
Adaptive Code Learning for Spark

Configuration Tuning

Chen Lin∗, Junqing Zhuang∗, Jiadong Feng∗, Hui Li∗, Xuanhe Zhou†, Guoliang Li †

∗School of Informatics, Xiamen University, China. chenlin@xmu.edu.cn
†Department of Computer Science, Tsinghua University, China. liguoliang@tsinghua.edu.cn

Abstract—Configuration tuning is vital to optimize the per-
formance of big data analysis platforms like Spark. Existing
methods (e.g. auto-tuning relational databases) are not effective
for tuning Spark, because the unique characteristics of Spark
pose new challenges to configuration tuning. (C1) The Spark
applications own various code structures and semantics, and
the code features significantly affect Spark performance and
configuration selection; (C2) Spark applications are extremely
time-consuming on big data. It is infeasible for approaches
such as Bayesian Optimization and Reinforcement Learning to
collect sufficient training instances or repeatedly execute the
applications; (C3) Spark supports various analytical applications
and the tuning system needs to adapt to different applications.

To address these challenges, we propose a LIghtweighT
knob rEcommender system (LITE) for auto-tuning Spark con-
figurations on various analytical applications and large-scale
datasets. We first propose a code learning framework that
can utilize code features to learn complex correlations between
application performance and knob values (addressing C1). We
then propose a lightweight auto-tuning method that migrates
the knowledge learned from small-scale datasets to large-scale
datasets (addressing C2). Next, to generalize to different Spark
applications, we propose an adaptive model update approach to
fine-tune the model via adversarial learning with newly collected
feedback (addressing C3). Extensive experiments showed that
LITE achieves much better performance compared with state-
of-the-art auto-tuning methods.

Index Terms—spark, automatic configuration tuning, code
understanding

I. INTRODUCTION

With the incredible volume of data generated each day,

Big Data Analytics (BDA) platforms have become indispens-

able to adequately manage, process and analyze large-scale

data. However, it is remarkably difficult to fulfill various

configuration requirements for different BDA applications.

Figure 1 illustrates the execution time of applications with

respect to configuration knobs in Spark, one of the most

widely-used BDA platforms [19]. We can see that, the optimal

setting of knob “executor.cores” must be tailored for each

application (e.g., 6 for TriangleCount and 4 for PageRank).

Furthermore, it becomes much harder when multiple knobs are

involved. For example, the combination “executor.cores=4, ex-

ecutor.memory=3” produces significantly less execution time

than other configurations. Traditionally, experts are hired to

carefully set the knobs by repeated trials. This manual tuning

method is incomplete (i.e., empirically testing a small per-

centage of knobs), inefficient (i.e., several days are spent) and

sub-optimal (i.e., settings are not optimal) [17].

Fig. 1: Spark applications PageRank and TriangleCount execu-

tion time on 160MB input data, with different configurations.

To reduce the labor and time cost, existing studies for Spark

tuning either select configurations based on the predicted per-

formance by supervised learning models [4], [9], [13], [29], or

repeatedly sample and execute promising configurations based

on feedback from previous trials [3], [27], [34]. On one hand,

to the best of our knowledge, existing Spark tuning, which is

trained on small datasets and ignores the code semantics and

structures, cannot scale to diverse and large jobs. On the other

hand, although there are some database tuning approaches

in production and at scale [7], [8], [36], like Reinforcement

Learning [17], [31] and Bayesian Optimization [15], [23], [30],

those methods are not effective for tuning Spark, because the

following unique characteristics of Spark pose new challenges

to Spark configuration tuning.

(C1) Complex Spark code semantics. Unlike DB queries and

SQL style scripts, Spark applications, especially the widely

used ML and graph algorithms, have richer semantic, with a

large vocabulary of code tokens. The code structures are more

complex, with long-range dependencies upon layers of itera-

tive computations, than SQL queries where the most complex

SQL structures like UDFs just include some simple logical

judgments. The various code structures and semantics signif-

icantly affect Spark performance and configuration selection.

Hence, it is important and challenging to capture the complex

correlations between code semantics and configuration knobs.

(C2) Expensive training cost. Spark applications, includ-

ing iterative ML algorithms performed on big data, usually

require longer execution time. Compared with DB queries,

ML algorithms take hours to finish one job, and thus it is

rather expensive to perform repeatedly trials. This limits the

usage of online training methods like RL, which explores

optimal configurations by repeatedly executing the application,

due to the high tuning overhead (i.e., time to decide the

best configurations). It is also a bottleneck to collect training

instances of large jobs. Hence, there is a need to efficiently

migrate the tuning model learned on small datasets to large

 (b) Online Recommendation Phase

 (a) Offline Training Phase

SmallData Environment Knob Application

Spark Feature Extraction

DAG
Scheduler

Stage-level
Code

(1)

Instrumentation

(3)

Repeated

Run

(4)

Model

Training

NECS Model

Well-trained

NECS Model

LargeData EnvironmentApplication

Spark Features

Adaptive

Candidate Generation
1.

Input

2. Knob Value

Candidates

3.

Highest-Scored

Candidate

Adaptive

NECS Model Update
Application

Execution
4. Collect

Feedback

Knobs

NECS

Model

Machine learning

Graph

Small

Dataset

Applications

…

Machine learning

Graph

Large

Dataset

…

Applications

MapReduce

Enrich Semantics

Training
Dataset

Performance

Estimation

Knob

Recommender

Stage-based

Code Organization

Feature

Encoding

Fig. 2: LITE framework overview

datasets.

(C3) Various Spark applications. Different from databases,

Spark powers various applications with libraries like SQL, ma-

chine learning, and other data analytics. Different applications

have various impacts on the tuning performance, raising the

difficulty to represent the application characteristics for knob

tuning. Thus the tuning model needs to adapt to different

applications.

To address the above challenges, as depicted in Figure 2, we

propose the LITE system (LIghtweighT knob rEcommender)

that develops novel machine learning approaches for auto-

tuning Spark configurations to optimize application execution.

LITE first extracts stage-level code and Directed Acyclic

Graph (DAG) Scheduler as training features and proposes

a code learning framework NECS model (Neural Estimator

via Code and Scheduler representation) that can utilize code

features to learn complex correlations between application per-

formance and knob values (addressing C1). We then propose

a lightweight auto-tuning method that migrates the knowledge

learned from small-scale datasets to large-scale datasets (ad-

dressing C2). Next, in order to generalize to different Spark

applications, we propose an adaptive model update approach

to fine-tune the model via adversarial learning with newly

collected feedback (addressing C3), which can provide fast

and near-optimal online recommendation.

Contributions: We make the following contributions.

1) The lightweight auto-tuning system (i.e. LITE) that mi-

grates the knowledge learned from small-scale datasets to

large datasets and greatly improves BDA tuning perfor-

mance with small training expense (see Section II).

2) The code encoding modules in NECS that capture complex

correlations among knob values and BDA program codes

with rich semantics and structures (see Section III).

3) The Adaptive Model Update method transfers the

knowledge learned from the training instances on small

data to big data applications, and the Adaptive

Candidate Generation method reduces tuning over-

head and enhances tuning performance (see Section IV).

4) Extensive experimental study to verify that LITE signifi-

cantly outperformed existing approaches in both efficiency

and effectiveness (see Section V).

II. LITE SYSTEM OVERVIEW

Architecture. Figure 2 shows the architecture of LITE

(lightweight knob recommender), which is composed of an

offline training phase and an online recommendation phase.

The offline training phase trains a NECS model (Neural

Estimator via Code and Scheduler representation), which is

used to estimate the performance of a Spark application for

a given knob configuration. Then for online knob recommen-

dation, given a Spark application, it uses the NECS model to

recommend appropriate knob values.

Offline Training Phase. The NECS model first analyzes the

Spark codes and generates stage-based code organization in

order to (1) better capture the code semantics and (2) generate

more code combinations via permuting different code stages.

Then it collects the code features from the stage-based code

and DAG scheduler features from the Spark scheduling. This

step aims to enrich the code semantics. Next it generates a

set of training data, where each training sample includes the

Spark application, Spark code, data, Spark environment, the

knob values, and running performance. Based on the training

data, the NECS model extracts the features and trains an

estimation model that can predict the running performance

of a given Spark application. Note that the training data will

be run on small datasets and the NECS model can predict

the performance on large datasets by migrating the knowledge

learned from small-scale datasets to large-scale datasets. The

details of the NECS model is discussed in Section III.

Online Recommendation Phase. The online model first iden-

tifies a set of candidate knob configurations via Adaptive

Candidate Generation. This step aims to identify knob

regions which are likely to contain good configurations for the

given application, and thus the tuning overhead is drastically

decreased by filtering out a large number of knob candidates. It

then estimates the performance of each candidate configuration

via the NECS model, and Knob Recommender recommends

the knob values with the best estimated performance. Next, the

user will execute the Spark application with the recommended

knob values and collect the feedback. Based on the feedback,

we can fine-tune the NECS model via Adaptive Model

Update. Fine-tuning learns indistinguishable representations

for training and testing instances via adversarial learning,

so that the predictions on large input data will be more

accurate. The fine-tuning can be conducted periodically, i.e.,

updating LITE when we collect a predefined batch of testing

workloads. The details of online recommendation is discussed

in Section IV.

