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Abstract—Materialized views (MVs) are vital in DBMS to im-
prove the query efficiency by reducing redundant computations
of shared subqueries in a workload. Traditional methods focus
on static MV management, which assumes that MVs will not be
added or evicted. However, in real scenarios, query workloads
usually dynamically change, and thereby the previously main-
tained MVs cannot be well adapted to future workloads due to
the possible shift in query distribution. Therefore, it is important
to study the dynamic MV management problem where workloads
dynamically change, but there are several challenges. First, it is
challenging to estimate the benefit of using an MV to answer a
query (i.e., the execution time reduction of answering the query
using the view) in order to select high-quality MVs, especially for
dynamic workloads, where queries and MVs dynamically change.
Second, it is challenging to efficiently maintain the set of MVs to
immediately utilize the new views to answer the newly coming
queries. However, existing methods either have low accuracy
(traditional methods) or low efficiency (learning-based methods).

To address these challenges, we propose a novel framework
GnnMV that leverages the graph neural network (GNN) to estimate
the benefit for efficient and effective dynamic MVs management.
First, we maintain the dynamic query workloads as a query
graph, extract and encode key features of queries to model
a GNN. Second, we design a feature aggregation function for
neighbor nodes in the graph to achieve high accuracy. Third,
we propose to extract a small subgraph for efficient benefit
estimation, when the graph becomes larger and larger due to
continuously coming queries. Experimental results show that our
method significantly outperforms state-of-the-art approaches.

I. INTRODUCTION

In OLAP databases, a query workload contains many
complex SQL queries, which usually share many common
time-consuming subqueries, and building materialized views
(MVs) for time-consuming and frequently-used subqueries is
a commonly-used technique to improve the query performance
by using MVs to answer queries.

Dynamic MV Management. Traditional static MV manage-
ment methods generate a fixed set of MVs and use these MVs
to answer queries. Obviously, these methods are not effective
for dynamical workloads, because the fixed MVs cannot be
well adapted to the newly coming queries. For example, the
advertising business of Alibaba faces huge analytical queries
from e-commerce store owners every day. In addition to the
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Fig. 1. Working mechanism of MVs for dynamic workloads.

daily batch workloads, there are many other analytical queries,
which have variable patterns and, most importantly, change
with different seasons or fashion trends. Hence, when the
dynamic workload patterns change, the MVs set should be
updated in time to keep high hit ratio of MVs. Therefore,
dynamic MV management is an important problem, which
consists of two key steps as shown in Figure [I| (1) Query
rewrite. Given a new query ¢, query rewrite aims to rewrite ¢
with some MVs from currently maintained MVs. To this end,
we have to estimate the benefit of using view v to answer g,
i.e., the execution time reduction of answering ¢ after using
v, and select the MVs that can bring the most benefit to
rewrite, so as to maximize the query performance. (2) MV
set maintenance. As new queries are continuously coming, we
need to maintain the set of MVs to cope with the continuously
coming queries with possible distribution shift. To this end,
we also need benefit estimation of using existing MVs to
answer queries in dynamic workloads. Then we generate new
MVs that can mostly optimize the dynamic workloads within
a limited space budget.

Limitation of existing methods. MVs management is a
vital problem that has been studied for decades. Traditional
methods (1], (2], [8, [1O], (1501701, [22], [24], [31]-[35]
leverage the optimizer in DBMS to estimate the benefit of
MVs efficiently, based on which they can iteratively select
the proper MVs to materialize. Hence, they can achieve high
efficiency even if the MVs are built from scratch given new
query workloads, but low-quality MVs are generated since
purely using the optimizer to conduct the benefit estimation
is inaccurate [25]], [[36]]. To address this issue, learning-based
methods [14], [29], [45] are proposed to accurately estimate
the benefit. However, to handle the dynamic scenario, they
have to build the MVs from scratch. Although high-quality
MYVs can be derived, they are prohibitively expensive because



the deep neural architectures cause a slow benefit/cost estima-
tion. Hence, they cannot meet the high-efficiency requirement
under the frequent workload changing scenarios.

Challenges. To achieve the ultimate goal of minimizing the
total execution time of the query workloads in the dynamic
scenario, there are two essential challenges. First, given a large
number of queries, how to estimate the benefit of each MV to
each query accurately is challenging, which is rather signifi-
cant to generate high-quality MVs (C1). Second, to enable that
newly coming queries can utilize the generated MVs in time,
MYV set maintenance in the dynamic scenario should be very
efficient. But with the number of queries becoming larger and
larger, how to conduct the benefit estimation efficiently while
keeping the high accuracy is challenging (C2).

Our proposed methods. To address the above challenges, we
propose a graph neural network (GNN) based dynamic materi-
alized view management framework, GnnMV, which maintains
the set of MVs efficiently and effectively. Initially, GnnMV first
builds a graph on the current workload. Each query in the
workload can be represented as a query plan tree, and multiple
trees constitute the graph. Next, we train a GNN model on
the graph, which takes as input the node features and outputs
the benefit estimation of using an MV to answer a query (an
MV/subquery corresponds to a node in the graph). We design
a GNN model to judiciously capture the benefit from different
types of neighbor nodes through several iterations of feature
propagations, and thereby provide accurate benefit estimation
(for C1). Besides, the graph structure makes the benefit estima-
tion in parallel for each iteration, which is efficient for query
rewrite and MV set maintenance. Furthermore, as the graph
grows larger (more queries), we discover a small subgraph, on
which we conduct an efficient and accurate inference, instead
of on the entire graph (for C2).

Contributions. We make the following contributions.

(1) We propose a GNN-based framework for efficient and
effective dynamic MVs management.

(2) We build a well-designed graph model by encoding key
features and designing an aggregate function for capturing
neighbor nodes in a graph, to capture the MV characteristics.
(3) As dynamic workloads come, we maintain the graph in-
crementally, and discover a subgraph for efficient and accurate
query-rewrite and MV set maintenance.

(4) Experimental results on five datasets show that our method
outperforms state-of-the-art approaches.

II. PRELIMINARIES
A. Problem Definition

Query tree. Given a SQL query ¢, we model it as a query
tree. Each subtree rooted at a node corresponds to a subquery,
and each node indicates an operator.

Example 1: As shown in Figure [2| suppose ¢ : SELECT
R3.title FROM R1, R2, R3 WHERE R2.age > 30 AND
R3.year > 2005 AND R2.id = R1.a_id AND R3.id =
R1.bk_id; and the optimizer produces a tree with 8 nodes,
including 3 table scan operators, 2 filtering operators, 2 join
operators, as well as a project operator, i.e., the root node.

Since each node corresponds to a subquery rooted at the

node in the query tree, we use the two terms (i.e., subquery
and node) interchangeably if the context is clear.
MVs Generation for Static Query Workload. Given a query
workload, if a subquery with a high computational cost is
shared by many complex queries, it is vital to avoid redundant
computation by materializing a view for the subquery. Thus,
when a query contains this subquery, we may rewrite the query
and use the view to optimize it.

Example 2: As shown in Figure 2] if we materialize a set
of views V = {vy,v3} (i.e., vy is a subquery that joins Ry and
R, and v3 is a subquery that applies a filtering operator on
Rs), both ¢; and g2 can be optimized by using the views.

