
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 35 (2010) 186–203
0306-43

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/infosys
Finding and ranking compact connected trees for effective keyword
proximity search in XML documents
Jianhua Feng, Guoliang Li �, Jianyong Wang, Lizhu Zhou

Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University,

Beijing 10084, China
a r t i c l e i n f o

Article history:

Received 3 April 2008

Received in revised form

20 April 2009

Accepted 31 May 2009

Recommended by: D. Suciu

Keywords:

Lowest common ancestor (LCA)

Compact LCA (CLCA)

Maximal CLCA (MCLCA)

Compact connected trees (CCTrees)

Maximal CCTrees (MCCTrees)
79/$ - see front matter & 2009 Elsevier B.V. A

016/j.is.2009.05.004

responding author.

ail address: liguoliang@tsinghua.edu.cn (G. Li
a b s t r a c t

In this paper, we study the problem of keyword proximity search in XML documents. We

take the disjunctive semantics among the keywords into consideration and find top-k

relevant compact connected trees (CCTrees) as the answers of keyword proximity

queries. We first introduce the notions of compact lowest common ancestor (CLCA) and

maximal CLCA (MCLCA), and then propose compact connected trees and maximal CCTrees

(MCCTrees) to efficiently and effectively answer keyword proximity queries. We give the

theoretical upper bounds of the numbers of CLCAs, MCLCAs, CCTrees and MCCTrees,

respectively. We devise an efficient algorithm to generate all MCCTrees, and propose a

ranking mechanism to rank MCCTrees. Our extensive experimental study shows that our

method achieves both high efficiency and effectiveness, and outperforms existing state-

of-the-art approaches significantly.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Traditional query processing approaches in XML docu-
ments are constrained by the query constructs imposed by
query languages such as XPath and XQuery. Firstly, these
query languages are hard to comprehend for non-database
users. For example, the XQuery is fairly complicated to
grasp. Secondly, these languages require the queries to be
posed against the underlying, sometimes complex, data-
base schemas. These traditional querying methods are
powerful but unfriendly to non-expert users. Fortunately,
keyword search is proposed as an alternative means for
querying XML databases, which is simple and yet familiar
to most internet users as it only requires the input of
keywords. Keyword search is a proven and widely
accepted mechanism for querying in textual document
systems and World Wide Web. Database research com-
munity has recently recognized the benefits of keyword
ll rights reserved.

).
search and has been introducing keyword search cap-
ability into relational databases [1,4,7,12,14,17,27,30,21],
XML databases [2,3,6,9,13,15,18,19,24–26,28,31,32,37,38],
graph databases [11,16], and heterogenous data sources
[20,22].

Given an XML document and a keyword query,
although the whole XML document could be taken as
the answer of the keyword query if it contains all input
keywords, it may be too large and frustrate users. For
example, to search for interested references from the DBLP
dataset, users are usually interested in a portion of the
XML document that is relevant to the query, as opposed to
the whole document which is more than 470 MB.

To address this problem, the notion of lowest common

ancestor (LCA) has been introduced to answer keyword
queries in XML documents [9]. Existing methods [6,9,37]
first compute LCAs (or their variants) of nodes that contain
input keywords and then construct the subtrees rooted at
LCAs to answer keyword queries. Most of existing ap-
proaches consider the conjunctive semantics (AND) among
the input keywords. When there are few answers that
contain all input keywords, they lead to ineffectiveness. It is

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.05.004
mailto:liguoliang@tsinghua.edu.cn

ARTICLE IN PRESS

n2

n3 n6

n4 n5

k1 k2

n7 n10

n8 n9

k1 k3

n11 n12

k2 k4

n0

n18

k4

n22

n23 n24

n19

n20 n21

k2 k4k1 k3

n13

n15n14

n16 n17

k1 k2

k4

n1

n2

n3 n6

n4 n5

k1 k2

n7 n10

n8 n9

k1 k3

n11 n12

k2 k4

n0

n18

k4

n22

n23 n24

n19

n20 n21

k2 k4k1 k3

n13

n15n14

n16 n17

k1 k2

k4

n1

T1

T2

T3

T4

T5

T6

T2

Fig. 1. An example of keyword search in XML documents. (a) Existing method. (b) Our method.

J. Feng et al. / Information Systems 35 (2010) 186–203 187
not straightforward to extend existing semantics to support
disjunctive semantics (OR). Moreover, existing search
semantics cannot find the most relevant subtrees to answer
keyword queries. For example, consider the XML document
in Fig. 1. Suppose a user types in a query ‘‘k1; k2; k3; k4’’.
Existing methods [9] identify the two subtrees rooted at n0

and n6 as the answers (Fig. 1(a)). Note that T1 contains large
numbers of nodes, and most of nodes in the subtree are
irrelevant as they have large distances. To address this
problem, we propose a new search semantics of compact

lowest common ancestor (CLCA) to effectively answer key-
word proximity queries. We identify the most relevant
compact connected trees (CCTrees) rooted at CLCAs as
answers. In this example, we identify five compact con-
nected trees as the answers (Fig. 1(b)).

In this paper, we propose a new search semantics to
answer keyword queries in XML documents. We identify
compact connected trees as answers. We devise a new
ranking mechanism by considering the structural com-
pactness of tree-structure answers for returning the most
relevant ones with the highest ranks. To summarize, we
make the following contributions:
�
 We introduce a new search semantics of compact

lowest common ancestor to answers keyword queries in
XML documents. We find compact connected trees
rooted at CLCAs as the answers.

�
 We devise an efficient algorithm to adaptively generate

CCTrees. We give the theoretical minimum upper
bounds of the numbers of CLCAs and CCTrees,
respectively.