III. NECS: NEURAL ESTIMATOR VIA CODE AND

SCHEDULER REPRESENTATION

A. NECS Overview

By repeatedly sampling knob values and running appli-

cations, LITE collects a set of application instances. Each

application instance is a specific application implemented

with a set of selected knob values on a certain input data

and a particular computing environment. Directly using these

application samples to train a conventional machine learn-

ing model (e.g., linear regression) is not practical. Because

machine learning models are largely reliant on sufficient

amount and diversity of training data, which we can hardly

reach with limited time and resource. As shown in Figure 3,

instead of naively using application samples, NECS adopts

Stage-based Code Organization to build the set of

training instances. Each training instance is constructed as a

set of input features, paired with a performance metric (i.e.,

execution time). Then, NECS encodes the input features to

hidden representation vectors. Finally, NECS estimates the

performance, given the feature encodings.

B. Stage-based Code Organization

Stage-based Code Organization is motivated to

enhance the amount and diversity of training data. We illustrate

our motivation in Figure 4, with Terasort in spark-bench [1].

(1) Firstly, running the application once generates only one

application instance, and it takes several minutes. (2) Secondly,

its main-body codes are extremely brief, i.e., only three

lines are functional (line 3 ∼ 5). Specifically, only line 4
distinguishes the function of this application (i.e., sorting).

(3) Thirdly, the tokens are very sparsely distributed. For

example, in line 4, the important tokens ‘TeraSortPartitioner”

and “sortByKey”, which are with strong distinguishing power,

almost never appear in other applications. Thus, the machine

learning models can not learn the correlations among rare

tokens and generalize to other applications. Our solution is to

segment each application into stages, expand the stage-level

codes and process the stage-level codes to obtain stage fea-

tures. Stage-based Code Organization implements

the following three steps.

Step1: Instrumentation. We use instrumentation techniques

to segment an application instance to several stage-level

instances. Instrumentation is an automatic step. For each

application, we prepare a Java agent jar file, which modifies

bytecode of the Spark core packages, currently including

org/apache/spark/rdd, api, mllib and graphix. It monitors when

classes in these packages are loaded at each stage, and stores

the codes to a hashing table. After the application is finished,

we parse the application logs to extract stage-level codes. As

shown in Figure 5, after instrumentation, codes of stage 3,

which is associated with line 4 in Figure 4, have been greatly

expanded. We can see that, the stage-level codes of stage 3
contain a larger set of tokens, where the important tokens

“map” are more densely distributed among different instances.

Thus, instrumentation captures the operations in each stage and

obtains more informative features.

Step2: Code features extraction. After we obtain the stage-

level codes, we use a token embedding matrix to represent the

stage-level codes. Figure 3 shows that, the token embedding

matrix is obtained by concatenating token embeddings, i.e.,

Ci ∈ R
D×N , where D is the embedding size for each code

token, N = 1000 is the maximal number of tokens in each

stage. We use padding (i.e., adding zeros) for short codes.

Step3: Scheduler features extraction. We also extract stage-

level scheduler DAGs by parsing the event log files. The stage-

level DAG scheduler consists of a set of labeled nodes and

directed edges, where nodes represent the Resilient Distributed

Datasets (RDDs) or DataFrames and the edges represent an

operation to be applied. As shown in Figure 3, each node in the

DAG is labeled with a word that reveals the atomic operation

(e.g., “MapPartition”, “ZipPartition”) on RDDs. Thus, to fully

capture the semantics of the DAG and strengthen prediction

power, we use a node embedding matrix to represent the nodes,

and an adjacency matrix to represent the edges, i.e., Gi =
{Vi,Ai}. The node embedding matrix is denoted by Vi ∈
R

|V |×(S+1), where |V | is the number of nodes in the DAG,

and S is the embedding size for each node. We use one-hot

encoding for each node, hence, S is the number of atomic

operations in the training set. To increase generalizability, we

add an out-of-vocabulary token (denoted as ovv) to handle

unseen atomic operations in the test application.

C. Inputs of NECS

After Stage-based Code Organization, we con-

struct the training instances. Formally, the i−th training in-

stance xi ∈ DS in training set DS is represented as a

six-tuple, i.e., xi =< oi,Ci,Gi,di, ei, yi >, where oi is

an array of knob values, Ci,Gi are the code features and

scheduler features extracted in Section III-B, di represents the

data feature, ei denotes the computing environment that this

Code

features

Data

features

Environment

features

Configuration

features

Scheduler

features

Feature

Token embeddings Ci Tower MLP

ReLU

Stage-level Codes

 Stage-level DAG Scheduler ShuffledRow

ZippedPartitions

Node embedding matrix

Vi

MapPartitions

1

2

3

4

5

6

7

ovv

ShuffledRowRDD[35]

MapPartitionsRDD[36]

ShuffledRowRDD[41]

MapPartitionsRDD[42]

ZippedPartitionsRDD2[43]

MapPartitionsRDD[44]

MapPartitionsRDD[45]

1 2

3
4

5

6

7

val id: Int = sc.newRddId()

val recordsRead: Long)

getPreferredLocations(split)

private[spark] def isBarrier(): Boolean

val bytesRead: Long,

val narrowParents = parent.map(_.rdd)

val
Int parent

Adjacency matrix

Ai

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Stage-based Code Organization

CNN

GCN

Performance Estimation

Fig. 3: NECS framework

1 object terasortApp{

2 def main(args: Array[String]) {

3 val dataset = sc.newAPIHadoopFile[Array[Byte], Array[Byte],

TeraInputFormat](inputFile)→֒

4 val sorted = dataset.partitionBy(new

TeraSortPartitioner(dataset.partitions.size)).sortByKey()→֒

5 sorted.saveAsNewAPIHadoopFile[TeraOutputFormat](outputFile) }}

Fig. 4: Program codes of application Terasort. Important

tokens never appear in other applications.

→֒

→֒

→֒

Fig. 5: Stage-level codes (stage 3) of application Terasort after

instrumentation. Important “map” operations are highlighted.

application is implemented on, yi is the stage-level execution

time. Note that, since many stage-level training instances are

extracted from the same application instance, we use w(xi) to

denote the application instance where instance xi is extracted

from. For two instances extracted from the same application

instance, they share the same knob, data and environment

features, i.e., oi = oj ,di = dj , ei, ej , if w(xi) = w(xj).
Only the stage-level code features and scheduler features are

different. For example, if we run Terasort in Figure 4 once on

an input dataset, then we will have four stage-level instances

with the same configuration features and data features.

Configuration features. Suppose there are D configuration

knobs which affect Spark performance, then we have oi ∈ R
D

(more in Section V).

Data features. We use four entries that can be obtained

through the application’s data generation phase before exe-

TABLE I: Entries in the data feature

Entry Brief Description

#rows Number of rows in the input data
#columns Number of columns in the input data
#iteration Number of iterations (optional)
#partitions Number of partitions (optional)

TABLE II: Entries in the environment feature

Entry Brief Description

#nodes Number of nodes (computers) in the cluster
#cores Number of cores in each node
Frequency CPU frequency (GHZ)
Memory size Memory size (GB)
Memory speed Memory speeds (MT/s)
Bandwidth Bandwidth in connecting the cluster

cuting the application to describe data characteristics. That is,

each data feature vector for instance xi is a four-dimensional

vector, i.e., di ∈ R
4. As shown in Table I, not all entries

are useful. For example, some machine learning libraries,

e.g., k-means, define the number of iterations required to be

conducted in the data generation phase. For applications which

do not have “#iteration” or “#partitions”, the corresponding

entries in di will be set to zero.

Environment features. For clusters with more nodes and

memories, higher CPU frequency and memory speeds, Spark

applications are expected to complete faster. However, con-

figuration knobs have complex dependencies with cluster en-

vironment. For example, executor.cores and executor.memory

must be optimized according to the computing resource in the

cluster. As shown in Table II, we use a six-dimensional vector,

i.e., ei ∈ R
6, to represent the environment information.

D. Encoding Code Features

We apply feature encoding upon the code features Ci

to capture rich semantics of the codes. In the literature,

sequence models such as LSTM (Long Short Term Memory

network) [12], [35] and Transformers [18] have been adopted

to learn representations for program codes. However, we use

CNN (Convolutional Neural Network) blocks, because we

observe that the stage-level codes are a set of lines, where

each line is generally very short. Sequence models which

emphasize on long-term dependency might introduce noise.