Given a query workload, there exist a large number of
subqueries, ie., a set )V of candidate MVs, it is necessary
to judiciously materialize a subset V* C V) such that the total
execution time of the query workload is minimized, where the
total size of views in V* is within a given space budget.
Remark. As discussed above, all subqueries (queries) except
the leaves in the query tree can be materialized as views, so
we call them view nodes. We call root nodes of queries as
query nodes. Note that query nodes can also be view nodes.
Dynamic Workloads. We consider a common scenario that
queries are coming continuously in a long period of time, also
known as dynamic workloads. Apparently, it is ineffective that
MVs are generated just based on an existing static workload,
and the method using these fixed MVs to optimize the sub-
sequent queries is not optimal, as the queries distribution is
likely to shift. However, it is reasonable that the MVs built
based on certain workloads can benefit the workloads arriving
in the near future, because the query distributions are likely
not to shift much. Therefore, we propose to keep updating
the MVs iteratively with new workloads arriving, such that all
queries can be well optimized over a period of time.

Next, we formally define the problem as below.

Definition I (Dynamic MVs Management): Given the cur-
rent MVs set V) selected based on the existing workload
W,., when a new workload W,, arrives, the dynamic MVs
management problem is to efficiently update V" to a new set
V¥ such that V,J can minimize the total execution time of the
future workload. Afterwards, we keep updating the MVs when
new query workloads arrive, so as to utilize these up-to-date
MVs to optimize the continuously coming queries.

Furthermore, given a workload W,, each MV set mainte-
nance consists of two steps.

(1) [Benefit estimation.] As there are many subqueries
(queries) in the workload, each of which can be a view, we
can derive the MVs candidate set V. To obtain a proper MVs
set, we should know the benefit B(q,v) of utilizing an MV
v € V to answer a query ¢ € W,. The benefit is the execution
time reduction of answering g with v, i.e., B(q,v) = t, —ty,
where ¢, is the execution time of the query plan of ¢, and ¢
is the execution time of the query plan rewritten by v.

(2) [MVs generation.] Afterwards, we can build a bipartite
graph to generate MVs, where one side includes the set of
queries in the workload and the other side includes the MV
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Fig. 2. An Example of Dynamic MVs Management.

candidates. Each edge is associated with B(g, v). Next, We aim
to select and materialize a subset of MV candidates V* C V
within a space budget 7 such that the total benefit of all queries
with properly selected MVs is maximized.

Remark. We consider adding or evicting MVs from currently
maintained views. We leave the MVs refreshing (for data
update) in a future work.

Example 3: As shown in Figure 2] suppose that we have
three dynamic workloads, ie, [W1 = {q1,q2,q3}, Wa =
{q4,95,96}, W3 = {q7,qs,q9}] arriving in a chronological
order. And we compare the query execution time of using
the static MVs and our proposed dynamic MVs management
approach. We use V;*(S) to denote the generated MVs after
the i-th maintenance using the static strategy, and use V;*(D)
to denote the generated MVs with dynamic strategy.

Initially, since the MVs set is empty, we start with V;*(S5) =
V;*(D) = 0. Then given W; (for the 1st maintenance), both
methods initialize an MVs set as follows. First, we can derive
an MVs candidate set V; = {vy,vs,v3,--}, and then we
estimate each benefit B(q,v),q € Wi,v € V. The estimated
benefits are shown in Figure m In the first step, for each view,
we add up its benefit on all queries that can use the view.
For example, B(v1) = 290ms, B(ve) = 300ms, B(vs) =
150 4+ 170 = 320ms, B(vy) = 140 + 140 = 280ms. As the
space budget is not enough for materializing all the views, we
use the view selection algorithm to generate an MVs set (i.e.,
V(D) = {v1,v2,v3}) with the highest total benefit (290 +
300 + 320 = 910ms). Note that the static method does not
change the set of views, so V;*(S) = {v1,v2,v3},Vi > 1.

Next, Wy = {qu,qs5,qs} arrives, which can benefit from
MVs in Vi*(S)(Vi*(D)). For example, B(gs,v2) = 290ms,
B(gs,v2) = 280ms, B(ge, v3) = 110ms. Next, for the second

workload, our dynamic method will maintain the set of MVs.
Given the workload W, = W; U W5, we re-calculate the
benefits of each view. For example, B(vs) = 300-+290+280 =
570ms, B(vs) 150 + 170 4+ 110 = 430ms, B(v,)
1404140+ 160 = 440ms, B(vs) = 450ms, B(ve) = 180ms.
We then generate an MVs set (i.e., V5'(D) = {va,v4,v5})
with the highest total benefit (870 + 440 + 450 = 1760ms)
within the space budget limit. v, vs will be evicted to make
space for vy, vs. Based on this, W3 = {qr,¢s,qo} can be
optimized using {vs, v4, v5}. v2 can be utilized to rewrite g7
and g¢g, while vy, v5 can respectively rewrite g7, gg9. But if we
use the static method, only v, can benefit g7 and gs. Then let
W, = W1 UWo U W3 and we compute V5 (D) = {va, vy, 05},
which is utilized to optimize the next workload.

Overall, we can observe that compared with the static
method, our dynamic method can optimize 2 more queries
using MVs, which improves the efficiency.

In Section we discuss how to efficiently solve the
dynamic MVs problem using the graph neural network.

III. GhnMV FRAMEWORK

In this section, we first summarize the overall framework of
GnnMV, and then discuss how to train a GNN model and use
it to achieve efficient and effective MV set maintenance.

A. Overview of GnnMV

Motivation of using GNN. Recap that one of the core parts of
the MVs working mechanism in the dynamic scenario is the
MYV benefit estimation, which is the key in both query rewrite
and MV set maintenance. More concretely, the estimation
accuracy is rather important because it directly influences the
quality of generated MVs. Besides, the efficiency of benefit
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Fig. 3. Framework of GnnMV.

estimation is the bottleneck for dynamic MVs utilization with
high-efficiency requirements.

To address the above issues, as the queries in a workload

can be naturally represented as a graph, we propose to (1)
efficiently detect common subqueries on the graph and (2)
use a graph neural network to conduct the benefit estimation.
At a high level, GNN has the advantage of these learning-
based methods [14]], [29], [45] that use the neural network
with powerful learning ability to infer the benefit. Moreover,
compared to RNN [[14]], GNN is rather efficient because it
captures the information of the entire graph through several
rounds of feature propagation among nodes in parallel. Com-
pared to Wide & Deep learning [45] and RL [29], GNN is
rather effective because it can capture the correlations among
queries through the graphical structure.
The GnnMV framework. As shown in Figure [3] GnnMV consists
of three modules, i.e., offline GNN model training, online
GNN inference for query rewrite, and GNN inference for MV
set maintenance. A high-level workflow is as follows. Initially,
we take as input a historical workload, based on which a
query graph is built, and train a GNN model on the graph.
The output of the model is the benefit estimation of the views
to the queries in the workload.

Next, when queries arrive continuously online, the trained
model is used for query rewrite and MV set maintenance.
Given each new arriving query, the query rewrite module
leverages the GNN model to estimate the benefit, and select
MYVs from currently maintained MVs to rewrite the query.

For a new workload, we generate new MVs, where the
GNN model is also utilized to estimate the benefit, and then

a bipartite graph is built for MVs selection.

Challenges. There are two challenges in using GnnMV. The
first is how to encode the queries and views as features, and
aggregate these features for training (Section [IV). The second
is that when maintaining the set of M Vs, how to better leverage
the knowledge of historical workloads to adapt to the new
workload based on the GNN model, for keeping up-to-date
high-quality MVs efficiently (Section [V).

