l. This is so because FastXMiner and 2PXMiner need
not join large numbers of frequent XQPs as the fan-out of the datasets is not large.

6.3 Comparison on evolving databases

In this section, we compared ESPRIT-i and ESPRIT-i+ with increQPMiner, ESPRIT
and 2PXMiner on evolving transaction databases.8

6.3.1 Evaluation of minimum support on evolving databases

We selected 200K queries as the original database and added 100K queries as the
incremental database. The three incremental algorithms, ESPRIT-i , ESPRIT-i+ and

8 As 2PXMiner always outperforms FastXMiner, we only compare with 2PXMiner in the remainder of
this paper.

123

508 G. Li et al.

increQPMiner, incrementally mine the frequent X Q Ps, while the other two algo-
rithms, ESPRIT and 2PXMiner, mine the frequent X Q Ps on Du from scratch.

Figures 23, 24, and 25 show the experimental results of the five algorithms on
different datasets. We can see our two incremental algorithms outperform the other
algorithms significantly. This further demonstrates that the incremental mining is more
efficient than mining from scratch. When min_sup is 2%, ESPRIT-i is about 15–30
times faster than 2PXMiner, 5–10 times faster than ESPRIT and 3–6 times faster
than increQPMiner. As the incremental algorithms are always better than the static
algorithms, we only compare the incremental algorithms in the remainder part.

To better understand our algorithms, we compared ESPRIT-i+ with ESPRIT-i
on DBLP dataset and we set min_sup as 1%. We varied the ratio between |d| and
|D|. The obtained experimental results are shown in Fig. 26. Note that, ESPRIT-i+
achieves better performance and outperforms ESPRIT-i , as ESPRIT-i+ makes full
use of the mined results of D and interacts with the original database D fully to mine

 0

 50

 100

 150

 200

2.521.510.50.2

E
L

ap
se

d
T

im
e

(s
)

(a) min_sup(%)

 0

 50

 100

 150

12108642

E
L

ap
se

d
T

im
e

(s
)

(b) min_sup(%)

2PXMiner
ESPRIT

 increQPMiner

IMPETUS
IMPETUS+

Fig. 23 Evaluation of incremental mining on SigmodRecord dataset (|D| = 200K, |d| = 100K)

 0

 10

 20

 30

 40

 50

2.521.510.50.2

E
L

ap
se

d
T

im
e

(s
)

(a) min_sup(%)

 0

 10

 20

 30

 40

12108642

E
L

ap
se

d
T

im
e

(s
)

(b) min_sup(%)
 increQPMiner

IMPETUS
IMPETUS+

Fig. 24 Evaluation of incremental mining on DBLP dataset (|D| = 200K, |d| = 100K)

123

Incremental sequence-based frequent query pattern mining 509

 0

 10

 20

 30

 40

 50

2.521.510.50.2

E
L

ap
se

d
T

im
e

(s
)

(a) min_sup(%)

 0

 10

 20

 30

 40

 50

12108642

E
L

ap
se

d
T

im
e

(s
)

(b) min_sup(%)
 increQPMiner

IMPETUS
IMPETUS+

Fig. 25 Evaluation of incremental mining on XMark dataset (|D| = 200K, |d| = 100K)

 0

 10

 20

3025201510

E
la

ps
ed

 T
im

e
(s

)

(a) # of queries in D (*10000) - d:D=1:2

IMPETUS
IMPETUS+

 0

 10

 20

3025201510

E
la

ps
ed

 T
im

e(
s)

(b) # of queries in D (*10000) - d:D=1:1

IMPETUS
IMPETUS+

 0

 10

 20

 30

 40

 50

3025201510

E
la

ps
ed

 T
im

e(
s)

(c) # of queries in D (*10000) - d:D=2:1

IMPETUS
IMPETUS+

Fig. 26 Evaluation of incremental mining on DBLP by varying |d|/|D|(min_sup = 1%)

the up-to-date frequent queries. With the increase of |d|/|D|, ESPRIT-i+ achieves
much better performance than ESPRIT-i as the latter needs to scan the incremental
database independently and does not interact with the original database.

6.3.2 Scalability on evolving database

This section evaluates the scalability of our algorithms by varying the number of
X Q Ps on different datasets. We selected 200K queries as the original database, fixed
the min_sup at 1%, and varied the numbers of queries in the incremental database d.
Figure 27 illustrates the experimental results obtained.