CNNs have shown superior performance on short texts such

as reviews [33]. We empirically find that CNNs outperform

sequence models, by utilizing the proximity structure in codes.

CNN applies convolutional operation with max pooling

on multiple filters to obtain feature maps, resulting Q =
flat{q1, . . . , qI}, where I denotes the number of kernels in

the convolutional layer and flat is the flatten operation. For

space limit, we omit the calculation of CNN.

The code representation hcode,i can be obtained by a ReLu

transformation with WCNN , the learnable weight matrix:

hcode,i = ReLU(WCNN
Q). (1)

E. Encoding Scheduler Features

In addition of featuring “what” operations are conducted

(i.e., encoding code features), understanding “how” a series of

operations are conducted is also important to estimate stage

performance. However, it is non-trivial to fully utilize the

semantic and structural information in the DAG scheduler

features. We adopt GCN (Graph Convolutional Network) [21],

which can fully capture the semantic and structural infor-

mation in DAGs by integrating the node embedding matrix

and adjacency matrix in graph convolution at each iteration.

GCNs have shown promising results in code summarization

applications [16]. We initialize the input of GCN as embedding

matrix of DAG features, i.e., H0
i = Vi and apply the

operations Hl+1 = ReLU(D̂− 1

2 ÂD̂− 1

2Hl
iW

GCN,l), where

the l + 1-th layer of GCN outputs Hl+1. Â = A + I, where

Ai ∈ R
|V |×|V | is the adjacency matrix, I ∈ R

|V |×|V | is the

identity matrix. D̂ is the degree matrix, where its diagonal

elements represent the degree of each node, its rest elements

are set to be zero. Hl
i is the output of last layer. WGCN,l is the

learnable weight matrix. Finally, the scheduler representation

hDAG,i can be obtained by a max pooling operation:

hDAG,i = maxHL
. (2)

F. Performance Estimation

Performance is affected by multiple factors with complex

correlations. The estimation needs to be robust enough to adapt

to new applications and large input data after well trained

on small datasets. To address these challenges, we design the

performance estimation module. NECS concatenates all the

representations and transforms the concatenation to predicted

execution time by an MLP (Multi-Layer Perceptron) module.

The procedure can be formally defined in Equation 3:

ŷi = fL

(

· · · f2
(

f1(concate(di, ei,oi,hcode,i,hDAG,i))
)

· · ·

)

,

(3)

where L is the number of layers in MLP, fl(·) with l =
1, 2, · · · , L denotes the mapping function for the l-th hidden

layer. fl(x) = ReLU(WMLP,lx+ bMLP,l), where WMLP,l

and bMLP,l are learnable weight matrix and bias vector for

layer l. The activation function for each layer is ReLU . We

use a tower MLP structure, where the size of layers (i.e.,

dimensionality of x) is half of the previous layers. As MLP

captures high-level interactions among features, the tower

structure learns more abstractive features of data by using less

hidden units at higher layers.

G. Training

Suppose yi is the actual execution time of instance xi, NECS

outputs a predicted execution time ŷi = MΘ(xi), where MΘ

is the set of parameters including the learnable weights in

CNN, GCN and MLP modules. The offline training phase

optimizes MΘ:

Θ
∗ = argmin

Θ

∑

xi∈DS

(

yi − ŷi
)2
. (4)

IV. ONLINE RECOMMENDATION: ADAPTIVE TUNING

In the online phase, LITE implements the following steps

to tune each big data analytic application.

Step 1: Collect application features. For any application to

be tuned by LITE, it is convenient to collect program codes of

the application, and other information, such as the environment

and the data to be processed (e.g., data features in Section III).

If the application exists in the training set, i.e., the application

has been executed at least once on a different input data and

computing environment, we can re-use the segmented stages

and obtain the stage-level codes and DAG scheduler. If the

application is unseen (i.e., cold-start application), then we run

the application on the smallest dataset possible and perform

instrumentation (Section III-B) to quickly obtain stage-level

codes and DAG sheduler.

Step 2: Generate knob value candidates. LITE selects a

few knob value candidates. Due to the huge space for con-

figurations, LITE is not able to enumerate all possible knob

values. We present Adaptive Candidate Generation

in Section IV-A, which predicts a small, promising search

space, based on the given application. Then we randomly

sample a small number of candidates in the search space.

Step3: Estimate performance and make recommendations.
LITE estimates the performance for each candidate. Suppose
the real-production computing environment is ew, the appli-
cation w is to be implemented on dw. A set of stages are
associated with the application, with code and DAG scheduler
features (i.e., Ci,Gi). Then, LITE aggregated over predicted
performance (i.e., execution time) of all stages. Finally, LITE
ranks the configurations. o∗

w, which produces least aggregated
execution time among all candidates, will be ranked highest
and delivered as the suggested configuration:

o
∗
w = arg min

oj∼Sw

∑

w(Ci)=w(Gi)=w

MΘ∗(oj ,Ci,Gi,dw, ew), (5)

where oj ∼ Sw is the process of selecting knob candidates

in the search space Sw. MΘ∗(oj ,Ci,Gi,dw, ew) is NECS’s

prediction for stage-level execution time, w(Ci) = w(Gi) = w
indicates that the stages i are associated with application w.

Step4: Model update. Once NECS is trained, it is static

and fits to applications on small-scale input data. We present

Adaptive Model Update in Section IV-B, to periodi-

cally update NECS, when a predefined batch of new instances

are collected (i.e., more testing applications are tuned), so

that the tuning performance can be improved over time. The

Adaptive Model Update adopts adversarial learning to

fine-tune NECS.

A. Adaptive Candidate Generation

It is possible that sampling from a huge search space will
miss good configurations, while selecting too many candi-
dates will increase tuning overhead. We present Adaptive
Candidate Generation, which adapts and shrinks the
search space Sw for each testing application w, so that
good candidates are more likely to be sampled, given limited
candidates. To efficiently generate candidates for application
w, the region of interest Sw ∈ R

D for D knobs is a subset of
the original configuration space. Thus, to identify the region
of interest Sw ∈ R

D, we first roughly predict for each knob
d = 1 ∼ D where an appropriate “mean value” should
lie. Intuitively, the “mean value” should be related to the
input datasize and the application. We build a Random Forest
Regression (RFR) model RFRd(dw, aw), to map the input
datasize and the application to the knob value. To simplify
notations, we omit the superscript d if no ambiguity. We use
the input data feature dw as described in Section III. We use
a vector aw to represent the application, where each entry of
aw denotes a code token. We use tf-idf to assign a weight to
each token. RFR is trained over a training set B, where each
training instance is a triple, i.e., B = {< dj , aj ,oj >}. The
parameters Φ are optimized by Equation 7.

Φ
∗ = argmin

Φ

∑

j∈B

(

RFR(dj,aj)− oj

)2
. (6)

The training set B is constructed as follows. As LITE repeat-

edly runs each application with various configuration settings

on different datasets, we collect the execution time of each

application instance. We want to reduce training expense, and

exclude noisy examples with bad configurations and let RFR to

predict a range of good knob values. Thus, for each application

and input datasize in DS , we select instance with the least

execution time and include it in B. For example, suppose for

application “Terasort” on 10MB input dataset, we have two in-

stances, with different configurations, and “executor.cores=4”

yields less execution time than “executor.cores=8”. We will

include the instance (10MB,“Terasot”, “executor.cores=4”) in

B. Using the training set B constructed as above transfers the

knowledge in the “best” training instances.
We next determine the boundary of Sd

w, by extending from
the “mean value” RFRd(dw, aw), as Equation 7:

S
d
w = [RFR

d(dw,aw)− σ
d
, RFR

d(dw,aw) + σ
d], (7)

where σd is the span of the search space, from the center to

the boundary. To derive σd, we use the standard deviation

of the knob values in DS . To be specific, we choose top

40% instances with lowest application instance execution time,

compute the mean configuration value for these samples on the

d−th knob, and consequently obtain its sandard deviation σd.

B. Adaptive Model Update

Suppose running LITE for a period of time, we have

obtained DT , which collects our tuning feedback in real-

production systems, i.e., applications implemented on large

input datasize, and the actural execution time of recommended

Source (trainingset)

Target (new instances)

Representation space

predict

MLP

MLP

CNN

GCN
classify

Prediction loss

Discrimination loss

NECS

Adaptive Model Update

Feature

extraction

Fig. 6: Illustration of the Adaptive Model Update

configurations. We can utilize DT to update NECS. The

intuition is shown in Figure 6, we denote the input of training

instances in DS as source domain and DT as target domain.

Source domain and target domain have different distributions

(e.g., different datasizes, computing environments and appli-

cations). Since the parameters of NECS are trained using DS ,

the extracted feature embeddings by NECS from DS and

DT may be non-overlapping, leading to degraded prediction

performance for DT .