�
 We propose an effective ranking mechanism to rank

CCTrees for returning the most relevant ones with the
highest ranks.

�
 We have conducted an extensive performance study using

real datasets and various queries with different character-
istics. The results show that our method achieves both
high efficiency and effectiveness, and outperforms existing
state-of-the-art approaches significantly.

The rest of this paper is organized as follows. We
introduce a new semantics to answer keyword queries
in Section 2. Section 3 proposes an efficient algorithm to
generate CCTrees and Section 4 gives a new ranking
mechanism. Extensive experimental evaluations are pro-
vided in Section 5. We review the existing studies in
Section 6 and conclude the paper with Section 7.

2. Compact connected trees

In this section, we propose a new keyword search
method for XML documents in terms of the disjunctive
semantics. We first introduce a new search semantics to
answer keyword proximity queries (Section 2.2) and give
the theoretical upper bounds of the number of answers
(Section 2.3). Then, we introduce how to compute relevant
answers based on our semantics (Section 2.4).

2.1. Notations

An XML document can be modeled as a rooted, ordered
and labeled tree. Nodes in this rooted tree correspond to
elements in the XML document. For any two nodes u and
v, u � v (u � v) denotes that node u is an ancestor
(descendant) of node v. u � v denotes that u � v or
u ¼ v. Given a keyword query K ¼ fk1; k2; . . . ; kmg and
an XML document D, we use Ii to denote the list of nodes
that contain ki. We call each node in Ii a content node. Ii

can be retrieved by using the well-known inverted
indices. For example, consider the XML document in
Fig. 1, we have Ik1

¼ fn4;n8;n16;n20g.

2.2. Compact lowest common ancestor

Existing methods [6] employed LCA semantics to
answer XML keyword queries. We first review the concept
of lowest common ancestor.

Definition 2.1 (Lowest common ancestor). Given m nodes,
n1;n2; . . . ;nm, ca is a common ancestor of these m nodes, if
ca is an ancestor of each node ni for 1 � i � m. lca is the
lowest common ancestor of these m nodes, denoted as
lca ¼ LCAðn1;n2; . . . ;nmÞ, if lca is a common ancestor of

ARTICLE IN PRESS

J. Feng et al. / Information Systems 35 (2010) 186–203188
the m nodes and there does not exist a common ancestor
of these m nodes, u, and lca � u.

LCA based methods have two drawbacks: (1) LCA is not
meaningful enough to answer keyword queries. For
example, in Fig. 1, although n2 is the LCA of n4 and n17,
it is not as meaningful as the subtree of nodes fn3;n4;n5g

and the subtree of nodes {n15;n16;n17} to answer the
query. As the nodes in the latter two subtrees are much
more related than nodes {n2;n4;n17}; (2) The subtree
rooted at LCA is not compact enough to answer a query.
For example, consider the XML document in Fig. 1.
Suppose a user types in a query ‘‘k1; k2; k3; k4’’. Existing
methods [9] identify the two subtrees rooted at n0 and n6

as the answers (Fig. 1(a)). Note that T1 contains large
numbers of nodes, and most of nodes in the subtree
are irrelevant as they have large distances. To address
these problems, we introduce a more meaningful concept.

Definition 2.2 (Compact lowest common ancestor). Given
q content nodes, v1 2 I1, v2 2I2; . . . ;vq 2 Iq. w ¼

LCAðv1;v2; . . . ;vqÞ is said to dominate vi w.r.t.
{k1; k2; . . . ; kq}, if w � LCAðv01; . . . ;v

0
i�1, vi;v

0
iþ1; . . . ;v

0
qÞ,8

v01 2 I1, v02 2 I2; . . . ;v
0
i�1 2 Ii�1, v0iþ1 2Iiþ1; . . . ;v

0
q 2 Iq.

w is a CLCA w.r.t. {k1; k2; . . . ; kq}, if w dominates each vi for
1 � i � q.

A CLCA is a non-trivial LCA, which is the lowest
common ancestor of more relevant nodes, while the
irrelevant nodes cannot share a CLCA. For example, recall
the above example. For query {k1; k2}, n3 dominates n4 and
n5, and n15 dominates n16 and n17. Thus n3 and n15 are
CLCAs. However, n2 does not dominate n4 and n17, as n5 is
much more related to n4 than n17, and n16 is much more
related to n17 than n4. In the other words, the most related
nodes are dominated by the same CLCA, while the
irrelevant nodes are not.

CLCA is different from SLCA [37]. A LCA is a SLCA if it
has no LCA descendants. For example, in Fig. 1, n0 and n6

are both CLCAs w.r.t. {k1; k2; k3; k4}, and they dominate
{n20;n21;n23;n24} and {n8;n9;n11;n12}, respectively. n0 is
not a SLCA as n0 has a LCA descendant n6, hence n0

is a false negative for SLCA. Moreover, the false negative
problem is not an ad hoc problem but ubiquitous over
the XML documents with nested structures. CLCA can
avoid those false negatives and thus is a more meaningful
methodology to answer keyword queries. Furthermore,
we give the minimum upper bound of the number of
CLCAs in terms of the conjunctive semantics, i.e.,
minðjI1j; jI2j; . . . ; jImjÞ, as formalized in Lemma 2.1,
which is much smaller than the number of LCAs.

Lemma 2.1. There are at most minðjI1j; jI2j; . . . ; jImjÞ

CLCAs w.r.t. a keyword query K ¼ ðk1; k2; . . . ; kmÞ for the

conjunctive semantics.