We can see ESPRIT-i and ESPRIT-i+ outperform increQPMiner significantly.
This is because the former two algorithms take full advantage of mined results of D
while increQPMiner makes use of a part of the mined results. More importantly, our
methods use efficient indices, which can facilitate the incremental mining.

6.4 Incremental mining

To further evaluate the performance of the incremental algorithms, we introduce
another good metric, Speedup. Speedup of algorithm A over algorithm B, is TB/TA,
where TA and TB are the elapsed time of A and B respectively.

123

510 G. Li et al.

 0

 10

 20

 30

 40

 50

3025201510

E
la

ps
ed

 T
im

e(
s)

(a) # of queries (*10000) - SigmodRecord

 0

 10

 20

 30

 40

 50

3025201510

E
la

ps
ed

 T
im

e
(s

)

(b) # of queries (*10000) - DBLP

 increQPMiner
IMPETUS

IMPETUS+

Fig. 27 Evaluation of incremental mining by varying number of queries (min_sup = 1%)

We selected 100K X Q Ps on DBLP dataset as the original database D. We added
an incremental database d into D. For each d, we used the algorithms to mine the
up-to-date frequent query patterns on Du until |Du | = 2 ∗ |D| and compared the total
elapsed time of different algorithms.

In Fig. 28a, we increased Du by adding d with |d| = 10K at each time and compared
the total elapsed time. We can observe that, with the increase of Du , the speedups of
ESPRIT-i over 2PXMiner, ESPRIT and increQPMiner also go up. It reflects that
incremental mining methods are very efficient for the evolving databases. In Fig. 28b,
we fixed |d|/|D| = 5% and added d into Du until |Du | = 2 ∗ |D| with differ-
ent values of min_sup. Figure 28b gives the speedups of the selected algorithms by
varying different values of min_sup. The experimental results show that the incre-
mental mining methods are more efficient than the static ones on whatever the values
of min_sup. Especially, when min_sup = 2%, the speedups of ESPRIT-i over
2PXMiner, ESPRIT, increQPMiner are 206, 148, 44 respectively.

 0

 50

 100

 150

 200

 250

 300

10987654321

Sp
ee

du
p

(a) |d| (*10,000, min_sup=1%)

IMPETUS/2PXMiner
IMPETUS/ESPRIT

IMPETUS/increQPMiner

 0

 50

 100

 150

 200

 250

 300

 350

2.521.510.50.2

Sp
ee

du
p

(b) min_sup(%)

IMPETUS/2PXMiner
IMPETUS/ESPRIT

IMPETUS/increQPMiner

Fig. 28 Speedup over different algorithms on DBLP (|D| = 100K, |Du | = 200K)

123

Incremental sequence-based frequent query pattern mining 511

 30

 40

 50

 60

 70

 80

 90

 100

1.00.80.60.40.2

C
ac

he
 H

it
R

at
e(

%
)

(a) min_sup (%) - DBLP

2PXMiner
ESPRIT

 30

 40

 50

 60

 70

 80

 90

 100

1.00.80.60.40.2

C
ac

he
 H

it
R

at
e(

%
)

(b) min_sup (%) - XMark

2PXMiner
ESPRIT

Fig. 29 Cache hit rate on static databases (|D| = 100K, varying min_sup)

6.5 Effectiveness of caching

This section demonstrates how the frequent query patterns discovered can be used
to improve the performance of caching and how the replacement techniques improve
cache hit rate. Our optimization policies of query rewriting, cache lookup and cache
replacement are adopted in our algorithms, ESPRIT, ESPRIT-i and ESPRIT-i+.9

We first evaluated the cache hit rate on the static database. We selected 100K X Q Ps
as the original database. We mined these 100K X Q Ps by varying the different values
of min_sup and cached all the the mined queries and the corresponding answers.
Then, we added 100K new queries as an incremental database d to join the original
database. We evaluated the average cache hit rate of evaluating these 100K queries.
The experiential results are illustrated in Fig. 29.