The solution is to fine-tune NECS to obtain domain-invariant

feature representations, so that the model parameters are

updated and will be proper on target domain DT . As shown in

Figure 6, in NECS, the input instance flows through the feature

encoding module (i.e., CNN and GCN) and the performance

estimation module (i.e., MLP). Thus, we define the hidden

layer embeddings from MLP in Equation 3 as the extracted

feature embeddings, i.e., hi =
(

f1(xi)‖ · · · ‖f
L(fL−1)

)

,

where ‖ is the concatenation operation, L is the number of

layers in the predictor MLP in NECS. Inspired by adversarial

learning, we add an additional discriminator, in Adaptive

Model Update. We label each instance as being from the

source (i.e., l(h) = 1 if h ∈ DS) or the target domain

(i.e., l(h) = 0 if h ∈ DT). The discriminator D attempts

to distinguish source domain instance from target domain

instance, given the feature embeddings extracted by NECS, i.e.,

DΩ(hi) ∈ (0, 1) is the probability of hi being from the source

domain, where Ω are learnable discriminator parameters.

We use MLP to implement our discriminator, the activation

function in each layer is ReLU, the output layer is sigmoid.
Finally, we update the parameters of NECS and discrimina-

tor, i.e., Θ,Ω by optimizing the adaptive loss in Equation 8:

L = min
Θ

max
Ω

(

Lp + LD

)

, (8)

where Lp =
∑

i∈DS
⋃

DT

(

yi − MΘ(xi)
)2

is the accu-

mulated prediction loss on both source and target domain,

MΘ(xi) is the predicted execution time by NECS, yi is the

actural execution time of instance i. LD =
∑

i∈DS
⋃

DT

(

−

l(hi) logDΩ(hi) −
(

1 − l(hi)
)

log
(

1 − DΩ(hi)
)

)

is the

discrimination loss, which is a cross entropy loss to evaluate

the binary classification, DΩ(hi) is the discriminator’s output

probability of instance i’s feature embedding hi. The updating

process plays a minimax game. By incorporating the prediction

loss in DT , the estimation performance on target domain

is naturally improved. By maximizing the discriminator loss

with respect to Θ, we encourage NECS to learn feature

representations for target domain which are hard to distinguish

from the source domain. By minimizing the discriminator loss

TABLE III: Evaluation clusters

Cluster #Nodes #Cores CPU Memory Network

Cluster A 1 16 3.2GHZ 64GB - 2400 1Gbps
Cluster B 3 16 3.2GHZ 64GB - 2400 1Gbps
Cluster C 8 16 2.9GHZ 16GB - 2666 10Gbps

the discriminator tries to accurately identify instances. The

goal is to reach an equilibrium in which the training instance

and the test instance are projected to the same representation

space, while retaining satisfying performance estimation. This

makes NECS adapt to the target domain more easily.

V. EXPERIMENTS

In this section, we conducted extensive experiments to

evaluate the proposed techniques and studied the following

aspects of our approaches1.

RQ1: Did LITE gain high quality tuning results? We focus

on the tuning performance (i.e., How did LITE’s recom-

mended configurations speed up various Spark applications

on large-scale input data?) and tuning overhead (i.e., How

much time did it take to produce good tuning results?).

RQ2: How well did each component in LITE perform?

This question is split into four sub-questions. RQ2.1: Can

NECS properly rank the candidate configurations, i.e., placing

better performing configurations at higher positions? RQ2.2:

Can Stage-based Code Organization increase train-

ing set size and sample complexity? RQ2.3: Can Adaptive

Candidate Generation improve tuning effectiveness?

RQ2.4: Can Adaptive Model Update improve LITE’s

prediction accuracy?

RQ3: How well did LITE generalize to new scenarios?

In particular, we ask two sub-questions. RQ3.1: Can LITE

generalize to never-seen applications? RQ3.2: Can LITE

generalize to different computing environments?

A. Experimental setup

Environment. As listed in Table III, we provisioned three

typical Spark clusters, separately with 1, 3, 8 nodes. Each node

was configured with 16-core CPUs, 64GB or 16GB memory,

and 1Gbps or 10Gbps network connections.

Configurations. The knobs used in LITE are listed in Ta-

ble IV, involving the important aspects like MapReduce, RDD,

data compression, and storage management [11].

Applications. Table V lists the applications implemented in a

standard benchmark spark-bench [1]. We covered a wide range

of machine learning (ML), graph and MapReduce algorithms,

which have rich semantic and code structures.

Training data of small sizes. For each application, we used

four different input datasizes on every cluster (Table V). The

datasizes are as small as possible so that each application can

be finished in about one minute. Note that “LabelPropagation”

is a graph application and we recorded the number of nodes

instead of MegaBytes or GigaBytes.

1The source code, data, and/or other artifacts have been made available at
https://github.com/cheyennelin/LITE.

TABLE IV: 16 key performance-aware configuration knobs
Parameter Name Brief Description

“spark.default.parallelism” Number of RDD partitions
“spark.driver.cores” Number of cores by driver process
“spark.driver.maxResultSize” Max size of serialized results per Spark action
“spark.driver.memory” Memory size for driver process
“spark.driver.memoryOverhead” Off-heap memory size per driver
“spark.executor.cores” Number of cores per executor
“spark.executor.memory” Memory size per executor process
“spark.executor.memoryOverhead” Off-heap memory size per executor
“spark.executor.instances” initial number of executors
“spark.efiles.maxPartitionBytes” Max size per partition during file reading
“spark.memory.fraction” Fraction for execution and storage memory
“spark.memory.storageFraction” Storage memory percent exempt from eviction
“spark.reducer.maxSizeInFlight” Max map outputs to collect concurrently per reduce task
“spark.shuffle.compress” Compress map output (Boolean)
“spark.shuffle.file.buffer” In-memory buffer size per output stream
“spark.shuffle.spill.compress” Compress data spilled during shuffles (Boolean)

Validation data of middle sizes. To validate the accuracy of

configuration ranking, we used mid-scale input datasize for

each application on every cluster (Table V). Note that the

validation datasizes are still significantly larger than the input

datasizes in each cluster’s training sets.

Testing data of large sizes. To testify the tuning results,

we also ran each application on large datasets2 in cluster

C to simulate big data analytic tasks in real-world systems

(Table V). Note that for each application, we used the same

seed to randomly sample from the same distribution to syn-

thesize training, validation and testing data and ensure they

have similar characteristics.

B. Performance Comparison

To answer RQ1, we evaluate tuning results on testing data

of large sizes in Table V. We used the highest ranked o∗
w in

Section IV to set the configuration.

Competitors. (1) Default: applications were implemented us-

ing default Spark configurations. (2) Manual: we hired experts

to tune the applications based on online tuning guides for

maximally 12 hours. (3) MLP: we used a machine learn-

ing baseline which feeds a Multi-Layer Perceptron with the

application name, data features, environment features, and

stage-level data statistics obtained in the Spark monitor UI.

Thus, this baseline uses the same prediction module (i.e.,

MLP) with LITE but without code features. (4) BO(2h):

we used Bayesian Optimization, where Gaussian Process

was the surrogate model and Expected Improvement was the

acquisition function. Furthermore, inspired by Ottertune [23],

we used 5 most similar instances in the training set to

initialize Gaussian Process. (5) DDPG(2h): following [15], we

built a reinforcement learning framework which used Deep

Deterministic Policy Gradient, where the action space was the

configurations, and the state was the inner status summary of

Spark. (6) DDPG-C(2h): similar as QTune [17], an additional

module is incorporated in DDPG, which predicts the change

of outer metric based on code features and inner status. BO,

DDPG, and DDPG-C tuned each application for at least 2
hours.

Metrics. To make tuning performance comparable across ap-

plications, we computed Execution Time Reduction, defined as

2The input datasize significantly differs for each application. We use
repeated trials to determine the largest possible datasize.

TABLE V: Application statistics: application name, type, input datasize in training set, validation set and test set.