Proof. For each content node n 2 Ii ð1 � i � mÞ, there is
at most one clca that dominates n in terms of
conjunctive semantics. Accordingly, the number of CLCAs
is no more than the size of the minimal keyword list,
which contains the fewest content nodes. &
Most of existing studies assume the conjunctive
semantics (AND) among input keywords, however, it will
lead to low effectiveness if there are only a few results
that contain all keywords. Especially, when considering
keyword proximity search which returns the top-k

answers, we had better rank all relevant answers, even if
some answers do not contain all keywords, and then
return the top-k answers with the highest ranks. In this
paper, we investigate keyword search in XML documents
with disjunctive semantics (OR). In the rest of this paper,
we refer to keyword search as keyword proximity search
with disjunctive semantics. Here we give the upper bound
of the number of CLCAs.

Lemma 2.2. Suppose jI1j � jI2j � 	 	 	 � jImj. There are at

most
Pm

i¼12m�i
jIij CLCAs for K ¼ ðk1; k2; . . . ; kmÞ in con-

sidering the disjunctive semantics.

Proof. Let CLCASeti
dis denote the set of all the CLCAs,

which dominate exactly i content nodes in i different
keyword lists, we have,

jCLCASeti
disj � Ci�1

m�1jI1j þ Ci�1
m�2jI2j

þ 	 	 	 þ Ci�1
m�ðm�iþ1ÞjIm�iþ1j

¼
Xm�iþ1

j¼1

Ci�1
m�jjIjj,

where Ci�1
m�j is the number of combinations that we do not

select keywords k1; k2; . . . ; kj�1, but select kj and other
i� 1 keywords from {kjþ1; kjþ1; . . . ; km}. In this case, there
are at most jIjj CLCAs for each of these combinations. We
give the theoretical upper bound of the number of CLCAs,

jCLCASetdisj �
Xm

i¼1

jCLCASeti
disj �

Xm

i¼1

Xm�iþ1

j¼1

Ci�1
m�jjIjj

¼
Xm

i¼1

Xm

j¼1

Cj
m�ijIij ¼

Xm

i¼1

2m�i
jIij: &

As the number of keywords in K (m) is usually very
small, the number of CLCAs is proportional to the number
of content nodes.
2.3. Compact global tree

To derive the minimum upper bound of the number of
CLCAs, we introduce another notion, compact global tree,
which will also be used to generate compact connect trees
to answer keyword queries in Section 2.4.

As discussed in Section 2.1, we model XML documents
as tree structures. Given two subtrees of an XML
document, T1hr;V1; E1i and T2hr;V2; E2i, where r is the
root, V1 and V2 are the node sets, and E1 and E2 are the
edge sets of T1 and T2, respectively. Thr;V ; Ei is the joined
tree of T1 and T2, where V ¼ V1 [V2 and E ¼ E1 [E2.
Given a keyword query K ¼ fk1; k2; . . . ; km} and an XML
document. Let r be the LCA of all content nodes in each Ii.
The tree rooted at r and containing the nodes and edges in
the path from r to vij 2 Ii for 1 � i � m is called a global
tree. Nodes in the global tree except the content nodes are
called structural nodes. The structural nodes that have

ARTICLE IN PRESS

n2

n3 n6

n4

k1

n7 n10

n8 n9

k1 k3

n12

k4

n0

n18

k4

n22

n24

n19

n20 n21

k4k1 k3

n13

n15n14

n16

k1

k4

n1

n2

n3 n6

n4 n5

k1 k2

n7
n10

n8
n9

k1 k3

n11 n12

k2 k4

n0

n18

k4

n22

n23 n24

n19

n20 n21

k2 k4k1 k3

n13

n15n14

n16 n17

k1 k2

k4

n1

n2

n6

n4

k1

n7

n8 n9

k1 k3

n12

k4

n0

n18

k4

n24

n19

n20 n21

k4k1 k3

n13

n14

n16

k1

k4

n1

Fig. 2. An XML document and its global tree and CGTree. (a) is an XML document, (b) is the global tree for K ¼ fk1 ; k3; k4}, and (c) is the CGTree.

J. Feng et al. / Information Systems 35 (2010) 186–203 189
more than one child are called branch nodes, and those
having only one child are called linked nodes. Fig. 2
illustrates an example.

Lemma 2.3. Given a query K and an XML document D,
Ghr;V ; Ei is the global tree w.r.t. K and D, where

V ¼ B [C [L, B is the branch node set, C is the content

node set, and L is the linked node set. Each CLCA clca is

either a branch node or a content node in G, i.e.,
clca 2 B [C.

Proof. Firstly, we prove that clca 2 V . Since all LCAs of
content nodes must be in V and clca is also a non-trivial
LCA, and thus clca 2 V . Secondly, we prove that clcaaL

by contradiction. Suppose clca 2 L. As each node in L has
only one child based on the definition of linked nodes,
clca has only one child. Without loss of generality,
suppose c is the child of clca, c will dominate those nodes
which are also dominated by clca, hence clca cannot be
a CLCA. This contradicts that clca is a CLCA. Hence, we
have clcaeL and clca 2 B [C. &

The global tree is a subtree of the XML document, which
contains all the content nodes and their ancestors but
without other irrelevant nodes. More importantly, the
global tree is easier to be manipulated than the whole
XML document. Furthermore, CLCAs must be the branch
nodes or content nodes in the global tree, and Lemma 2.3
guarantees the correctness. As CLCAs in the global tree
cannot be linked nodes, here we introduce a more
compact form of the global tree by eliminating the linked
nodes.