We can observe that ESPRIT outperforms the traditional method significantly as
the optimization techniques we proposed can improve the answerability and the hit
rate of caching. In contrast, on DBLP when min_sup is 0.2%, the cache hit rate of
2PXMiner is 74%; when min_sup is 1%, the cache hit rate of 2PXMiner falls to 42%.
However, the cache hit rate of our algorithms is always more than 85%. Moreover,
ESPRIT leads to 10-40% cache hit rate over 2PXMiner as illustrated in Fig. 29. This
is so because we employed several more effective strategies of query rewriting, cache
lookup and cache replacement.

We then evaluated the cache hit rate on evolving databases. We first selected 100K
X Q Ps as the original database. Then the new queries to join the database were var-
ied from 10K to 100K. Noted that, we incrementally mined the up-to-date X Q Ps by
employing the three incremental algorithms when the number of X Q Ps are 110, 120,
. . ., and 200K. Figure 30 shows the experimental results of cache hit rate.

We observe that ESPRIT, ESPRIT-i and ESPRIT-i+ achieve more efficient
answerability and higher hit rate than 2PXMiner and increQPMiner. Note that the
hit rate of our algorithms is barely affected by the increase of min_sup; while the hit
rate of other algorithms falls rapidly. The experimental results show that our policies
of cache replacement, cache lookup and query rewriting indeed improve the query per-

9 We set α/β = 4 in all the experiments.

123

512 G. Li et al.

 40

 50

 60

 70

 80

 90

 100

108642

C
ac

he
 H

it
R

at
e

(%
)

(a) # of queries (*10,000) - DBLP

 40

 50

 60

 70

 80

 90

 100

108642

C
ac

he
 H

it
R

at
e

(%
)

(b) # of queries (*10,000) - XMark

2PXMiner
ESPRIT

 increQPMiner
IMPETUS

Fig. 30 Cache hit rate on evolving databases (min_sup = 1%, |D| = 100K, varying |d|)

formance of XML-DBMS. Note that if cache hit, we use the cached results to answer
the query. If cache miss, we need access disk to answer the query. Thus, they involve
more I/O consumption as their cache hit rates are lower than those of our methods.

Finally, we investigated the average response time (the average time taken to answer
a query) to answer new queries. We selected 100K queries as the original database.
We then added 10K queries at each time. Noted that, we mined the up-to-date X Q Ps
by employing the three incremental algorithms when the numbers of X Q Ps are 110,
120, . . ., and 200K. The experimental results are illustrated in Fig. 31. The average
response time of ESPRIT-i is about fifth of that of 2PXMiner and third of that of
increQPMiner. The reason is that, ESPRIT-i improves the cache hit rate significantly
and thus improves the answerability of caching. More importantly, ESPRIT-i is much
more efficient than processing queries directly without using the cached views.

Observed from the above experimental results, we see that our algorithms are much
more efficient and have better scalability and answerability than the state-of-the-art
algorithms, FastXMiner, 2PXMiner and increQPMiner. Moreover, ESPRIT-i and
ESPRIT-i+ are very efficient for the evolving transaction databases.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10987654321

A
vg

. R
es

po
ns

e
T

im
e

(m
s)

(a) # of queries (*10,000) - DBLP

2PXMiner
ESPRIT

increQPMiner
IMPETUS

IMPETUS+

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10987654321

A
vg

. R
es

po
ns

e
T

im
e

(m
s)

(b) # of queries (*10,000) - XMark

2PXMiner
ESPRIT

increQPMiner
IMPETUS

IMPETUS+

Fig. 31 Average response time on evolving databases (min_sup = 1%, |D| = 100K, varying |d|)

123

Incremental sequence-based frequent query pattern mining 513

7 Related work

As XML has become de facto standard for information representation and exchange
over the Internet, many researchers have studied the problem of semantic caching
for XML databases. Chen et al. (2002) first proposed to apply the ideas of semantic
caching to XML query processing systems, in particular the XQuery engine. Semantic
caching implies view-based query answering and cache management. Hristidis and
Petropoulos (2002) presented a novel framework for semantic caching of XML dat-
abases. The cached XML data were organized using a modification of the incomplete
tree, which has many desirable properties, such as incremental maintenances, contain-
ment decidability and remainder queries generation in PTIME. Xu (2005) introduced
a novel framework for a new semantic caching system, which offers the representation
system of cached XML data, the algorithms to decide whether a new query can be
totally answered by cached XML data or not, and to incrementally maintain the cached
XML data.