Application name (Abbreviation) Type
Input Datasize

Training Testing Validation
Cluster A/B Cluster C Cluster C Cluster A Cluster B Cluster C

PrincipalComponentAnalysis(PCA) ML {0.9, 2.3, 3.5, 4.6}MB {943.7, 1887.4, 2831.1, 3772.5}MB 102GB 46MB 23MB 9.21GB

ConnectedComponent(CC) Graph {63.5, 95.2, 127, 158.7}MB {464.8, 547, 741, 938.5}MB 5.6GB 1.6GB 1.6GB 1.8GB

DecisionTree(DT) ML {38.4, 192.4, 384.8, 769.6}MB {192.3, 384.7, 461.6, 577}MB 98GB 1.9GB 7.5GB 3.4GB

KMeans(KM) ML {186.6, 373.2, 559.8, 746.4}MB {745.7, 1188.5, 1305, 1491.4}MB 92GB 3.6GB 3.6GB 4.4GB

LabelPropagation(LP) Graph {100, 200, 300, 400} nodes {500, 600, 650, 700} nodes 2500 1000 1000 1000

LinearRegression(LR) ML {98, 196, 294, 392}MB {1, 2, 3, 3.6}GB 137GB 3.83GB 3.83GB 12GB

Logisticregression(Logit) ML {190, 380, 570, 760}MB {1.9, 3.8, 5.7, 6.84}GB 134GB 7.4GB 2.5GB 22.8GB

PageRank(PR) Graph {66.8, 94.9, 128.5, 164.2}MB {161.7, 250.6, 323.4, 404.3}MB 9.2GB 328MB 328MB 812.4MB

PregelOperation(PO) Graph {161, 322, 483, 644}MB {169.5, 381.4, 339, 423.8}MB 5.5GB 6.3GB 3.2GB 836.2MB

ShortestPaths(SP) Graph {61.9, 92.8, 123.8, 154.7}MB {171.8, 229.1, 286.3, 343.6}MB 9.3GB 773MB 464MB 572.1MB

StronglyConnectedComponent(SCC) Graph {30.7, 61.4, 92.1, 122.8}KB {6.3, 10.08, 12.6, 18.9}MB 260.9MB 1.2MB 0.6MB 31.5MB

SingularVectorDecomposition(SVD++) ML {6.7, 13.4, 20.1, 26.8}MB {76.6, 153.2, 230, 306.4}MB 1GB 268MB 268MB 514.2MB

SupportVectorMachine(SVM) ML {20, 39, 59, 79}MB {1.5, 3.0, 4.5, 6.0}GB 102GB 1.5GB 395MB 13.1GB

TeraSort(TS) MapReduce {95.4, 190.8, 286.2, 381.6}MB {1.4, 1.9, 2.4, 2.8}GB 74.5GB 7.4GB 3.7GB 4.8GB

TriangleCount(TC) MapReduce {39.2, 118.2, 446.3, 1002.3}KB {61.8, 92.7, 123.6, 154.5}MB 359.2MB 16MB 5MB 229.1MB

TABLE VI: Actual execution time t and execution time

reduction ETR by different tuning methods
Method Default Manual MLP BO(2h) DDPG(2h) DDPG-C(2h) LITE

t (seconds) 7314.93 1329.73 944.4 1125.13 2236.27 2244.93 588.59

ETR 0.07 0.63 0.62 0.69 0.44 0.48 0.99

ETR = tmin/t, for each application. For LITE, t is the actual

execution time (in seconds) of the application configured as

the first recommendation by LITE. For each competitor, t is

the least execution time of the application during the tuning

period. For any method, if the actual execution time was longer

than two hours, or if the application failed, we recorded as

the upper execution time, i.e., t = 7200. tmin is the minimal

execution time of the application by all tuning methods.

Analysis of tuning performance. As shown in Table VI,

LITE can make a significant improvement in application

performance. Applications tuned by LITE were averagely 356
seconds faster than MLP, 537 seconds faster than BO, 1648
seconds faster than DDPG, 1656 seconds faster than DDPG-

C, and 741 seconds faster than Manual tuning by experts. It

gained 99% execution time reduction averagely. As shown in

Figure 7, LITE was very robust in tuning different applica-

tions. LITE achieved ETR = 1 (i.e., least execution time)

in 13 out of 15 applications. Furthermore, LITE was among

the best two tuning methods in the rest two applications. On

the contrary, the competitors produced poor tuning results

for some applications. For example, MLP’s performance was

particularly bad on DT, PR and TC, BO was incompetent

on TS and PR, and DDPG failed on LR, SP, SVD++, and

SVM. Finally, LITE achieved good tuning results within a

very small tuning overhead. LITE took less than 2 seconds

to make recommendations. Its recommendations were better

than time consuming competitors such as BO and DDPG that

were trained for at least two hours.

Case study of tuning overhead. We warm up BO and DDPG

using similar training time and training set as trining LITE.

We show two testing applications, i.e., DecisionTree (DT) and

LinearRegression (LR) in Figure 8, where x represents the tun-

ing overhead (i.e., the timestamp starting each training epoch),

and y denotes the least actual execution time of the application

until the current epoch. We also plotted the timestamp when

LITE made configuration recommendations and the actual

execution time of the recommended configuration. We have

the following observations. (1) LITE took the minimal tuning

overhead. This is because, after a fixed-time training process,

LITE directly made predictions within 2 seconds. On the

contrary, after warm-up, BO and DDPG still implemented

iterative epochs, while each epoch contained model building

(i.e., to collect data and update the model), predicting (i.e.,

to make predictions) and model probe (i.e., to attempt a new

trial). Thus, each epoch was very time consuming, given the

large input datasize. (2) LITE gained near optimal tuning

performance. We can see that LITE’s recommended con-

figurations are very close to the best configuration that BO

and DDPG can possibly achieve in a time-consuming manner.

(3) BO and DDPG could not improve the execution time of

sampled configuration at each epoch. For example, for DT,

DDPG did not improve the initially sampled configurations.

Thus the tuning process is inefficient.

C. Evaluating Performance Ranking

Next we evaluated the accuracy and performance of execu-

tion time estimator (RQ2.1). NECS provided the core function

to deliver a ranking list of configuration candidates.

Metrics. We utilized two standard ranking evaluation metrics,

which are frequently used in the information retrieval commu-

nity [22], namely HR@K and NDCG@K. They are computed

by comparing each method’s topK ranking result with the

gold-standard list. Due to the time-consuming procedure in

deriving a gold-standard list, the evaluation was conducted on

validation data with mid-scale input data.

Competitors. We compared NECS with a variety of ma-

chine learning models with different feature encoding modules

and performance estimation modules. Performance estima-

tion modules include LightGBM [14] and MLP. We fed

these models with three types of features. The first type of

features contains only application name without codes. (1)

“W”: application instance features (i.e., data features and

environment features); (2) “S”: stage-level features including

the data features, environment features, key stage-level data

statistics obtained in the Spark monitor UI such as stage input.

Note that the stage-level data statistics were not used in our

proposed model NECS, because they are only accessible when

the application has been actually executed on the real input

data and it will be problematic to handle large-scale input

data. The second type of features includes codes. (3)“WC”:

the application instance features and bag-of-words (BOW)

representation of program codes of the application. (4) “SC”:

stage-level features and BOW representation of stage-level

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

PCA CC DT KM LP LR Logit PR PO SP SCC SVD++ SVM TS TC

E
x

ec
u

ti
o

n
 t

im
e

re
d

u
ct

io
n

Default Manual MLP DDPG(2h) DDPG-C(2h) BO(2h) LITE

Fig. 7: Each application’s ETR (execution time reduction) by different methods. Higher ETR suggests better tuning performance.

150001000050000
Tuning Overhead (s)

3000
2000

1000

500
300

DT
 E
xe
cu
tio

n
(s
) BO

DDPG
LITE

150001000050000
Tuning Overhead (s)

10000
5000

2000
1000

500
300

LR
 E
xe
cu
tio

n
(s
) BO

DDPG
LITE

Fig. 8: Tuning DecisionTree and LinearRegression: tuning

performance v.s. tuning overhead

codes. The third type of features adopt both codes and DAGs.

(5) “SCG”: stage-level code features, and pretrained sched-

uler features using LSTM (i.e., scheduler DAGs are trained

to predict “next” DAG). (6) “LSTM”: a Long-Short-Term-

Memory network was used to encode the stage-level codes. (7)

“Transformer”: a transformer network based on multi-head self

attention was used to encode the stage-level codes. (8) “GCN”:

a Graph Convolutional Neural network was used to encode

the stage-level scheduler. The last three features (i.e., LSTM,

Transformer and NECS) are only adopted with MLP due to

the computational convenience of gradient back propagation.

Ablation analysis. In Table VII, we reported the average

HR@5 and NDCG@5 results over 15 applications in the

three clusters and large jobs. We have the following remarks.

(1) NECS consistently outperformed all competitors in terms

of both HR@5 and NDCG@5. NECS did not only retrieve

good configurations (i.e., high HR@5), but also distinguished

good and better configurations (i.e., high NDCG@5). NECS

produced robust ranking performance over different applica-

tions and computing environments. (2) NECS outperformed

very strong competitors. For example, data statistics (“S+”)

are well regarded as having great impacts on execution time.

However, without stage-level data statistic features, NECS

was still able to make accurate predictions. This shows that

the code and scheduler encoding components are superior

in extracting hidden feature representations. (3) Furthermore,

NECS was trained using instances on small input data, and it

was able to make precise predictions for applications on large

jobs. For large jobs, the HR@5 by NECS is 0.4175 and the

NDCG@5 is 0.5669, which is nearly “10%” higher than the

best competitor. (4) Isolating each module, we observe that

using code features generally outperformed non-code features

on different prediction modules, (i.e., “WC” outperformed

“W”, “SC” outperformed “S”); stage-level codes using data

augmentation outperformed (“SC”) outperformed application

codes without data augmentation (“WC”).