Definition 2.3 (Compact global tree). Given a global tree,
Ghr;V ; Ei, CGhr0;V 0; E0i ¼ jðGÞ is called a compact global
tree, if mapping function j satisfies the following
conditions:
(i)
 r0 ¼ jðrÞ ¼ r;
1

(ii)
If the keywords in a keyword query are labels/tags of some nodes

in D, these nodes may be non-leaf content nodes in CG.
2 Some content nodes may appear in different keyword lists. For
V 0 ¼ jðVÞ ¼ B [C, where V ¼ B [C [L, B is the
branch node set, C is the content node set, and L is
the linked node set in G; and
example, a node, which directly contains both ki and kj , must appear in
(iii)

both Ii and Ij .
E0 ¼ jðEÞ ¼ fða; dÞja; d 2 B [C, a � d and)v 2 B [C,
a � v � d}.
As the compact global tree is constructed by eliminat-
ing the linked nodes from the global tree, it is more
compact and meaningful than the global tree. We will
introduce how to answer keyword queries on this tree
later. Here, based on the CGTree, we give the minimum
upper bound of the number of all CLCAs as formalized in
Lemma 2.4.

Lemma 2.4. There are at most 2

Pm

i¼1jIij � 1 CLCAs for

a keyword query K ¼ ðk1; k2; . . . ; kmÞ and an XML

document D.

Proof. We prove it by constructing the CGTree. Suppose
CG is the CGTree w.r.t. K and D. Let nCLCA denote the
number of CLCAs, nl denote the number of leaf nodes, nb

denote the number of branch nodes, nc denote the number
of content nodes and nnlc denote the number of the non-
leaf content nodes in CG, that is, the content nodes which
are not leaf nodes in CG.1 It is obvious that nc ¼ nl þ nnlc

and nc �
Pm

i¼1jIij.
2 In addition, we have proved that

all the CLCAs must be in CG (Lemma 2.3), thus
nCLCA � nc þ nb.

As the out-degree of each branch node in CG is no

smaller than two and that of each non-leaf content node is

at least one, no � 2
 nb þ nnlc , where no is the total out-

degree of all the nodes in CG. On the other hand, the in-

degree of each node is one (except the root), thus

ni ¼ nb þ nl þ nnlc � 1, where ni is the total in-degree of

all the nodes. It is obvious that the total in-degree is the

same as the total out-degree, i.e., ni ¼ no. Hence,

nb þ nl þ nnlc � 1 � 2
 nb þ nnlc , and nb � nl � 1. Thus,

nCLCA � nc þ nb � nc þ nl � 1 � 2
 nc � 1 � 2
Pm

i¼1jIij � 1.

We can give a query and an XML document, and the

number of CLCAs w.r.t. the keyword query and the XML

document is exactly 2

Pm

i¼1jIij � 1. As illustrated in

Fig. 3, there are 2
m� 2 content nodes and 2
m� 3

ARTICLE IN PRESS

nm-2

nm-1 nm

k1 k2

nm-3

nm+1

nm+2 nm+3

k1 k3

nm+4

nm+5 nm+6

k1 k4

n4m-8

n4m-7 n4m-6

k1 km

.

.

n0

nm-4

Fig. 3. An example with the minimum upper bound of CLCAs.

n0

n1 n4

n2 n3

k1 k2

n5 n8

n6 n7

k1 k2

n9 n10

k1 k3

Fig. 4. A CCTree rooted at n4 by joining two cover trees.

J. Feng et al. / Information Systems 35 (2010) 186–203190
branch nodes. It is easy to figure out that all of these

4
m� 5 nodes are CLCAs. &

To summarize, we can merge the content nodes to
construct the global tree, and then generate the CGTree by
eliminating the linked nodes. More importantly, we
present Lemma 2.5 to check whether each node in the
CGTree is a CLCA. We can retrieve all CLCAs through one
traversal of the CGTree.

Lemma 2.5. For any node u in the CGTree CG, let CKðuÞ

denote the set of all the distinct keywords contained in the

subtree rooted at u. u must be a CLCA, if it satisfies
(i)
 u is a content node; or
(ii)
 9ci; cj 2 childrenðuÞ, CKðciÞD/ CKðcjÞ and CKðcjÞD/ CKðciÞ.
Proof. (i) is obvious as u dominates itself. We here mainly
prove (ii). If u is not a content node, it must be a branch
node and has at least two children. Without loss of
generality, suppose ki 2 CKðciÞ and kieCKðcjÞ, while kj 2

CKðcjÞ and kjeCKðciÞ. Let ni and nj denote the nodes that
contain ki and kj in the subtrees rooted at ci and cj,
respectively. Neither ci nor cj contains both ki and kj, and u

is the LCA of ni and nj. Thus u dominates both ni and nj

w.r.t. {ki; kj}. Hence, u must be a CLCA. &

We propose Lemma 2.6 to guarantee that CLCA always
exists, thus we can always find answers using CLCA
semantics.

Lemma 2.6. If node lca is a LCA, there must exist a

corresponding CLCA in the subtree rooted at lca.