More recently, we devised an efficient approach to improve the answerability of
semantic cache by decomposing XML queries into simple components and employ-
ing a technique of the divisibility of prime number products (Li et al. 2006a), which
leads to a significant improvement over previous works in terms of the elapsed time of
cache lookup and cache hit rate. We proposed a novel method of exploiting sequencing
views in semantic cache to accelerate XPath query evaluation so as to improve the
answerability of caching (Feng et al. 2007). We have studied the problem of clustering
XML documents by employing the technique of transforming XML documents to
sequences (Aggarwal et al. 2007).

As to frequent XQPs mining, to the best of our knowledge, XQPMiner (Yang et al.
2003b) is the first algorithm to mine frequent X Q Ps with a global XQP schema
guided enumeration mining algorithm for frequent XQP mining. It follows the tra-
ditional idea of generate-and-test paradigm for tree-structured data mining. Global
query pattern tree needs to be generated for XQP enumeration, as well as expensive
candidate generation and containment testing. FastXMiner (Yang et al. 2003a) is pro-
posed to improve the performance beyond XQPMiner, as only valid candidate X Q Ps
are enumerated for costly tree-containment testing, as opposed to all the candidates of
XQPMiner (Yang et al. 2003b). 2PXMiner (Yang et al. 2004) is proposed to reduce
the number of costly tree inclusion tests to improve query performance beyond FastX-
Miner. However, these methods have to enumerate all of the candidates and involve
the costly tree-containment checking, and thus lead to inefficiency. increQPMiner
(Chen et al. 2004) studies the problem of incremental mining by using the mined
results of the original databases. However, increQPMiner is not as efficient as our
incremental algorithms (Li et al. 2006b), as increQPMiner does not take full advan-
tages of the mined results of the original database. Our previous work SOLARIA
(Feng et al. 2006) uses a sequence based method to mine frequent patters. However
SOLARIA does not support ‘//’, and thus it is not as powerful as other methods.
SOLARIA also cannot incrementally mine the evolving databases.

In addition, mining frequent substructures of trees, graphs and sequences has drawn
much attention as an essential data mining task, with various applications including
market and customer analysis, web log analysis, pattern discovery in protein sequences

123

514 G. Li et al.

and XML frequent patterns for caching, and so on. For tree and graph mining, frequent
pattern discovering was first addressed in biological science. An adaptive path index
for XML data (APEX) (Chung et al. 2002) was proposed to utilize frequently used
paths to improve the query performance. Dehaspe et al. (1998) proposed an efficient
algorithm to mine frequent substructures in protein and chemical compounds. In graph
database, algorithm FSG proposed in Kuramochi and Karypis (2001) is considered as
a fast miner for discovering connected sub-graphs by extending the notion of level-
by-level expansion of Agrawal and Srikant (1994). Motivated by discovering user
navigation patterns in web surfing. Zaki (2002, 2005) proposed subtree mining algo-
rithm in forest, which faces more complex data situation. FREQT (Asai et al. 2002)
and TreeFinder (Termier et al. 2002) aimed at finding frequent subtrees in a collection
of semi-structured documents, but still cannot solve the problem of XQP mining due
to the existence of ‘*’ and ‘//’ for XPath queries. Another closest related work is find-
ing the frequent substructures from a collection of semi-structured Web documents
(Wang and Liu 2000), and mining frequent sequential patterns (Ayres et al. 2002; Han
et al. 2000; Masseglia et al. 1998; Srikant and Agrawal 1996) which mainly focus
on general and constraint-based sequence mining problems. Frequent episode mining
(Yan et al. 2003), cyclic association rule mining (Ozden et al. 1998), temporal relation
mining (Bettini et al. 1998), partial periodic pattern mining (Han et al. 1999), and long
sequential pattern mining in noisy environment (Yang et al. 2002) have been studied.
But the voice of a frequent pattern mining algorithm should not mine all frequent
patterns but only the closed ones come out with convincing arguments for its better
efficiency and more compact results without valuable information loss. CloSpan (Yan
et al. 2003) and BIDE (Wang and Han 2004) are two well-known closed sequence
mining algorithms, where CloSpan still follows the candidate maintenance-and-test
paradigm and BIDE adopts BI-Directional Extension to avoid candidate maintenance
and outperforms prior works. In future work, we want to study the problem of mining
closed frequent query patterns.