Fig. 9: Training set size and complexity increased after data

augmentation

D. Evaluating Stage-based Code Organization

To answer RQ2.2, we first observed in Table VII, using the

original application code without data augmentation (“WC”)

performs worse than stage-level codes (“SC”) on all testing

settings (i.e., cluster A,B,C and large jobs). Furthermore, the

advantage of using stage-level codes is universally observed

on different prediction modules (i.e., MLP and LightGBM).

To further study the effect of Stage-based Code

Organization, we reported the number of training in-

stances |DS| after data augmentation in Figure 9. The number

of training instances were significantly increased, resulting in

4× (e.g., TS) to 427× (e.g., SCC) more instances. Further-

more, the number of tokens per instance for most applications

was increased. The length of codes per training instance was

averagely tripled. The increased number of code tokens in

each training instance, along with the increased number of

training instances, demonstrated that Stage-based Code

Organization greatly enhanced sample complexity in the

training set.

E. Evaluating Adaptive Candidate Generation

To answer RQ2.3, we first compared LITE with RFR,

which is described in Section IV-A. RFR used a random forest

regression model to map the input datasize and the application

to an appropriate knob value. Since the prediction of random

forest regression is numerical, for discrete valued knobs, we

round the prediction to the nearest integer. We reported the

average execution time reduction ETR and actural execution

time t by RFR and LITE in Table VIIIa. We can see

that, using Adaptive Candidate Generation boosts

tuning performance. The underlying reason is that Adaptive

Candidate Generation filtered a region of appropriate

knob values, while RFR can only roughly identified one point

which was risky.

We further testify whether Adaptive Candidate

Generation can improve ranking performance over other

sampling techniques. The comparative study was implemented

for validation applications in cluster C. We used random

TABLE VII: Ranking performance by various machine learning methods
Prediction
Module

Features Cluster A Cluster B Cluster C Large
Type Feature HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

LightGBM

NoCode
W 0.4462 0.5586 0.2693 0.3746 0.3107 0.4190 0.2292 0.3194
S 0.3825 0.5293 0.3973 0.5238 0.3784 0.5095 0.3090 0.4506

Code
WC 0.4525 0.5755 0.3333 0.4490 0.3630 0.5181 0.2323 0.3144
SC 0.4575 0.6127 0.4173 0.5470 0.3846 0.5466 0.3127 0.4348

Code+DAG SCG 0.4137 0.5524 0.3786 0.4867 0.3938 0.5134 0.2763 0.3969

MLP

NoCode
W 0.2100 0.3257 0.2080 0.3089 0.2015 0.2888 0.2276 0.2940
S 0.3896 0.5466 0.3745 0.5015 0.3503 0.4832 0.3091 0.4424

Code
WC 0.2945 0.4142 0.2538 0.3614 0.2561 0.3225 0.2384 0.3090
SC 0.4137 0.6008 0.3806 0.5204 0.3621 0.4953 0.2789 0.4032

Code+DAG

SCG 0.4100 0.6055 0.4026 0.5452 0.3598 0.5013 0.2818 0.4068
LSTM+GCN 0.4253 0.6072 0.4050 0.5600 0.4053 0.5663 0.3875 0.5523

Transformer+GCN 0.4250 0.5971 0.4016 0.5444 0.3906 0.5483 0.3600 0.5128
NECS 0.4706 0.6192 0.4440 0.5702 0.4283 0.5818 0.4175 0.5669

sampling and Adaptive Candidate Generation to

select candidates and estimated execution time for these

candidates respectively. We reported the ranking perfor-

mance in Table VIIIb. We can see that, with Adaptive

Candidate Generation, NECS’s recommendations were

further improved. The underlying reason is that Adaptive

Candidate Generation filtered bad configuration re-

gions and thus avoided mistakes in pushing bad configurations

to the top positions in the ranking results.

TABLE VIII: Adaptive Candidate Generation im-

proved tuning performance and ranking performance.
(a) Tuning performance

Method RFR LITE

ETR 0.41 0.99

t 3055.07 588.59

(b) Ranking performance

Method random LITE

HR@5 0.417 0.440

NDCG@5 0.562 0.573

F. Evaluating Adaptive Model Update

To study RQ2.4, we first trained NECS with the training

instances in each cluster. Then, we used the static NECS

to make recommendations on the cluster’s validation data,

denoted as “NECS”. Next, we randomly split the validation

data in each cluster into three folds, where each fold contained

five applications. To simulate the scenario of online update,

we updated NECS, using Adaptive Model Update, with

one fold of the validation data in each cluster. We used the

updated NECS to make recommendations on the rest two folds

in the cluster’s validation data. We reported the recommenda-

tions made by the updated NECS as “NECS u”. We repeated

four runs and reported the average ranking performance by

NECS and NECS u in Table IX.

We have the following observations. (1) Although the static

NECS already made satisfying results, Adaptive Model

Update could further fine-tune NECS and significantly en-

hanced ranking performance. P-values of Wilcoxon Signed

Rank Test for HR@5 and NDCG@5 on three clusters are

all less than 0.5. (2) Improvements in prediction performance

were observed across different clusters, which shows that the

updating via adversarial learning based on newly collected

feedback helps to adapt the model to the target domain (i.e.,

larger input datasize in validation set).

TABLE IX: Ranking performance HR@5 and NDCG@5 for

NECS with and without Adaptive Model Update in

different clusters. Wilcoxon Signed Rank Test was conducted

to compute p-value of the increase.
HR@5 NDCG@5

NECS NECS u p-value NECS NECS u p-value

Cluster A 0.4586 0.4706 0.0494 0.6192 0.6199 0.0462

Cluster B 0.444 0.4533 0.0325 0.5702 0.5888 0.0339

Cluster C 0.4283 0.4438 0.0263 0.5818 0.5870 0.0413

TABLE X: Average (Avg.) and each never-seen application’s

ETR (execution time reduction) under cold-start setting
Application PCA CC DT KM LP LR Logit PR

ETR 0.98 0.95 0.94 0.75 0.98 1.00 0.95 0.95

Application PO SP SCC SVD ++ SVM TS TC Avg.

ETR 0.94 0.93 0.95 0.98 1.00 1.00 0.97 0.95

G. Generalizing to Never-seen Applications

To answer RQ3.1, we first testify whether the proposed

method can recommend good configurations for never-seen

applications.

Evaluating protocols. We consider two settings. (1) Warm-

start setting: predict execution time and deliver tuning recom-

mendations for an existing application on a different dataset.

Results in Section V-B are tuning performance under warm-

start settings. (2) Cold-start setting: for each application (Ta-

ble V), we excluded all training instances associated with

it in the training set. The rest of the training instances was

used to train the model and recommend configuration for

this application on the large testing data in cluster C. We

repeated the experiments for 15 times, each time removing one

application, and reported the ETR (execution time reduction)

results.

Analysis. As shown in Table X, the cold-start tuning for

most (i.e., 11 out of 15) applications obtains ETR ≥ 0.95.

The average ETR = 0.95. Note that the best competitor in

Table VI, i.e., BO, obtains an average ETR = 0.69 under

warm-start settings. It shows that LITE can make near optimal

tuning advice for never-seen applications.

H. Stability for Never-seen applications

Estimating performance for never-seen applications. We

also testify whether NECS can make accurate estimation for

never-seen applications. Results in Section V-C are obtained

under the warm-start setting. We train NECS under the cold-

TABLE XI: Average ranking performance under warm-start

and cold-start settings

Method
SCG+LightGBM NECS

Cold-start Warm-start Cold-start Cold-UNK Warm-start

HR@5 0.3570 0.3938 0.4030 0.3960 0.4283

NDCG@5 0.5050 0.5134 0.5543 0.5480 0.5818

start setting for validation applications and compare NECS

with SCG+LightGBM, which was the best competitor in one

cold-start applications. We also provide a version of NECS,

where we do not use an ”out-of-vocabulary” token to represent

unseen operations (Cold-UNK).

Analysis. As shown in Table XI, we observe that

SCG+LightGBM showed significant performance decline un-

der cold-start settings, compared with warm-start applications.

This is reasonable, because cold-start applications lack infor-

mation in historical logs. Nonetheless, NECS achieved satisfy-

ing ranking performance, in terms of HR@5 and NDCG@5,

under cold-start settings. The underlying reason is that the

proposed code and DAG scheduler encoding successfully

captured fine-grained correlations for never-seen applications.

The ablation study of oov token shows that, without the oov

token, estimation for never-seen applications are less robust

and the ranking accuracy has been decreased.

Performance stability. We next studied whether NECS can

provide stable performance estimation for many never-seen

applications. For each run, we trained NECS with 15−n, n =
1 ∼ 14 randomly chosen applications and made predictions

for n never-seen applications. We conducted five runs and

show the average ranking performance with respect to the

percentage of never-seen applications, i.e., x = n/15, in

Figure 10. We have the following observations. (1) The

ranking performances, including HR@5 and NDCG@5, de-

creased as the percentage of never-seen applications increased.