Proof. First, if any child of lca cannot contain all
keywords, lca must satisfy condition (ii) of Lemma 2.5
and thus lca is a CLCA. Second, after removing the
children of lca which contain all keywords, if lca still
contains all keywords, lca must be a CLCA as it satisfies
condition (ii) of Lemma 2.5. On the contrary, if lca does
not satisfy the above two conditions, there must exist a
descendant of lca, u, which contains all keywords and
any child of u cannot contain all keywords. Thus u must be
a CLCA according to Lemma 2.5. &

Example 2.1. In Fig. 2, suppose answering query K ¼
fk1; k3; k4g in the XML document in (a), we can construct
the global tree as illustrated in (b). However, the four
linked nodes in (b), n3;n10;n15; and n22, are less mean-
ingful than other nodes. We construct the corresponding
compact global tree by eliminating these four linked
nodes as illustrated in (c). It is obvious that all CLCAs w.r.t.
K and the document in (a) are in (c). More importantly,
we can check whether each node in the CGTree in (c) is a
CLCA as follows. n0 has three children, n1, n19 and n24.
CKðn1Þ ¼ fk1; k3; k4g, CKðn19Þ ¼ fk1; k3g, CKðn24Þ ¼ fk4g. As
CKðn19ÞD/ CKðn24Þ, CKðn24ÞD/ CKðn19Þ, n0 is a CLCA based on
Lemma 2.5. n1 has two children, n2 and n18, and
CKðn18Þ ¼ fk4g � CKðn2Þ ¼ fk1; k3; k4g, thus n1 is not a
CLCA. Similarly, we deduce that all nodes except n1 and
n2 in (c) are CLCAs based on Lemma 2.5.

2.4. Compact connected trees

We present the notion of compact connected tree to
answer keyword queries in this section. We first introduce
the concept of cover tree, which is rooted at a CLCA and
contains the content nodes dominated by this CLCA. Given
q nodes, v1 2 I1;v2 2 I2; . . . ;vq 2 Iq, and suppose
r ¼ CLCAðv1;v2; . . . ;vqÞ. The tree rooted at r and containing
all the nodes and edges on the path from r to vi is called a
cover tree. Cover trees contain content nodes and their
corresponding CLCAs and can describe how the content
nodes are connected. Most of existing proposals [13] take
cover trees as the answers. However, cover trees are not
compact and meaningful enough to answer keyword
queries. For example, in Fig. 4, as n4 dominates n6, n7,
and n10 for {k1,k2,k3}, n4 is the CLCA of these three nodes.
The subtree composed of n4, n5, n6, n7, n8, and n10 is a
cover tree. The subtree composed of n4, n5, n7, n8, n9, and
n10 is also a cover tree. Note that the two cover trees
contain duplicates n4, n5, n7, n8, and n10. It is evident that
the tree rooted at n4 should be more meaningful to
answer {k1,k2,k3}. Hence, we introduce the concept of
compact connected tree as follows.

Definition 2.4 (Compact connected tree). Givena CLCA
clca and its cover trees CT1;CT2; . . . ;CTq rooted at clca.
The tree by joining the cover trees is called the compact
connected tree w.r.t. clca.

A CCTree is the subtree of the joined result of all cover
trees with the same root. As cover trees sharing the same
root contain duplicate nodes and the CCTree eliminates
such duplicate nodes, CCTree is more meaningful and

ARTICLE IN PRESS

J. Feng et al. / Information Systems 35 (2010) 186–203 191
compact in answering keyword queries. It is evident that
the result set of a single CCTree is more compact than a
result set of multiple overlapped cover trees. For example,
in Fig. 4, the tree rooted at n4 is a CCTree.

Given a CLCA, we propose Lemma 2.7 to construct the
CCTree rooted at it from the CGTree. More importantly, we
can enumerate all CCTrees through one traversal of a
given CGTree based on Lemmas 2.5 and 2.7. We take these
CCTrees as the answers of keyword proximity queries. For
example, in Fig. 4, for n0, CKðn1Þ � CKðn4Þ, thus n0 is not a
CLCA. For n4, jCKðn4Þj ¼ 3, jCKðn5Þj ¼ jCKðn8Þj ¼ 2, thus n4

dominates the content nodes that are dominated by n5

and n8. Hence, the CCTree rooted at n4 is exactly the
subtree rooted at n4.

Lemma 2.7. Given a CGTree G and a CLCA clcawith q

children, c1; c2; . . . ; cq, sorted by jCKðciÞj in descending order.

Let T denote the tree rooted at clca, ti denote the tree rooted

at ci, and 81 � i � q, Ti ¼ Ti�1 � tiðT0 ¼ TÞ. Tmax is exactly the

CCTree rooted at clca, if 9maxð0 �max � qÞ, which satisfies
(i)
 8j;0oj �max; jCKðtjÞj ¼ jCKðTj�1Þj; and
(ii)
 jCKðTmaxÞjajCKðtmaxþ1Þjðtqþ1 ¼ fÞ,
where CKðTjÞðCKðtjÞÞ denote the sets of keywords contained

in TjðtjÞ.

Proof. If jCKðtjÞj ¼ jCKðTj�1Þj, clca will not dominate any
content node in subtree tj, thus tj can be eliminated from
Tj�1. On the contrary, if jCKðTmaxÞjajCKðtmaxþ1Þj, it is easy
to figure out that clca must dominate all the content
nodes in Tmax. Consequently, Tmax is exactly the CCTree
rooted at clca. &

We observe that some CCTrees may be subtrees of other
CCTrees. Given two CLCAs, u and v, suppose u is a
descendant of v, the CCTree rooted at u must be a subtree
of the CCTree rooted at v. For example, in Fig. 4, n5 and n4

are two CLCAs and n5 is a descendant of n4. It is obvious that
the CCTree rooted at n5, CCTreen5

, is a subtree of CCTreen4

(the CCTree rooted at n4). Moreover, CCTreen4
contains more

keywords (e.g., k3) than CCTreen5
. Hence, CCTreen4

is more
meaningful than CCTreen5

to answer query {k1; k2; k3}.
Generally, if there are many CCTrees, it is better to retrieve
CCTrees that are not subtrees of other CCTrees as the
answers. We will introduce the notion of maximal CCTree

(MCCTree) to address this issue in Section 2.5.