Remark. Besides the above issues, the time for MV set
maintenance is also a challenge. In this paper, we can set a
fixed number of incoming queries n. Suppose n = 100, which
means that we should start to maintain the set of MVs every
100 new queries. More adaptive methods of determining when
to maintain the set of MVs will be discussed in Section [II=C]

B. GNN-based training

In this part, we overview the training process of the GNN
model for benefit estimation (see Section for details).

Given a workload W that we collect for offline training,
we build a query graph by merging query trees of queries
in the workload. Next, we extract and encode the features
(e.g., operator types, metadata, predicates) for each node in the
graph to produce a feature graph. We design an aggregation
function to aggregate the features from each node’s neighbors
and generate the node embedding. Afterwards, we use embed-
dings of a query ¢ and a view v to compute the benefit 5(q, v)
with a neural network. Obviously, we also need training data
to construct a GNN model. But materializing all possible view
is too expensive, we sample views and materialize them (i.e.,
the set Vr), use them to optimize the queries in W, and
compute the true benefit B(q, v). Then we compute the loss
with B(g,v) and B’(g,v) to train the model.

C. GNN-based inference

In this part, we overview the inference process of the GNN
model, which is used for both query rewrite and MV set
maintenance (see Section |V| for details).

1) Inference for query rewrite: Once a new query arrives,
e.g., g7 in Figure 3] we select MVs to rewrite the query in
the query optimizing process. First we detect available MVs
(if exist) that can be used to rewrite the query by sub-graph
matching, which ensures that the rewritten query is correct.
Then, to select MVs that maximize the benefit of answering
the query, we need to accurately estimate the benefit. Thanks to
the graphical structure, we can easily add the query tree of g7
into the current graph. Then we can encode g7 into the trained
GNN model, infer the benefits of views of current MVs, e.g.,
vs, V4, Us, and select the proper view(s), e.g., vs, v4 to rewrite
g7 jointly. Given the set of views (i.e., {vs,v4,v5}) that can
be used to rewrite a query (i.e., g7), the intuitive idea is to
select the ones with high benefits to rewrite, but some views
may have conflict and thereby cannot be used simultaneously.
Hence, it is an NP-hard problem that selects an optimal subset
with the highest benefit, where every two views do not conflict.
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Fig. 4. The model in GnnMV.

2) Inference for MV set maintenance: Periodically, we
need to maintain the set of MVs, which can further adapt
to the subsequent workloads. Generally, we trigger the MVs
set maintenance according to the performance of existing
MVs. We monitor the accumulated benefit of existing MVs
to recent queries in query rewrite in Section [V-A] because the
benefit directly reflects the workload performance. When the
accumulated benefit drops below a threshold, we trigger the
MVs set maintenance. And, the queries arrive after the last
maintenance form the new query workload. Given the new
query workload, we can naturally incrementally update the
graph by inserting the queries in the workload. Intuitively, the
information of previous nodes, e.g., nodes of g4, g5, ¢¢, can be
propagated to views (queries) in the new workload, such that
the previous knowledge can help to refine their embeddings
and capture the correlations among queries. Next, we use the
GNN model to estimate the benefit for each new pair of (query,
view), and compute the size of each view. Finally, we conduct
the MVs generation step, i.e., building a bipartite graph to
generate a new set of MVs, e.g., V.* = {v3, v4, v6}.

As the number of workloads grows, the graph becomes
larger, leading to inefficient inference. To address this, we
propose to extract a subgraph to infer with keeping efficient
yet accurate benefit estimation (see Section [V]).

IV. GnnMV TRAINING

We introduce how to design the GNN model, including
graph feature encoding and graph design and training.
Query graph. To discover commonly-used subqueries and
choose proper MVs, it is natural to build a query graph for a
query workload [9], [18]], [42]. Generally speaking, the graph
is constructed by merging the query trees in the workload.
Note that the graph is not restricted to be connected, i.e., some
query trees can be independent if they do not share any nodes.
For ease of representation, we will abuse the notations for the
workload a little to denote the corresponding graph.

Example 4: In Figure 2] ¢1, ¢» and g3 constitute the graph
corresponding the workload W3, by merging g;, g2 on vs, and
G2, qs on v4. Then the graph Wy comes, and by merging Wy
and W5, we obtain the current graph W..

Remark. The optimizer that does not take into consideration
the affect of MVs may not generate best query plans for using
MVs. Thus, we need to change the query plan of a query

with different join orders to find high benefit MVs. In fact,
the optimizer searches multiple query plans in the optimizing
process, corresponding to multiple query trees. We can merge
these redundant query trees into the query graph to find more
shared MVs. Note that when counting MVs’ benefit to the
workload in the MVs generation step, M Vs should not receive
redundant benefits from all these redundant query trees. For
ease of representation, we only use a single tree per query as
example. However, merging multiple query trees of a query
into the query graph brings overhead including more memory
footprint. If the graph size exceeds the memory size, it needs
more time for model training. Thus, we limit the number of
redundant query trees with consideration of the memory size.
Next, we show the details of training the model.

A. Feature encoding

To build a GNN model, the first thing is to extract the
features of each node in the graph and encode them. More
concretely, as shown in Figure [ there are three significant
types of features for MVs management as follows.
Operator type. Each node v corresponds to an operator,
including join operators (e.g., Merge Join, Hash Join), scan
operators or aggregation operators, etc. We also encode edge
information related attributes such as “Parent Relationship”
(e.g., Inner, Outer) and “Parallel Aware”. We use a multi-hot
vector with length O (the total number of operator types and
attributes types), denoted by f,(v), to represent this feature.
Metadata. We also need to incorporate the metadata related
to each node, including the table columns and the index
information. Suppose that there are C' columns in total among
all tables in the database. We use a vector f.(v) (with length
C) to specify which table columns are related to the node
v. BEach element (i.e., a table column) of f.(v) is either 1
or 0, which means that the operator corresponding to v uses
the column or not. Based on the column encoding, the data
distribution is learned as the column embedding when training
the model with historical query workloads. Similarly, we use
fi(v) to encode information including estimated start-up cost,
total cost, rows and width which are obtained by the optimizer
of the database when generating the physical query plan. The
start-up cost is the time expended before the output phase
begins, e.g., time to start the sorting in a sort node. The
total cost is the time that the node completes its job, e.g.,
all rows sorted and be output to its father node. The “rows”
is used to capture the number of rows output by the node.
The width is the width of rows output by the node (in bytes).
Then the feature vector of the metadata, f,,(v), is denoted by
concatenating f.(v) and f;(v).

Predicate. Generally speaking, a predicate consists of table
columns, computation operators (e.g., >,=, <), and literals
(e.g., numeric, string, and category values). We can construct
the predicate as an expression tree, use one-hot encoding to
represent these table columns, computation operators and cat-
egory values. Numeric values are encoded by the normalized
float. String’s character sequence is encoded to a vector. We
use a tree-LSTM model [[36]] to encode the entire predicate.



The output f,(v) is represented as a vector with length P,
which is a hyper-parameter. Afterwards, each feature vector
of a node f(v) is represented by concatenating f,(v), fm(v)
and fp(v). Next, we use an example to better illustrate this.