This is reasonable, because a larger portion of never-seen

applications raised larger difficulty to generalize. (2) However,

NECS obtained a strong ranking performance for x ≤ 0.4.

To demonstrate NECS’s superiority, we plotted the ranking

performance of the best competitor in Section V-C under

warm-start settings (i.e., the “Best warm” dotted line in

Figure 10). Comparing NECS’s performance curve to the

“Best warm” line, we see that, even with 40% never-seen

applications, NECS could still yield higher performance than

the best competitor under warm-start settings. This shows that

NECS was very robust for never-seen applications. (3) Finally,

NECS’s performance generally degraded smoothly for x ≤ 0.7.

We plotted the average ranking performance of the competitors

in Section V-C with all training instances (i.e., the “Avg warm”

dotted line in Figure 10). Comparing NECS’s performance

curve to the “Avg warm” line, we see that, with up to 70%
never-seen applications, NECS could still generate satisfying

performance, i.e., comparable to the average competitor under

warm-start settings.

I. Tuning Overhead for Never-Seen applications

For cold-start applications, LITE needed to perform instru-

mentation (more details in Section III-B) to quickly obtain

stage-level codes and DAG scheduler. The instrumentation

step causes an additional tuning overhead. However, since we

Fig. 10: NECS’s ranking performance with respect to the

number of never-seen applications

Fig. 11: Comparison between instrumentation time and exe-

cution time (by default configurations and best configurations

tuned) for cold-start applications
did not use any stage-level data statistics (e.g., stage shuffle

read/write), we implemented the application on the smallest

dataset possible to reduce the instrumentation time. In Fig-

ure 11, the instrumentation time cost for cold-start applications

fell in to the range of [1, 30] minutes, which was quite small

compared with running the default configurations on large-

scale input data. For most applications, the instrumentation

cost was even less than the least execution time of best

configurations. We believe there is still room for optimizing

the instrumentation step and we leave it as our future work.

Since the logs are small (e.g., several MBs), parsing event logs

for the other two steps took no more than 0.01 second.

J. Generalizing to Different Environments

To answer RQ3.2, we use different training sets to train the

NECS model. For example, NECS trained with only instances

in cluster C is denoted as “NECS C”; NECS trained with

instances in cluster A and B is denoted as “NECS AB”;

NECS trained with all instances in cluster A, B, and C

is denoted as “NECS all”. Then we used these models to

deliver predictions for validation applications in cluster C.

From Table XII, we can see that, using all training instances,

NECS produced better NDCG@5 performance than using only

cluster C instances. This observation suggests that NECS can

better transfer knowledges learned from different computing

environments. The variety of computing environments in train-

ing set is beneficial to learn correlations among applications

and computing environments.

VI. RELATED WORK

Knob Tuning for Analytical Platforms. Existing knob tuning

methods for analytical platforms fall into four categories.

(1) Rule based approaches are tuning guidance based on expert

experience and domain knowledge (e.g., cloudera, databricks).

For example, they provide empirical equations for computing

the partition numbers. However, they separately give hints on

single aspects of knobs, and cannot consider more complex

TABLE XII: Ranking performance trained in different clusters
Method NECS AB NECS C NECS all

HR@5 0.2661 0.4440 0.4323

NDCG@5 0.377 0.5702 0.5834

multiple aspects of knobs. It is still laborious to tune knobs

based on the limited rules. Besides, they only give guidance

for typical scenarios and cannot cover different applications.

(2) Experimental approaches repeatedly execute applications

with different configurations with search algorithms like re-

cursive bound-and-search [34]. AutoTune [3] first constructs a

testbed which samples different configurations for the given

application, and then it adopts Latin Hypercube Sampling

(LHS) to search for more promising configurations using both

testbed and production system samples. DAC [27] proposes

a hierarchical ensemble model to integrate individual models,

each predicts the execution time based on configurations and

input data sizes, and utilizes genetic algorithm to search for the

optimal configuration. However, the constrained configuration

space can still be very large and random sampling may not

find high quality configurations within limited time.

(3) Cost based approaches design user-defined analytical cost

functions, which take into account data statistics and con-

figurations to predict application performance (e.g, execution

time). And then they can use the predicted performance to

guide configuration tuning. Ernest [24] builds cost models

based on the behavior of sampled jobs and then predicts their

performance on large datasets and cluster sizes. Dione [28] use

a graph edit distance to detect similar spark jobs and reuse their

prediction models to predict execution time. DynamiConf [6]

assume execution time as a function of the number of nodes,

and present a greedy search approach based on dependency

graph to configure dynamic partitioning. A simulation based

cost model is presented in [5] to optimize vcore and memory

configurations. However, cost based approaches can only ex-

tract user-defined, simple interactions between a small part of

factors. For example, Ernest [24] only models the interaction

between the data scale and the inverse of the number of

machines and cannot easily support other factors, which may

lead to bad performance on complex applications.

(4) Machine learning approaches build performance predic-

tion models by learning from history logs. Machine learning

approaches are able to extract complex and high-dimension

correlations between configurations and the performance, they

usually achieve higher prediction accuracy. Various learn-

ing models have been adopted, like binary and multi-class

classifiers [25], Gradient Boosting Regressors [9], logistic

regression [13], Delaunay Triangulation [4], deep neural net-

work [29]. However, those learning based methods only sup-

port limited scenarios by encoding the configuration features,

and cannot adapt to large scale datasets and new applications.

Knob Tuning for Relational Databases. Fruitful research

efforts have been devoted to auto-tuning cloud databases [8],

[10], [37]–[43]. For the machine learning approaches, the line

of OtterTune works [2], [23] combines machine learning mod-

els like Gaussian Process and Neural Networks to optimize

the configuration sampling. CDBTune [31] and QTune [17]

both adopt deep reinforcement learning to improve tuning

performance. QTune generalizes to different workloads by

encoding SQL features, but it cannot support complex code

structures in Spark applications. Restune [32] also utilizes

Gaussian Process to select configurations based on resource

utilization and performance requirements. Restune migrates

to different databases by learning the tuning knowledge with

meta learning. However, Restune still needs to finetune on real

datasets, which may not be available or take relatively long

time. Besides, there are works that specifically tune memory

related knobs [20]. iBTune [20] designs a pair-wise deep

neural network on instance’s measurement features to predict

the upper bounds of response time. ReLM [15] proposes

analytical models to speed up a guided Bayesian optimization.

However, existing methods for relational databases cannot

be directly applied to Spark. The reasons are three fold.

First, they need numerous training data or repeatedly run on

real datasets, which are unaffordable for Spark applications

on large scale input data. Second, they only encode simple

features like system metrics and SQL features, and cannot

encode Spark applications with complex code structures and

semantics. Third, many metrics they use in relational databases

are unavailable in Spark (e.g, #readblocks).

Finally, due to the time efficiency, the offline-training,

online-tuning framework has also been adopted in the system

community [26]. The major difference is that in the online

phase, we do not generate an explicit fingerprint by running

the user-input task on a reference VM to collect resource usage

and performance statistics. The online phase does not require

to execute any task before giving the tuning advice.

VII. CONCLUSION

In this paper we proposed LITE to automatically tune

configurations for big data Spark applications. Our experi-

mental studies showed that LITE significantly reduces appli-

cation execution time, compared with state-of-the-art tuning

methods, for a wide variety of applications. Our contribu-

tions are generally applicable to any large-scale distributed

data processing framework, including (1) the framework

LITE that migrated the knowledge learned from small-scale

datasets to large datasets, (2) the code encoding modules

in NECS captured complex correlations among the available

factors in codes and the scheduler, (3) adaptive model update

Adaptive Model Update to fine-tune NECS via adver-

sarial learning, and (4) adaptive candidate generation method

Adaptive Candidate Generation that dynamically

adjusted search region of interest and made fast and accurate

recommendations.

VIII. ACKNOWLEDGEMETNS

Guoliang Li is the corresponding author. Chen Lin is

supported by the Natural Science Foundation of China (No.

61972328), Alibaba Group through Alibabba Innovative Re-

search program. Guoliang Li is supported by NSF of China

(61925205, 62072261), Huawei, TAL education, and Bei-

jing National Research Center for Information Science and

Technology (BNRist). Hui Li is supported by the Natural

Science Foundation of China (No. 62002303), Natural Science

Foundation of Fujian Province China (No. 2020J05001).

REFERENCES

[1] D. Agrawal, A. Butt, K. Doshi, J.-L. Larriba-Pey, M. Li, F. R. Reiss,
F. Raab, B. Schiefer, T. Suzumura, and Y. Xia. Sparkbench – a
spark performance testing suite. In R. Nambiar and M. Poess, editors,
Performance Evaluation and Benchmarking: Traditional to Big Data to

Internet of Things, pages 26–44, Cham, 2016. Springer International
Publishing.