2.5. Maximal CLCA and maximal CCTree
Definition 2.5 (Maximal CCTree). Given a query
K ¼ fk1; k2; . . . ; km} and Ki ¼ fki1 ; ki2 ; . . . ; kiq g �K. Sup-
pose w ¼ CLCAðvi1 ;vi2 ; . . . ;viq Þ, where vij 2 Ikij

ð1 � j � qÞ.
w is called a maximal CLCA, if 8k0 2 ðK�KiÞ and
v0k 2 Ik0 ,)w

0, which dominates both v0k and each vij for
1 � j � q. The CCTree rooted at a maximal CLCA (MCLCA)
is called a maximal CCTree.

A maximal CLCA is a non-trivial CLCA, which has no
ancestors that still dominate some other content nodes
besides the content nodes dominated by the MCLCA. There-
fore, an MCLCA dominates a maximal set of content nodes
and is more meaningful than a CLCA. In addition, a maximal
CCTree is the CCTree rooted at an MCLCA and contains more
keywords than any CCTree which is one of its subtrees. For
example, in Fig. 4, the subtrees rooted at n1 and n4 are two
MCCTrees w.r.t. the keyword query {k1,k2,k3}. While the
subtrees rooted at n5 and n8 are not MCCTrees but only
CCTrees. More importantly, all the CLCAs must be descen-
dants of certain MCLCAs, while all the CCTrees must be
subtrees of certain MCCTrees, and Lemma 2.8 guarantees the
correctness. Therefore, once all the MCLCAs and MCCTrees
have been obtained, we can retrieve other CLCAs by checking
whether the descendants of those MCLCAs are CLCAs, and
other CCTrees by checking whether the roots of the subtrees
of those MCCTrees are CLCAs. Note that the number of CLCAs
is the same as that of CCTrees while the number of MCLCAs is
the same as that of MCCTrees, and they are proportional to
the sum of the sizes of keyword lists.

Lemma 2.8. Given a keyword query K and an XML

document D. Suppose CLCASet is the set of all the CLCAs,
MCLCASet is the set of all the MCLCAs, MCCTreeSet is the set

of all the MCCTrees, and CCTreeSet is the set of all the CCTrees

w.r.t. K and D. We have the following properties:
(i)
 MCLCASet � CLCASet and MCCTreeSet � CCTreeSet.

(ii)
 8u 2 CLCASet, 9v 2 MCLCASet, v � u ðv is an ancestor

(or self) of u).

(iii)
 8Tc 2 CCTreeSet, 9Tm 2MCCTreeSet, Tc is a subtree of Tm.
Proof. (i), (ii), and (iii) can be derived according to the
definitions of maximal CLCA and maximal CCTree. &

Moreover the number of MCLCAs is no more than the
number of all content nodes. Lemma 2.9 gives a more
accurate bound of the number of MCLCAs.

Lemma 2.9. There are at most
Pm

i¼1jIij MCLCAs (or

MCCTrees) w.r.t. a keyword query K ¼ ðk1; k2; . . . ; kmÞ.

Proof. It is obvious that each content node is at most
dominated by one MCLCA, thus the number of MCLCAs is
no more than the number of all the content nodes, i.e.,Pm

i¼1jIij. &

To generate the MCCTrees, we need to check whether
each node in the CGTree is an MCLCA, and if the node is an
MCLCA, we retrieve the MCCTree rooted at it according to
Lemma 2.7. Moreover, we introduce Lemma 2.10 to check
whether a CLCA is an MCLCA. For any CLCA, clca, if it is
the root of the CGTree, it must be an MCLCA; otherwise,
we check if there is an ancestor of clca, which still
dominates some other content nodes besides the content
nodes in the CCTree rooted at clca. If so, clca cannot be
an MCLCA. On the contrary, clca must be an MCLCA.

Lemma 2.10. A CLCA u is an MCLCA if it satisfies (1) u is the

root; or (2) the following conditions hold:
(i)
 8a � u, CKðaÞ ¼
S

ci2childrenðaÞCKðciÞ; and
(ii)
 8a � u,)s, a sibling of a, CKðsÞD/ CKðaÞ and CKðaÞD/
CKðsÞ.

ARTICLE IN PRESS

J. Feng et al. / Information Systems 35 (2010) 186–203192
Proof. (1) is obvious. We here mainly prove (2). (i)
guarantees that, for any ancestor of u, a, even if a is a
content node, the keywords associated with a must be
contained by one of its children; while (ii) guarantees that,
for any ancestor (or self) of u, its parent cannot dominate
both the content nodes dominated by itself and the
content nodes dominated by its siblings, thus u dominates
a maximal set of content nodes. Hence u must be an
MCLCA. &

Example 2.2. In Fig. 1, as CKðn19Þ ¼ fk1; k3gD/ CKðn22Þ ¼

fk2; k4} and CKðn22ÞD/ CKðn19Þ, n0 is a CLCA. As n0 is the
root, n0 is an MCLCA. For n6, it is a CLCA and its ancestors
n0, n1 and n2 cannot dominate the content nodes that are
dominated by n6, thus n6 is an MCLCA. For n7,
CKðn7ÞD/ CKðn10Þ and CKðn10ÞD/ CKðn7Þ, thus n7 is not an
MCLCA as its parent n6 contains more keywords than n7

and n10. As jCKðTn0
Þj ¼ jCKðTn1

Þj, the subtree rooted at n1

does not belong to the MCCTree rooted at n0 (denoted as
MCCTreen0

). As jCKðTn0
� Tn1

ÞjajCKðTn19
Þj, MCCTreen0

is
exactly Tn0

� Tn1
. Accordingly, we can generate all the

MCCTrees, i.e., the five circled subtrees as illustrated in
Fig. 1.