Example 5: As shown in Figure ] v, is associated with a
sequential scan operator that scans the author table with the
predicate a.age>30. We encode the operator type Seq Scan
into a one-hot vector f,(v), in which the corresponding posi-
tion for Seq Scan has the value 1. The predicate a.age>30 can
be represented as an expression tree, where the root node >
has two children a. age and 30. We encode this expression tree
into an embedding vector f,(v) by the tree-LSTM model. The
metadata contains author.age column, and scanning cost,
rows and width. We encode it into a vector f,,(v) which
contains a one-hot vector where corresponding position for
the column a.age has the value 1, and other statistics.

B. Training for benefit estimation

The ultimate goal of our GNN model is to accurately
estimate the benefit of using an MV v to answer a query ¢
(i.e., B(g,v)) in a graph. To this end, we should first create
the training data. Second, given the feature encodings, we
also need proper representations (or embeddings) for both
query and MV nodes so that the model can well capture their
relationship for an accurate estimation of each B(q,v).
Training data. As a supervised learning task, we create the
training data using a historical workload, denoted by Wr. As
shown in Figure [3] we first build a query graph of Wr. Next,
we sample a set V7 of MV nodes in the graph and materialize
them because materializing all possible views is too expensive.
We uniformly sample MV nodes rather than purely sampling
some MVs with high benefits. This is because we request
the training samples to be balanced, i.e., covering different
execution latency and sizes, in order to produce a model with
strong generalization ability. Afterwards, for each ¢ € Wr,
we discover the corresponding v € Vi that can be utilized to
optimize ¢, compute the ground truth B(q,v) by executing ¢
with/without v and regard this pair as one training instance.
Note that the benefit can be negative because MVs are not
always beneficial to queries. However, using only positive
samples in the training will make the model have positive bias
on benefit estimation. Therefore, carefully constructing nega-
tive samples is important to improve the model generalization
ability [40]. Thus, we sample (g, v) pairs that have negative
benefits by negative sampling technique [14]]. Moreover, for
each dataset, we try different ratio of positive samples to
negative samples in the training data and use validation data to
identify the best ratio for estimation accuracy. The empirical
ratio of positive and negative samples is 8:2 [[14]].

Feature propagation. Besides the encoded features and train-
ing data, we need to learn a feature embedding for each MV
(query) node, which can well capture the characteristics of
the node for accurate benefit estimation. To this end, the key
challenge is that the benefit of a view to a query does not only
rely on its own features, but is also related to its neighbors
in the query graph. For example, the cost of a join operation

is highly related to the selectivity of its children’s predicates.
And the performance of a query is greatly correlated by the
former query because of the buffer. Hence, the neighborhood
information can definitely help the representation of a node.
Considering the above issues, we use GNN to capture the
correlation among different query plans as well as plan nodes
through the graph structure. We propose to propagate the fea-
tures on the graph [12]] in iterations. In each iteration, for each
node, we aggregate the features of its neighbors in parallel.
For example, given a feature graph as shown in Figure [ at
the first propagation, v; receives the features of vy, vs3, vs, vg.
Meanwhile, features of q;,v7 are also propagated to vg, and
features of g2, vy are propagated to vs. Then for the second
propagation, vs,vs, Vs, Vg are propagated to v; again, but at
this time, v1 can capture the information of ¢; because in the
first iteration, the features of ¢; has been propagated to vg.
In this way, each node can well capture the information of its
neighbors through several iterations.
Aggregate function. After propagation, an aggregate function
is needed to compute the embedding of each node, considering
the features of itself as well as its neighbors. One straightfor-
ward method is to just adopt the typical GCN aggregator [[12]]
as the aggregation function. To be specific, for each node v
at the k-th propagation iteration, the aggregator computes the
element-wise mean of the embeddings of v and its neighbors
at (k — 1)-th iteration. Then we then apply a multi-layer
perception (MLP) with an activation function ReLU on the
aggregated embedding, producing the new embedding of v at
the k-th iteration. Formally,

R o (ng - MEAN ({hf*l} U{hS " Vo, € N(’Ui)})) M

where h? = f(v;) and N(v;) denotes the node set of
neighbors of v; (e.g., N(v1) = {v2,v3, v5,v6}).

However, the above method treats each neighbor equiv-
alently without considering the different characteristics of
different types of nodes and edges in the query graph, which is
different from other typical graphs like social networks. More
concretely, in a query tree, data flows from bottom to top
during the execution, and thus the features of father nodes
should be distinguished from child nodes in the aggregate
function. In addition, the difference of child nodes should also
be identified. To be specific, we observe that if one of a node
v’s children has an index, the execution of the operator in
v will be more efficient than not using the index, especially
for the join operator. Therefore, child nodes with/without
index will significantly influence the query execution. After
analysis on the influence of different types of nodes on benefit
estimation, we find that father nodes and indexed nodes should
be treated specifically for better estimation.

Considering the above issues, we design an MV aggregator
for feature aggregation on our query graph, which handles
the father node, indexed node and others with different linear
transformation, denoted by (Wy,by), (W, b;), (W, b,) re-
spectively. As shown in Figure E], relying on Wy, W;, W,



neighbors will propagate different features to the node in
aggregation. Formally, we define the propagated features as:

o(Wsh%™ " +bs) if v is the father of v,

U(Wih§71 +b;) if v; accesses v; by index  (2)
O'(Woh?_l +b,) otherwise

k
hj~>7,’ -

The MV aggregate function is:
hixr(i) < MEAN ({hﬁﬂ-,vvj € N(v)}) 3)
R« c(Wwnv - Concat(h?_l, hi/(i))) )

The number of propagation iterations is denoted by K, the
final embedding of each node is e(v;) = hX.

Benefit estimation. Given the embedding of each node, we
can estimate the benefit of each MV node (a view) to each
query node (a query). Inspired by the link prediction task in
social network, we capture the relationship between a query
q and an MV v by concatenating their embeddings, followed
by an MLP, and then compute the benefit 5'(q, v), as shown
in Figure 4] Suppose that ¢ and v are represented by v; and
v; respectively. Formally,

B (vi,v;) = Wa - o (W7 - Concat(e(v;), e(v;)) + b1) + ba  (5)

Then we train the GNN model by minimizing the loss
function, with the goal of optimizing parameters W and b.

P={(q,v)}
Smoothr, (z) = {

L= Smoothyz, (InB'(g,v) — In B(g,v)) 6)

1a? if |z] < 1

|| — 3 otherwise

Q)

where P = {(q,v)} is a set of pairs of (¢g,v) such that ¢ is
the ancestor of v on the graph. This indicates that if ¢ is not
the ancestor of v, the view has no chance to benefit ¢, and
thus we do not need to compute the benefit.

V. GnnMV INFERENCE

At a high level, given a node v, the trained model learns
an aggregate function to leverage v’s own features and its
neighbors to produce an embedding for the benefit estimation.
Thus, given some new nodes (a new query), no matter whether
these nodes connect to the query graph, we can encode
the node features and use the learned aggregate function to
propagate features among the nodes and infer the embeddings.
Hence, GnnMV can well support the benefit estimation in the
dynamic scenario.

Advantages. To summarize, the advantages of using GNN to
estimate the benefit are from two aspects. On the one hand,
for each node on the query graph, GNN can well capture the
information of its nearby nodes through a few iterations of
propagation, which provides a more accurate embedding to
each node. On the other hand, the features are propagated in
parallel for each iteration, and the simple yet expressive neural
architecture makes the inference step efficient.