[2] D. V. Aken, D. Yang, S. Brillard, A. Fiorino, B. Zhang, C. Billian,
and A. Pavlo. An inquiry into machine learning-based automatic con-
figuration tuning services on real-world database management systems.
VLDB, 2021.

[3] L. Bao, X. Liu, and W. Chen. Learning-based automatic parameter
tuning for big data analytics frameworks. In N. Abe, H. Liu, C. Pu,
X. Hu, N. K. Ahmed, M. Qiao, Y. Song, D. Kossmann, B. Liu, K. Lee,
J. Tang, J. He, and J. S. Saltz, editors, Big Data 2018, pages 181–190.
IEEE, 2018.

[4] Y. Chen, P. Goetsch, M. A. Hoque, J. Lu, and S. Tarkoma. d-
simplexed: Adaptive delaunay triangulation for performance modeling
and prediction on big data analytics. IEEE Transactions on Big Data,
pages 1–1, 2019.

[5] Y. Chen, J. Lu, C. Chen, M. Hoque, and S. Tarkoma. Cost-effective
resource provisioning for spark workloads. In W. Zhu, D. Tao, X. Cheng,
P. Cui, E. A. Rundensteiner, D. Carmel, Q. He, and J. X. Yu, editors,
CIKM, pages 2477–2480. ACM, 2019.

[6] A. Gounaris, G. Kougka, R. Tous, C. T. Montes, and J. Torres. Dynamic
configuration of partitioning in spark applications. IEEE Trans. Parallel

Distrib. Syst., 28(7):1891–1904, 2017.

[7] G. Li, X. Zhou, and L. Cao. AI meets database: AI4DB and DB4AI.
In SIGMOD, pages 2859–2866, 2021.

[8] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial
intelligence: A survey. In TKDE, 2020.

[9] Á. B. Hernández, M. S. Pérez, S. Gupta, and V. Muntés-Mulero. Using
machine learning to optimize parallelism in big data applications. Future

Gener. Comput. Syst., 86:1076–1092, 2018.

[10] X. Zhou, L. Jin, S. Ji, and et al. Dbmind: A self-driving platform in
opengauss. Proc. VLDB Endow., 14(12):2743–2746, 2021.

[11] H. Herodotou, Y. Chen, and J. Lu. A survey on automatic parameter
tuning for big data processing systems. ACM Comput. Surv., 53(2), Apr.
2020.

[12] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Summarizing source
code using a neural attention model. In ACL. The Association for
Computer Linguistics, 2016.

[13] Z. Jia, C. Xue, G. Chen, J. Zhan, L. Zhang, Y. Lin, and P. Hofstee.
Auto-tuning spark big data workloads on POWER8: prediction-based
dynamic SMT threading. In A. Zaks, B. Mendelson, L. Rauchwerger,
and W. W. Hwu, editors, PACT, pages 387–400. ACM, 2016.

[14] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu. Lightgbm: A highly efficient gradient boosting decision
tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, NIPS, volume 30. Curran
Associates, Inc., 2017.

[15] M. Kunjir and S. Babu. Black or white? how to develop an autotuner for
memory-based analytics. In D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, editors, SIGMOD, pages 1667–1683. ACM,
2020.

[16] A. LeClair, S. Haque, L. Wu, and C. McMillan. Improved code
summarization via a graph neural network. In ICPC, pages 184–195.
ACM, 2020.

[17] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database
tuning system with deep reinforcement learning. Proc. VLDB Endow.,
12(12):2118–2130, Aug. 2019.

[18] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu. Improving
code summarization with block-wise abstract syntax tree splitting.
CoRR, abs/2103.07845, 2021.

[19] K. G. Srinivasa and A. K. Muppalla. Guide to High Performance

Distributed Computing - Case Studies with Hadoop, Scalding and Spark.
Computer Communications and Networks. Springer, 2015.

[20] J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng, P. Zhang, H. Qiao, Y. Shi,
W. Cao, and R. Zhang. Ibtune: Individualized buffer tuning for large-
scale cloud databases. Proc. VLDB Endow., 12(10):1221–1234, June
2019.

[21] X. Zhou, J. Sun, G. Li, and J. Feng. Query performance prediction
for concurrent queries using graph embedding. Proc. VLDB Endow.,
13(9):1416–1428, 2020.

[22] D. Valcarce, A. Bellogı́n, J. Parapar, and P. Castells. On the robustness
and discriminative power of information retrieval metrics for top-n
recommendation. In RecSys ’18, page 260–268, New York, NY, USA,
2018. Association for Computing Machinery.

[23] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database
management system tuning through large-scale machine learning. In
SIGMOD, SIGMOD ’17, page 1009–1024, New York, NY, USA, 2017.
Association for Computing Machinery.

[24] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica.
Ernest: Efficient performance prediction for large-scale advanced an-
alytics. In K. J. Argyraki and R. Isaacs, editors, NSDI, pages 363–378.
USENIX Association, 2016.

[25] G. Wang, J. Xu, and B. He. A novel method for tuning configuration
parameters of spark based on machine learning. In J. Chen and L. T.
Yang, editors, ICDCS, pages 586–593. IEEE Computer Society, 2016.

[26] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz.
Selecting the ¡i¿best¡/i¿ vm across multiple public clouds: A data-driven
performance modeling approach. In SoCC, SoCC ’17, page 452–465,
New York, NY, USA, 2017. Association for Computing Machinery.

[27] Z. Yu, Z. Bei, and X. Qian. Datasize-aware high dimensional configura-
tions auto-tuning of in-memory cluster computing. In X. Shen, J. Tuck,
R. Bianchini, and V. Sarkar, editors, ASPLOS, pages 564–577. ACM,
2018.

[28] N. Zacheilas, S. Maroulis, and V. Kalogeraki. Dione: Profiling spark
applications exploiting graph similarity. In J. Nie, Z. Obradovic,
T. Suzumura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-
Yates, X. Hu, J. Kepner, A. Cuzzocrea, J. Tang, and M. Toyoda, editors,
BigData, pages 389–394. IEEE Computer Society, 2017.

[29] K. Zaouk, F. Song, C. Lyu, A. Sinha, Y. Diao, and P. Shenoy. Udao: A
next-generation unified data analytics optimizer. Proc. VLDB Endow.,
12(12):1934–1937, Aug. 2019.

[30] B. Zhang, D. Van Aken, J. Wang, T. Dai, S. Jiang, J. Lao, S. Sheng,
A. Pavlo, and G. J. Gordon. A demonstration of the ottertune automatic
database management system tuning service. Proc. VLDB Endow.,
11(12):1910–1913, Aug. 2018.

[31] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, M. Ran, and Z. Li. An end-to-end automatic cloud
database tuning system using deep reinforcement learning. In SIGMOD,
page 415–432, New York, NY, USA, 2019. Association for Computing
Machinery.

[32] X. Zhang, H. Wu, Z. Chang, S. Jin, J. Tan, F. Li, T. Zhang, and B. Cui.
Restune: Resource oriented tuning boosted by meta-learning for cloud
databases. In SIGMOD, pages 2102–2114. ACM, 2021.

[33] L. Zheng, V. Noroozi, and P. S. Yu. Joint deep modeling of users and
items using reviews for recommendation. In M. de Rijke, M. Shokouhi,
A. Tomkins, and M. Zhang, editors, WSDM, pages 425–434. ACM,
2017.

[34] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang.
Bestconfig: tapping the performance potential of systems via automatic
configuration tuning. In SoCC, pages 338–350. ACM, 2017.

[35] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with
tree-lstm for join order selection. In 2020 IEEE 36th International

Conference on Data Engineering (ICDE), pages 1297–1308. IEEE,
2020.

[36] G. Li, X. Zhou, S. Ji, X. Yu, Y. Han, L. Jin, W. Li, T. Wang, and S. Li.
opengauss: An autonomous database system. VLDB, 2021.

[37] G. Li, X. Zhou, and L. Cao. Machine learning for databases. Proc.

VLDB Endow., 14(12):3190–3193, 2021.
[38] X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system

using monte carlo tree search. In PVLDB, 2022.
[39] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis.

Skinnerdb: Regret-bounded query evaluation via reinforcement learning.
In SIGMOD, 2019.

[40] X. Zhou, L. Liu, W. Li, and et al. AutoIndex: An Incremental Index
Management System for Dynamic Workloads. In ICDE, 2022.

[41] H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with
deep learning and reinforcement learning. In ICDE, 2020.

[42] J. Sun and G. Li. An end-to-end learning-based cost estimator. VLDB,
2019.

[43] G. Li, X. Zhou, and S. Li. Xuanyuan: An ai-native database. IEEE Data
Eng. Bull., 42(2):70–81, 2019.