In summary, when computing the top-k answers, we
first generate the MCCTrees as follows. We check whether
each node in a given CGTree is a CLCA or MCLCA according
to Lemmas 2.5 and 2.10. If the node is an MCLCA,
we retrieve the MCCTree rooted at it as formalized in
Lemma 2.7. If the number of MCCTrees is smaller than k,
we retrieve other CCTrees that are subtrees of certain
MCCTrees as stated in Lemma 2.8. Moreover, the CCTrees
can be generated through one traversal of MCCTrees.
Finally, we rank MCCTrees (or CCTrees) to return the top-k

answers with the highest ranks.

3. Algorithms

We propose two algorithms CGTreeGenerator and
MCCTreesGenerator to construct the CGTree and gen-
erate the corresponding MCCTrees, respectively.

3.1. CGTreeGenerator

To construct the CGTree, there is a straightforward
way: we first compute the LCA of all content nodes in each
Ii, denoted as lca, and then for each node nij 2 Ii,
enumerate each path tree Tij , which is rooted at lca and
contains the nodes and edges from lca to nij . Subse-
quently, we join each Tij to generate the global tree.
Finally, we construct the CGTree by eliminating the linked
nodes from the global tree. However, this straightforward
method is inefficient, because it involves two steps: one is
to generate the global tree and the other is a postproces-
sing to eliminate the linked nodes.

There is an alternative way to construct the CGTree
iteratively: for any structural node, u, if u has only one
subtree that only contains content nodes and branch
nodes, u must be a linked node. This subtree is taken as a
subtree of the parent of u; otherwise, u must be a branch
node. A super-tree rooted at u and containing all of its
subtrees is constructed. This super-tree is taken as a
subtree of the parent of u. Iteratively, we can construct the
CGTree. We propose an efficient algorithm to construct
the CGTree without postprocessing.

To efficiently construct the CGTree, we maintain a set
of nodes in a stack S. Each node in S is the child of the
node directly below it. Each node in the stack keeps all of
its subtrees rooted at its descendants and having been
already constructed. Moreover, when merging a content
node into a subtree, we visit content nodes in document
order. That is, we always select the minimal node nmin,
which precedes all other nodes. While the topmost node
of S is not an ancestor of nmin, we pop it from S;
otherwise, we push nmin and its ancestors into the stack.
When popping a node n from S, we check if n contains
only one subtree and is not a content node. If so, n must
be a linked node and we transfer the subtree associated
with n to the parent of n (i.e., the node below n);
otherwise, we construct the super-tree that is rooted
at n and contains all subtrees associated with n, and
transfer this super-tree to the parent of n. We repeat these
steps until all content nodes are merged into a subtree.
The final super-tree is exactly the CGTree. Note that our
algorithm is different from PathStack algorithm [5].
PathStack identifies all subtrees for an XPath query while
our algorithm finds a CGTree that contains all input
keywords.

Dewey numbers [29,36] provide a straightforward
solution to locate the LCAs, and prior work [37] has
shown that employing Dewey numbers is a good choice
for keyword search in XML documents. We also employ
Dewey numbers to encode XML elements for improving
the efficiency of constructing the CGTree. We present an
algorithm CGTreeGenerator (Fig. 5). CGTreeGenerator
first retrieves the keyword lists (line 3), and then while
either S or Ii is not empty, selects the minimal node nmin

that has the minimal Dewey number among those of the
first nodes in each current Ii (lines 5–6), pops it from
Imin (line 7), and subsequently merges it into a subtree.
While the top node of S (denoted as nÞ is not an ancestor
of nmin, CGTreeGenerator pops n from S (line 9) and
merges the subtrees associated with n to construct a
super-tree (lines 10–15). Especially, if n is not a content
node and has only one subtree, it must be a linked node,
thus the subtree associated with it is exactly a subtree of
its parent (lines 10–11); otherwise, CGTreeGenerator
constructs a super-tree rooted at n and containing all of its
subtrees (lines 12–15). Subsequently, CGTreeGenerator
transfers the current subtree to the top node of S (line
16). On the other hand, if nmin is a descendant of n,
CGTreeGenerator pushes nmin and its ancestors into S,
and takes nmin itself as the subtree associated with the top
node of S (lines 17–18). Finally, CGTreeGenerator

returns the compact global tree, CGTree (line 19).
Theorem 1 guarantees the correctness of this algorithm
and gives the complexity.

Theorem 1. CGTreeGenerator constructs the CGTree

correctly. Its complexity is Oðd
 log m

Pm

i¼1jIijÞ, where d

is the depth of the XML document and m is the number of

keywords.

ARTICLE IN PRESS

Fig. 5. CGTreeGenerator algorithm.

J. Feng et al. / Information Systems 35 (2010) 186–203 193
Proof. It is easy to figure out that CGTreeGenerator can
construct the CGTree correctly, and we here mainly prove
the complexity. Firstly, the algorithm needs to select the
minimal node, and the complexity is O(log m) through
constructing a selection tree. Secondly, for each node in
the keyword lists, the algorithm needs to push it into the
stack and pop the nodeswhich are not its ancestors from
the stack, and the complexity is O(d). Subsequently,
CGTreeGenerator merges all the content nodes to
construct the CGTree. Hence the total complexity is
Oðd
 log m

Pm
i¼1jIijÞ. &

To further illustrate how the algorithm works, we walk
through our algorithm with a running example as shown
in Example 3.1.