Challenge. Hence, when a new query comes for rewrite, or
furthermore, given a workload and the set of MVs need to be
maintained, we have to use the graph model to infer the benefit

MV set maintenance
Sample depth K +d=3+1

IR
g

Fig. 5. Inference for query rewrite and MV set maintenance.

Query rewrite
Sample depth K =3

for high-quality MVs generation. A challenge here is with
the entire graph growing larger, how to ensure the inference
efficiency while keeping high quality (Section [V-B).

Next, we present how to use GnnMV model to conduct query
rewrite and MV set maintenance effectively and efficiently.

A. Query rewrite using GNN

As discussed before, given a new query ¢, we first append
it to the query graph and discover the view set R(q) C V¥,
where R(q) is a set of MVs that are available to rewrite ¢
(e.g., {v1,v2,v3} in Figure [5). Note that a query usually has
multiple join orders, and different orders may have different
benefits of using MVs. Thus, we enumerate multiple join
orders to discover more latent available MVs, and try to find
the best rewritten query. If the new query does not have any
shared nodes with existing MVs even after the enumeration,
this query cannot be rewritten with existing MVs. After,
discovering available MVs, other MVs, whose corresponding
queries are not sub-queries of g but have an partial overlap
with ¢, are ignored because they are less possible to rewrite
g and need to be further evaluated for query rewrite. We
then estimate B(q,v)(Vv € R(q)), and select a set of views,
R*(q) C R(q) that has the largest benefit to rewrite g. Here,
we define B(q, R*(q)) as the benefit of a set of views to
a query. Specifically, it can be approximately computed by
B(q, R*(q)) = ZveR*(q) B(q,v) [[17)], where every two views
in R*(g) do not conflict with each other. Here, the conflict
means that the two MVs cannot be used to rewrite the query
simultaneously (e.g., v; and v3). Next, we estimate the benefit
and select R*(q).

Benefit inference for query rewrite. It is easy to find R(q),
and mainly discuss the benefit estimation in this part, using
an intuitive example. As shown in Figure [5} when ¢4 comes,
we append it on the graph and R(q4) = {v1,v2,vs3}. Then
we aim to compute B(ga,v), Vv € R(qq). To this end, since
nodes in V* have learned embeddings previously, we compute
embeddings for each new node. Taking the query node ¢4
as an example, first, we extract and encode the features of
qa, i.e., f(gs) (Section [[V). Then we leverage the Egs. 234
to compute e(g4) by capturing the features of its neighbors.
Suppose K = 3, g4 can capture the information of the
nodes 3 hops away from it, i.e.,, red nodes of g4 and yellow
nodes v; and vs of the query g3 and go respectively. Since
q2,qs are related to ¢4 and may have been just executed
(the buffer can make g4 more efficient), their information is



likely to be helpful. Similarly, all the new nodes (in red) can
simultaneously derive their embeddings with a low latency.
Select MVs for query rewrite. Given Yv € R(q4), B(qq,v),
we start to select R*(q) C R(q) to rewrite the query. At a
high level, it is a non-trivial problem because two MVs may
conflict with each other. Hence, it can in fact be formulated
as a weighted maximum independent set problem with node
weights as MV benefits, which is NP-hard. Specifically, we
regard each v € R(q) as a node (with weight B(q,v)), and
if two nodes conflict with each other, there should be an
edge between them. Then we aim to select an independent
set with the largest weights on the graph. Since it is an NP-
hard problem, we use an approximate algorithm [[19] to solve
it. To be specific, the key idea is to first initialize R*(¢) as an
empty set, and then select v € R(q) one by one iteratively. In
each iteration, it selects the node with the minimum weighted
degree (the sum of v’s neighbors weight/v’s weight).

B. MV set maintenance using GNN

Benefit estimation for MV set maintenance. As the number
of new arrived queries grows, we derive a new workload
W,,, append it to the current query graph W, and we start
to maintain the set of MVs. To this end, we estimate views
benefit and view materialization cost (i.e., generation cost
of MV candidates and update cost of existing MVs). We
estimate the generation cost by adding the time of executing
the view and writing the result, which can be calculated with
the information extracted from the subtrees of executed query
plan trees where the views are generated from. We consider
the update cost as MV recomputing cost (e.g., REFRESH in
PostgreSQL) which is approximately equal to the cost of
recreate the view. The estimation of MV update cost with
incremental view maintenance is not supported yet and will
be studied in the future work.

To estimate the benefit of MV candidates, the node embed-
dings should be obtained. In addition, as a number of new
queries have been added, some of the node embeddings in
W, should also be verified. A straightforward method is to
encode the features of new queries (subqueries), propagate
the features on the entire graph (W. U W,,), and infer the
embeddings. However, as the graph becomes larger and larger
with a number of workloads arriving, inference over the entire
graph is time-consuming because a large graph has to be
inferred in multiple batches. Also, it is not necessary to do this
because the new nodes have little impact on the embeddings
of the nodes far away from them on the graph.

Therefore, we propose to compute the embeddings on an
extracted subgraph, which covers the necessary feature propa-
gation. First, this subgraph definitely contains W,, because the
embeddings of nodes contained in WV,, are unknown. Second,
the subgraph should also contain some nodes that are close
to W, because they will be greatly affected, and thus their
embeddings should be updated.
d-hops nodes. We define the set of nodes that have a distance
within d to at least one of nodes in W,,, denoted by Wff. For
example, in Figure [5| W34=1 is the set of yellow nodes.

Consider the number K of iterations for feature propagation.
As discussed above, we are not only going to derive the
embeddings of W,,, but also have to update the embeddings of
nodes close to W,,, i.e., nodes in Wff where d is small. Hence,
in this situation, we propose that we only need to extract the
subgraph containing W,, U W+K 1In this way, the features
of WA4+K can be fully propagated to W within K iterations,
which achieves the same result of the updated embeddings of
K computed on the entire graph.

For example, as shown in Figure 5} where K = 3,d =1
and g4, g5 are newly appended queries. The extracted subgraph
contains the red, yellow, blue, green, and purple colored nodes.
When aggregating the features, the new nodes can capture the
information of yellow, blue, and green nodes. Besides, the
yellow nodes can also be updated by aggregating the features
from red, blue, green, and purple nodes.

In this way, the updated embeddings make the benefit

estimation more accurate, and the subgraph improves the
efficiency even more and more workloads arrive.
MVs generation. After a new workload arrives, the new
current workload becomes W, = W. U W,,. Also, the MV
candidates set varies, and we still use V to denote it for ease of
representation. To generate V) C V for optimizing W, within
a space budget 7, we build a bipartite graph where nodes of
one side are from V. and nodes of the other side are from
V. Each edge denotes the benefit of a v € V to ¢ € W,
and labeled by B(q,v). To take into consideration the view
materialization costs, for creating a new view, we subtract the
view materialization costs from the benefit of view creation.