8 Conclusion

In this paper, we have studied the problem of incrementally mining frequent query
patterns from XML queries for caching to improve the performance of XML query
processing. We presented an efficient algorithm ESPRIT to mine frequent XQPs.
ESPRIT employs the idea of sequential pattern mining for replacing expensive tree-
containment testing with cheap parent–child validity checking. To enhance the effi-
ciency of mining the frequent patterns, we proposed two algorithms ESPRIT-i and
ESPRIT-i+ to incrementally mine the frequent valid sequences for the evolving trans-
action databases by incorporating two novel indices of F-index and Q/F-index .
ESPRIT-i+ is much more efficient and outperforms other algorithms as ESPRIT-i+
makes full use of the mined results of the original database D and interacts with D
fully to discover the up-to-date frequent queries. We also examined several optimiza-
tion techniques of query rewriting, cache lookup, and cache replacement to improve
the answerability and the hit rate of caching. We have implemented our algorithms
and conducted an extensive set of experimental studies. The thorough experimental

123

Incremental sequence-based frequent query pattern mining 515

results show that our algorithms significantly outperform state-of-the-art algorithms
in terms of efficiency, scalability as well as answerability.

Acknowledgements This work is partly supported by the National Natural Science Foundation of China
under Grant No. 60873065, the National High Technology Development 863 Program of China under Grant
No. 2007AA01Z152, and the National Grand Fundamental Research 973 Program of China under Grant
No. 2006CB303103.

References

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: VLDB,
pp 487–499

Aggarwal C, Ta N, Wang J, Feng J, Zaki MJ (2007) Xproj: a framework for projected structural clustering
of xml documents. In: KDD

Asai T, Abe K, Kawasoe S, Arimura H, Sakamoto H, Arikawa S (2002) Efficient substructure discovery
from large semi-structured data. In: SDM

Aumann Y, Feldman R, Liphstat O, Mannila H (1999) Borders: an efficient algorithm for association gen-
eration in dynamic databases. J Intell Inf Syst 12(1):61–73

Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential pattern mining using a bitmap representation. In:
KDD

Balmin A, Ozcan F, Beyer K, Cochrane R, Pirahesh H (2004) A framework for using materialized xpath
views in xml query processing. In: VLDB, pp 60–71

Bettini C, Wang XS, Jajodia S (1998) Mining temporal relationships with multiple granularities in time
sequences. IEEE Data Eng Bull 21(1):32–38

Chen L, Rundensteiner EA, Wang S (2002) Xcache: a semantic caching system for xml queries. In: SIGMOD
Chen Y, Yang L, Wang YG (2004) Incremental mining of frequent xml query patterns. In: ICDM,

pp 343–346
Chung C-W, Min J-K, Shim K (2002) Apex: an adaptive path index for xml data. In: SIGMOD Conference,

pp 121–132
Dehaspe L, Toivonen H, King R (1998) Finding frequent substructures in chemical compounds. In: KDD,

pp 30–36
Feng J, Qian Q, Wang J, Zhou L (2006) Exploit sequencing to accelerate hot xml query pattern mining. In:

ACM SAC
Feng J, Ta N, Li G (2007) Exploit sequencing views in semantic cache to accelerate xpath query evaluation.

In: WWW
Han J, Dong G, Yin Y (1999) Efficient mining of partial periodic patterns in time series database. In: ICDE,

pp 106–115
Han J, Pei J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu M (2000) Freespan: frequent pattern-projected

sequential pattern mining. In: KDD, pp 355–359
Hristidis V, Petropoulos M (2002) Semantic caching of xml databases. In: WebDB
Kaushik R, Shenoy P, Bohannon P, Gudes E (2002) Exploiting local similarity for indexing paths in graph-

structured data. In: ICDE, pp 129–140
Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: ICDM, pp 313–320
Kwon J, Rao P, Moon B, Lee S (2005) Fist: scalable xml document filtering by sequencing twig patterns.