Note that some views conflict with each other, when rewrit-
ing a query, we use a matrix Tjy|x[y|xw| to indicate the
relationship between views, where T;;;, = 1(0) indicates that
v; and v; conflict (not conflict) on gi. To quickly find views
in conflict instead of slowly enumerating every two views, we
traverse the bipartite graph to identify 1-hop neighbors and 2-
hops neighbors of each v € V. The 1-hop neighbors of v are
the queries set {¢} that v can rewrite. The 2-hops neighbors of
v are the views set that v may conflict with. We use z;;, = 1(0)
to indicate whether we select v; to rewrite g or not. We denote
the space of v as |v|. To obtain the maximum total benefit, we
optimize this integer programming problem:

qrEWe,v; €V

s.t., vi| max{zx|Vk € [1LW,|]} < T, ®)
> loil max{w|
v; EV

arg max B(Qkyvi)xikv

Tik

Tijk + Tik + xj6 <3

Since it is an NP-hard problem [11f], we use the greedy
algorithm [5] with an approximation ratio of 2 to select
V*. We denote the benefit with considering other selected
MVs as B(qg,v;|V,}) where V. = {vn,,Vn,, " ,Un,, }
and B(gr,v:|Vyy) = 0,if 3T = 1,Yv; € Vi We
derive the marginal benefit of a view v as B(v|V,}) =
> (q0)er B(g, v|V;)). Thus, we derive the total benefit of V'

BWn, Vi) = > B@H{vay, - -vn;1}) ©)

vn,; EVY



TABLE I
WORKLOADS AND QUERY GRAPH.

Workload # of queries | # of nodes | # of edges
Extended JOB 226 3086 8284
Scale 500 3787 7362
Synthesis 5000 29782 56444
TPC-H 10000 136215 293800
XuetangX 35749 164384 328534

We first initialize selected view set V,* < () and view’s ben-

efits B(vi|0) < >°,, cw B(aw, vi), Vv; € V. We then choose a
view v,,, with the highest benefit B(vy,, |0) and insert it into
V¥« V.* U {v,, }. We then update the benefit of rest views
to queries and view’s benefits, i.e., B(q,v|{vn,}), B(v|{vn,})
respectively. Iteratively, we choose the next view vy, vUpg, - - -
until the total size of selected views exceeds the budget 7. At
last, we output the selected view V,; for MV set maintenance.
Remark. Note that the time complexity of the above greedy
algorithm is O(|V|?), which is too expensive as the number of
queries grows. Considering the fact that recent queries would
not shift much in distribution, in practice, we keep the union of
recent query workloads as W,, from which the corresponding
V are derived. In this way, the complexity is greatly reduced
without much influencing the MVs’ quality.
Incremental training at runtime. As the number of work-
loads accumulating at runtime, the workload distribution shifts.
Therefore, we periodically incrementally train the model and
substitute it for the online model to keep the benefit estimation
accuracy. Note that the incremental training will not suspend
the online model. The trigger of incremental training follows
two strategies: (1) periodically train the model at system idle
time; (2) sample online queries and evaluate the prediction
error of benefit estimation model and train the model when
the prediction error is greater than a threshold.

VI. EXPERIMENT

We have conducted extensive experiments to evaluate our
GnnMV mainly from three aspects: (1) Overall dynamic MV
management performance. (2) The efficiency of MV set main-
tenance and query rewrite. (3) The effectiveness of the GNN
model on MV benefit estimation.

A. Experimental Settings

Dataset. We used three datasets including TPC-H bench-
mark and two real-world datasets IMDB, which is widely
used with join order benchmark (JOB) [25]], [36], [44], and
XuetangX [41]], [50] (a time-series query workload). We split
each dataset into 10 equal length consecutive workloads and
maintain the set of MVs at the end of each workload dynam-
ically, and rewrite each query using existing MVs.

As shown in Table [l (1) XuetangX is a real-world bench-
mark containing 14 tables and we extracted 35749 slow
queries (execution time more than Is) among three months
as the workload. Each query in XuetangX was naturally
assigned with a timestamp, so we ordered the queries by the
timestamp before splitting it into 10 dynamic workloads. (2)
TPC-H is a widely used synthetic benchmark including 22
query templates. We generate 10GB of data with 10K queries

according to the standard of TPC-H. We shuffled the workload
before splitting it to avoid a too large distribution gap between
adjacent workloads. (3) IMDB is a movie dataset that has a size
of 3.7GB with 21 tables, in which the largest table has a size
of 1.4GB with 36 million rows. We use three query workloads:
JOB [235]], Synthesis [20], and Scale [20]], The JOB workload
contains 113 queries with at most 16 joins. Since the number
of 113 queries is too small for MVs evaluation, we extended
it to 226 queries by modifying the predicates of queries. The
Scale workload has 500 queries with at most 4 joins and only
numeric predicates in queries. The Synthesis workload has
5000 queries with at most 2 joins. The query tree structure
is simpler than the Scale workload and has fewer potential
rewrite chances for MVs. We also split these three workloads
into consecutive dynamic workloads.

Baselines. We compared GnnMV with the following methods:
(1) Static: It generated MVs using the first workload and
kept the MVs fixed for all incoming workloads.

(2) DynaMat [22]]: It is a score-based method that measured
the quality of MV based on frequency, execution time, and
size. It selects MVs according to their quality.

(3) HAWC [31]]: It maintain the set of MVs based on the cost
model in the optimizer according to recent historical queries.
(4) DQM [129]: It is an RL-based method that learned MV scores
from database runtime statistics and update the MV scores
after each query execution.

(5) AutoView [14]: It is an RNN and RL-based method that
learned MV quality and MV selection strategy from query
workload. We modified AutoView to select new MVs set after
each dynamic workload arrives.

Hyper-parameter settings. We built our GNN model with 3
aggregate layers, all of them with a hidden size of 256. We
split the workload into training, validation and test set with
the ratio 3:1:6. We trained the model up to 500 epochs with
early stopping and the learning rate was le-3.

Evaluation metrics. We evaluated the methods from three as-
pects: effectiveness, efficiency, and accuracy. For effectiveness,
we used the total reduced execution time over the period of
all workloads as the metric for MV generation performance.
For model efficiency, we used the MV set maintenance latency
as the metric. For MV benefit estimation accuracy, we used
mean absolute percentaTe error (MAPE) as the metric, i.e.,

MAPE = MEAN(, ,)cp ({ Bloy)-Blv) ’})

B. Overall MV performance evaluation

1) Comparison of MV performance: We executed these
dynamic workloads in each dataset and evaluated the accumu-
lated reduced workload execution time of different methods, as
shown in the left y-axis in Figure [6] The right y-axis showed
the time reduction as a percentage of the total execution time
of workloads without MVs.

Generally speaking, GnnMV outperformed other methods on
all five datasets. For reduced workload execution time in JOB
workload, GnnMV outperformed the second best solution by
1.75 times, mainly because (1) GnnMV estimated MVs’ benefit
accurately which produces high-quality MVs (Sec [VI-C)), and
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Fig. 7. MV set maintenance latency (the lower, the better).

(2) GnnMV rewrote query and maintained the set of MVs with
a low latency (Sec [VI-B2). On the five workloads, GnnMV
reduced the average execution time of each query by 10.4%,
10.3%, 9.9%, 67.0%, and 34.0% respectively as shown in
Figure 6] The training time of model was between 6.46s (JOB)
and 6.82s (XuetangX). The accumulated benefit estimation
time of GnnMV model on five workloads were 0.027, 0.023,
0.024, 0.036 and 0.039s respectively. The accumulated time
of building query graph and and extracting features on five
workloads were 0.05, 0.06, 0.41, 2.4 and 7.4s respectively.
The accumulated time of generating the MV candidates were
0.25, 0.24, 4.6, 13.6, 26.8ms respectively.

Dynamic vs Static. Dynamic MVs methods (i.e., GnnMV,
DynaMat, HAWC, DQM and AutoView) outperformed static MVs
(i.e., Static) over the entire period of workloads. For exam-
ple, as shown in Figure |§Ka), on JOB dataset, the total reduced
workload time (after 10 dynamic workloads) of GnnMV was
8.43s, which was 25 times more than that of Static (0.33s).
On XuetangX, in Figure |§Ke), GnnMV saved 1.3 times more than
Static. The results showed that MV set maintenance signif-
icantly improved the performance of the dynamic workloads.
The reason why GnnMV improved more on dataset JOB than
XuetangX was that XuetangX had more uniform queries and
smaller distribution shifts along with the dynamic workloads.

Learning-based method vs Traditional method. GnnMV out-
performed traditional methods (i.e., HAWC and DynaMat) on the
total reduced execution time. For example, in Figure |§Ka), on
JOB dataset, GnnMV saved 8.43s, which was 1.75 times more
than that of DynaMat (4.81s) and 7.6 times more than that
of HAWC (1.11s). In Figure |§kb)(c), DQM also outperformed
HAWC and DynaMat on datasets Scale and Synthesis. In
Figure |§Kd)(e) AutoView outperformed HAWC and DynaMat on
datasets TPC-H and XuetangX. The reason why the learning-
based methods performed better was twofold. One reason was
that learning-based methods (e.g., GhnMV and AutoView) used
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a neural networks to accurately estimate MV benefit while
HAWC and DynaMat used the cost model of the optimizer. For
example, on XuetangX dataset, GhnMV saved 15385s of total
workload execution time and AutoView saved 14664s while
HAWC and DynaMat saved 13311s and 12062s respectively.
Another one was that learning-based methods (e.g., GnnMV
and DQM) leverage the powerful ability of the ML model
to adapt to different dynamic workload distributions, but
traditional methods tend to fall into the local optimum once
the distributions vary.

GnnMYV vs DQM. To summarize first, GhnMV outperformed
DQM, for example, on Scale dataset, GhnMV reduced 600.4s
total workload time, which was 1.8 times more than DQM
(331.1s). The reason was that Scale contained many complex
and time-consuming queries, but DQM just learned from the
runtime statistics in DBMS rather than features of queries. In
contrast, GnnMV extracted and encoded MVs features (e.g. join
conditions, predicates, and index) from the query plan nodes
which helped estimate the query execution time and benefit of
MVs. Moreover, GnnMV inferred on query graph, and thereby
can capture the influence among queries which greatly affects
the query execution time by buffer using.

GnnMYV vs AutoView. GnnMV outperformed AutoView among
all five workloads. For example, on Synthesis, in Figure |§kc),
GnnMV saved 1939s for total workload execution time, which
was 1.59 times more than AutoView (1223s). The reason was
that AutoView focused on single workload MV generation and
could not capture the relationship between queries in dynamic
workloads, but GnnMV estimated queries and MVs on a graph
incrementally, and thus it could capture the workload distri-
bution change along with the dynamic workload to maintain
the set of MVs for subsequent queries. Moreover, AutoView
focused on MV benefit estimation without consideration of
the context of previous executed queries, while GnnMV learned
from the query plan graph, and thus performed more accurate



estimation. In short, simply applying AutoView to the scenario
of dynamic workloads by generating MVs multiple times
would result in low performance.

2) Comparison of MV set maintenance latency: We eval-
vated the latency of MV set maintenance for each method.
In GnnMV, we kept the recent 2 workloads as W, over which
we maintain the set of MVs. We did not evaluate Static
baseline because it did not maintain the set of MVs except
for the first dynamic workload. We additionally compared
GnnMV with a modified version GnnMV-entire: infer the entire
query graph to estimate MV benefit instead of only the nodes
newly appended to the graph. The evaluation result was shown
in Figure [7} Generally speaking, GnnMV outperformed other
learning-based methods and the traditional method HAWC, and
also was efficient in a large workload (e.g., XuetangX).
GnnMYV vs AutoView. GnnMV outperformed AutoView on
all five datasets over the entire period of workloads. For
example, as shown in Figure Eka), on JOB dataset, the average
maintenance latency of GnnMV was 0.015s which was 9.4 times
more efficient than AutoView (0.142s). The reason was that
GnnMV estimated MV benefits by inferring all the new nodes
in the query graph in parallel, while AutoView spent a longer
time on sequentially tackling the query plan nodes.

GnnMYV vs DQM. GnnMV also outperformed DQM on all the
datasets. For example, as shown in Figure [7[c), on Synthesis
dataset, the average maintenance latency of GnnMV was 0.14s,
which was 12.4 times more efficient than DQM (1.73s). The
reason was that the RL model used in DQM estimated MVs
after each query execution and was trained online, while the
GNN model in GnnMV was trained offline and was used to
estimate MVs online efficiently.

GnnMYV vs GnnMV-entire. GnnMV outperformed the modified
method GnnMV-entire on all the datasets. For example, in
Figure EKC), on Synthesis, GnnMV (0.14s) was 24 times
more efficient than GnnMV-entire (grew to 3.33s at the 7th
workload). One reason was that, as the number of queries
grew, the inference time on all nodes in the incremental
graph increased because the number of batches of nodes also
grew. Thus, for GnnMV, we only inferred the newly appended
nodes and the around old ones. Another reason was that the
growing number of MV candidates in the incremental graph
also slowed down the MV generation algorithm. Fortunately,
considering the fact that recent queries would not shift much
in distribution, in practice, we kept the union of recent 2 query
workloads. This greatly reduces the complexity without much
influencing the MVs’s quality.

GnnMYV vs HAWC & DynaMat. GnnMV outperformed HAWC
on the average maintenance latency on all the datasets. For
example, as shown in Figure b), on Scale dataset, GhnMV
(0.02s) was 2 times more efficient than HAWC (0.04s). HAWC kept
a historical query and view pool for MVs generation. As the
number of queries grows, the maintenance latency grew with
the pool size. GnnMV had a competitive maintenance latency
with DynaMat on large datasets (e.g., TPC-H and XuetangX)
as shown in Figure md)(e). This was because DynaMat had to
estimate every existing MV for eviction so as to add a new
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TABLE 11
COMPARE ESTIMATION RELATIVE ERROR ON DATASETS (MAPE).
JOB median 90th 95th 99th max | mean
RLView 0.575 2.61 4.93 27.0 151 1.78
AutoView 0.264 0910 1.41 3.74 93.6 | 0.488
GnnMV 0.120 0.416 | 0.544 1.24 39.0 | 0.207
Scale median 90th 95th 99th max | mean
RLView 0.726 2.80 5.33 31.7 101 1.96
AutoView 0.280 0.870 1.44 4.90 48.2 | 0.520
GnnMV 0.212 0.540 | 0.712 1.66 38.4 | 0.308
Synthesis | median 90th 95th 99th max | mean
RLView 0.445 1.67 291 11.6 65.0 | 0.937
AutoView 0.233 0.632 | 0.870 1.93 21.3 | 0.325
GnnMV 0.186 0.487 | 0.590 1.10 25.7 | 0.243
TPC-H median 90th 95th 99th max | mean
RLView 0.219 0.603 | 0.928 6.24 251 | 0.360
AutoView 0.095 0.346 | 0.434 1.17 405 | 0.171
GnnMV 0.037 0.153 | 0.185 | 0.261 | 458 | 0.071
XuetangX | median 90th 95th 99th max | mean
RLView 0.275 0.640 | 0.745 2.20 80.6 | 0.353
AutoView 0.109 0.311 | 0.442 | 0.884 120 | 0.155
GnnMV 0.060 0.158 | 0.187 | 0.317 | 90.1 | 0.088

MV. However, the number of existing MVs would be large
on the XuetangX dataset. GnnMV had slightly higher latency
than DynaMat on JOB and Scale workloads, because JOB and
Scale had relatively complex query plans where GnnMV takes
more time to detect MVs conflicts in higher query tree.