In: VLDB, pp 217–228
Li G, Feng J, Ta N, Zhang Y, Zhou L (2006a) Scend: an efficient semantic cache to exploit xpath query/view

answerability. In: WISE, pp 460–473
Li G, Feng J, Wang J, Zhang Y, Zhou L (2006b) Incremental mining of frequent query patterns from xml

queries for caching. In: ICDM, pp 350–361
Luo Q, Krishnamurthy S, Mohan C, Pirahesh H, Woo H, Lindsay BG, Naughton JF (2002) Middle-tier

database caching for e-business. In: SIGMOD, pp 600–611
Mandhani B, Suciu D (2005) Query caching and view selection for xml databases. In: VLDB
Masseglia F, Cathala F, Poncelet P (1998) The psp approach for mining sequential patterns. In: PKDD
Milo T, Suciu D (1999) Index structures for path expressions. In: ICDT, pp 277–295
Ozden B, Ramaswamy S, Silberschatz A (1998) Cyclic association rules. In: ICDE, pp 412–421

123

516 G. Li et al.

Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M (2001) Prefixspan: Mining sequential
patterns by prefix-projected growth. In: ICDE, pp 215–224

Prüfer H (1918) Neuer beweis eines satzes uber permutationen. Archiv fur Mathematik und Physik 27:142–
144

Qun C, Lim A, Ong KW (2003) D(k)-index: an adaptive structural summary for graph-structured data. In:
SIGMOD, pp 134–144

Rao PR, Moon B (2004) Prix: indexing and querying xml using prufer sequences. In: ICDE, pp 288–299
Re C, Brinkley J, Hinshaw K, Suciu D (2004) Distributed xquery. In: Information integration on the web

(IIWeb)
Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements.

In: EDBT, pp 3–17
Termier A, Rousset M-C, Sebag M (2002) Treefinder: a first step towards xml data mining. In: ICDM,

pp 450–457
Wang J, Han J (2004) Bide: efficient mining of frequent closed sequences. In: ICDE, pp 79–90
Wang K, Liu H (2000) Discovering structural association of semistructured data. IEEE TKDE 12(2):353–

371
Wang H, Park S, Fan W, Yu PS (2003) Vist: a dynamic index method for querying xml data by tree structures.

In: SIGMOD, pp 110–121
Xu W (2005) The framework of an xml semantic caching system. In: WebDB
Yan X, Han J, Afshar R (2003) Clospan: mining closed sequential patterns in large databases. In: SDM
Yang J, Wang W, Yu PS, Han J (2002) Mining long sequential patterns in a noisy environment. In: SIGMOD,

pp 406–417
Yang LH, Lee M-L, Hsu W (2003a) Efficient mining of xml query patterns for caching. In: VLDB,

pp 69–80
Yang LH, Lee M-L, Hsu W, Acharya S (2003b) Mining frequent query patterns from xml queries. In:

DASFAA, pp 355–362
Yang LH, Lee ML, Hsu W, Guo X (2004) 2pxminer: an efficient two pass mining of frequent xml query

patterns. In: KDD
Zaki MJ (2002) Efficiently mining frequent trees in a forest. In: SIGKDD, pp 71–80
Zaki MJ (2005) Efficiently mining frequent trees in a forest: algorithms and applications. IEEE TKDE

17(8):1021–1035

123

	Incremental sequence-based frequent query pattern mining from XML queries
	Abstract
	1 Introduction
	2 Sequence-based frequent XML query pattern mining
	2.1 Notations
	2.2 Incremental frequent XQP mining
	2.3 Frequent subsequence mining

	3 ESPRIT: an efficient sequence based frequent XML query pattern mining algorithm
	3.1 Preprocessing
	3.2 Valid subsequence extension
	3.3 ESPRIT algorithm
	3.4 ESPRIT versus FastXMiner

	4 Incremental mining of frequent XML query patterns
	4.1 F-index and Q/F-index
	4.2 Incremental sequential pattern mining for frequent XQP mining
	4.3 Interactively mining frequent sequences

	5 Cache lookup and replacement
	5.1 Query rewriting
	5.2 Cache lookup
	5.3 Cache replacement

	6 Experimental study
	6.1 Comparison on static databases
	6.2 Comparison on synthetic databases
	6.3 Comparison on evolving databases
	6.4 Incremental mining
	6.5 Effectiveness of caching

	7 Related work
	8 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