3) Query rewrite overhead: Finding MVs that were avail-
able to rewrite a query was fast because we only traverse the
nodes of the plan tree of the query instead of all nodes. The
inference time overhead of GNN for a query and its MVs was
0.0025s, which was much lower than RNN (0.0979s).

C. Benefit estimation accuracy

1) Evaluate benefit estimation accuracy: We evaluated the
GnnMV on MV benefit estimation accuracy by comparing the
following methods:

(1) RLView [45]: It used the Wide & Deep learning to estimate
the benefit of MVs.

(2) AutoView [14]: It used the state-of-the-art double RNN
model, Encoder-Reducer, to estimate the benefit of MVs.

Table [[Il showed the MAPE of different estimation methods.
The result could be ranked as GnnMV >AutoView >RLView.
Next, we explained the results. Generally speaking, the GNN
model performed best on errors at median, 90th, 95th, and
99th on all the datasets, because GnnMV could well capture the
relationship between operator nodes which was help full for
benefit estimation. For example, considering the mean error on
TPC-H dataset, GnnMV reduced the MV benefit estimation error
(MAPE) by 58.5% against the the second-best solution. It was
harder to keep a low max error, because small benefit values
(e.g., several milliseconds) that could result in a large percent-
age error. Moreover, learning-based methods (e.g., RLView,
AutoView, and GnnMV) performed better on workloads with
uniform distribution, e.g., TPC-H and XuetangX.

GnnMV performed better than AutoView. For example, on
TPC-H, the MAPE of GnnMV (0.071) was 58.5% lower than
AutoView (0.171). The reason was that GnnMV captured the
relationship between queries along with the workload.
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GnnMV performed better than RLView. For example, on
TPC-H dataset, The MAPE of GnnMV (0.071) was 80.3% lower
than RLView (0.360). The reason was that RLView could not
well distinguish the correlation between nodes in the query
tree. In contrast, GnnMV aggregated the information of neigh-
bors. Furthermore, GnnMV handled father nodes and indexed
nodes with different transformations on embeddings.

2) Evaluate different benefit estimation methods: We eval-
uated the effectiveness of accurate benefit estimation on MV
generation on TPC-H dynamic workloads. We compared GnnMV
with PG (i.e., cost estimator of the PostgreSQL optimizer)
by evaluating the performance of generated MV. The exper-
imental result was shown in Figure [8] Generally speaking,
more accurate MV benefit estimation significantly improved
the MV generation performance because high-quality MVs
are generated. For example, in Figure [§{a), the total reduced
query execution time of GNN method was 41379s, which was
1.9 times more than PG method (21997s). We also evaluated
the MV generation on a single workload with different space
budgets (from 50MB to 500MB), as shown in Figure [§b). At
500MB of space budget, GNN method saved 4410s which was
1.5 times more than PG method (2984s). Moreover, we ob-
served that accurate benefit estimation significantly improved
MYV performance at a smaller space budget, because PG method
with inaccurate estimation was more likely to miss high benefit
MVs at small space budget.

D. Additional experiments

We also evaluated and discussed the effect of several hyper-
parameters in GnnMV, including the different aggregators in
GNN, K hops in aggregators, ablation study for feature
encoding, and MVs set maintenance window size. (We put
it in our technical report [[13]]).

VII. RELATED WORK

MYV generation for static workloads. MV generation for
static workload has been studied over decades. Finding the
best MV set for a workload within a space budget has been
proven to be NP-hard [11]. The view selection problem can
be represented as a 0-1 integer linear programming (0-1 ILP)
problem, and ILP solvers are proposed to select MVs [17],
[42]. However, the complexity of the 0-1 ILP approach is
O(2™) which is too expensive for large workloads. Thus,
many heuristics methods [[1], [2[, [8], [10[, [15]-[17], [24],
[35] are proposed, including genetic algorithm [15], [16],

12

reefs optimization algorithm [2f], and particle swarm opti-
mization algorithm [24]]. However, heuristic methods have
some assumptions on the data and query distributions. Thus,
these heuristic methods cannot be well generalized to other
workloads and datasets. To address this issue, learning-based
methods [[14]], [29]], [45]] are proposed. Han et al. [14] propose
AutoView to encode pairs of (MV, query) as features, and feed
them to the RNN model [4]], based on which the benefit of the
MYV to the query can be precisely estimated. Similarly, Yuan
et al. [45] propose RLView to encode the features and utilize
the Wide & Deep model [3|] for estimation. Reinforcement
learning (RL), e.g., RLView [45] and AutoView [14], are
proposed to use RL to select MVs.

MYV generation for dynamic workloads. Statically generated
MVs cannot serve dynamic workloads, because the query
pattern and data distribution shift among workloads. Therefore,
the set of MVs should be maintained during the processing
of workloads. Traditional approachs propose to use heuristic
algorithms to select MVs. WATCHMAN [34], DynaMat [22] and
HAWC [31] measure the quality of MVs and manage MVs by
scores. The scores basically depend on the cost-model of the
optimizer. However, the inaccurate of cost estimation results
in low MV quality. DQM [29] uses RL to choose which MVs to
create and uses scores to evict MVs by learning the MV scores
on real runtime statistics in the DBMS. However, they have no
query feature encoding and do not capture latent patterns in
the workload which results in unstable MV scores estimation.
Graph Neural Network (GNN). GNN [12] is proposed to
learn from a network where partial nodes are labeled (with
ground truth) and others are not. GNN learns the feature of
nodes and can be used to solve the tasks such as cardinality
estimation and query performance prediction. In this paper,
we build our graph model based on GraphSAGE [12] that
improves GCN [7], [21], [38] by enabling the model to
generalize to unseen nodes such that they can also be inferred.
Learning models for database.. There exist many works that
leverage ML methods to solve database problems (see [48]]
for a survey). For instance, there are learning-based approach
like reinforcement learning for join order selection [30],
[44], [51]], knob tuning [27], [46] and query generation [47].
There are also many deep learning methods for cardinality
estimation [36], [37], [39], [43]l, query rewrite [49], index
construction [6]], [23]], database systems [26], [28]] etc.

VIII. CONCLUSIONS

We have studied the problem of dynamic MVs management
and proposed a GNN-based model. First, we built a query
graph on the dynamic workloads. Then we proposed to encode
and propagate features of the nodes (subqueries) on the graph.
We designed an aggregate function to aggregate the features
of node neighbors for accurate benefit estimation. Finally, we
proposed a subgraph extraction method to accelerate the graph
inference for query rewrite and MV set maintenance while
keeping high accuracy. Experimental results on real datasets
showed that our method achieved higher quality than state-of-
the-art methods.
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