Example 3.1. In Fig. 6, suppose constructing the CGTree
on query {k1,k3,k4}, the keyword lists are Ik1

¼

{n4,n8,n16,n20}, Ik3
¼ {n9,n21}, and Ik4

¼ {n12,n14,n18,n24}.
Initially, as nmin ¼ n4, n4 (associated with the subtree
rooted at n4) is pushed into the stack (Fig. 7(1)). Then,
nmin ¼ n8. As the top node of S n4 is not an ancestor of
nmin, n4 is popped from the stack. The subtree associated
with n4 is transferred to n4’s parent, n3(0.0.0) (Fig. 7(2)),
and then to n2ð0:0Þ (Fig. 7(3)). Subsequently, n8 is pushed
into the stack with a subtree rooted at n8ð0:0:1:0:0Þ
(Fig. 7(4)). Similarly, we walk through our algorithm as
illustrated in Fig. 7, and finally construct the CGTree
as shown in Fig. 6(b). Especially,n4jn6½n7½n8;n9;n12 in
Fig. 7(9) denotes that there have been already two
subtrees constructed for node n2ð0:0Þ: one is the subtree
rooted at n4 and the other is the subtree rooted at n6 of the
CGTree in Fig. 6(b).

3.2. MCCTreesGenerator

We propose an effective algorithm MCCTreesGener-

atorto generate the MCCTrees in this section. There is a
straightforward way to generate all MCCTrees: we check
whether each node in the CGTree is an MCLCA or not
according to Lemma 2.10. If so, we retrieve the MCCTree
rooted at it as stated in Lemma 2.7. However, this
approach is inefficient since it needs to check whether
each ancestor of a given node dominates more content
nodes than this given node. This check involves redundant
computations and leads to low efficiency. Therefore, we
introduce an optimization technique as described in
Lemma 3.1 to improve the efficiency of retrieving the
MCCTrees.

Lemma 3.1. Suppose Tr is any subtree rooted at r of a

CGTree CG, and r has q children c1; c2; . . . ; cq sorted by

jCKðciÞj in descending order. Let ti denote the tree rooted at ci,
and 81 � i � q, Ti ¼ Ti�1 � tiðT0 ¼ TrÞ. f(CG) is exactly the

set of all MCCTrees for CG, if function f satisfies
(i)
 f ðTrÞ ¼ fTrg, if r has no child (i.e., r is a leaf content

node).

(ii)
 f ðTrÞ ¼

Smax
i¼1 f ðtiÞ

S
fTmaxg, if 9maxð0 � max � qÞ, which

satisfies

(1) 8j, 0oj � max, jCKðTj�1Þj ¼ jCKðtjÞj; and

(2) jCKðTmaxÞjajCKðtmaxþ1Þjðtqþ1 ¼ fÞ.
S

(iii)
 f ðTrÞ ¼

q
i¼1f ðtiÞ, otherwise.
Proof. This lemma is easy to be proved according to
Lemmas 2.7 and 2.10, and the detailed proof is omitted
due to limited space. &

According to Lemma 3.1, we can efficiently generate all
MCCTrees from the root iteratively without involving
redundant computations to check whether each node in
the CGTree is an MCLCA as stated in Lemmas 2.5 and 2.10.
Moreover, for any node n, CKðnÞ can be computed during
constructing the CGTree. We devise an efficient algorithm

ARTICLE IN PRESS

0

0

0

0 n4

0

0

0 n4

0

0 n4

0

0 n4

1

0

0 n8

0

0 n4

1

0

1 n9

n8

0

0 n4

1

0 n n8 9|

0

0 n4

1 n n7 8[,]n9

0

0 n4

1 n n7 8[,]n9

1

1 n12

0

0 n
n n n n n

4

6 7 8 9 12

|
[[,],]

2

0 n14

0

0
n
n n n n n

4

6 7 8 9 12

|
[[,],]

2

1

n14

0 n16

0

1

n n[42 6 7 8 9

12 13 14 16

, [[,],
], [,]]

n n n n
n n n n

n18

(1) (2) (3) (4) (5) (6) (7)

)11()01()9()8(

Fig. 7. An example to construct CGTree for {k1,k3,k4} and the XML document in Fig. 6(a).

n2

n6

n4

k1

n7

n8
n9

k1 k3

n12

k4

n0

n18

k4

n24

n19

n20 n21

k4k1 k3

n13

n14

n16

k1

k4

n1

n2

n3 n 6

n4 n5

k1 k2

n7 n10

n8 n9

k1 k3

n11 n12

k2 k4

n0

n18

k4

n22

n23 n24

n19

n20 n21

k2 k4k1 k3

n13

n15n14

n16 n17
k1 k2

k4

n1 0

0.0

0.0.0

0.0.0.0
0.0.0.1

0.0.1

0.0.1.0 0.0.1.1

0.0.1.0.0

0.0.1.0.1

0.0.1.1.0

0.0.2.0

0.0.2.1

0.0.2.1.0 0.0.2.1.1

1

1.00.1

0.0.1.1.1

2

1.1 2.0 2.1

0.0.2

Fig. 6. An XML document with Dewey numbers and its for {k1,k3,k4}.

J. Feng et al. / Information Systems 35 (2010) 186–203194
(Fig. 8) to generate the MCCTrees. MCCTreesGeneretor-
first initializes the candidate set of MCCTrees (denoted as
CMSet) as {CGTree} (line 3). While CMSet is not empty,
MCCTreesGeneretorselects any candidate MCCTree
(denoted as T) from CMSet, and then eliminates it from
CMSet (lines 5–6). For each child of the root of T, ci, if the
tree ti rooted at ci contains the same keywords as T (line
9), ti will not belong to the MCCTree rooted at the root of T,
and MCCTreesGeneretorupdates T by eliminating ti (line
10). Furthermore, ti must contain candidate MCCTrees,
therefore MCCTreesGeneretoradds ti into CMSet (line
11). After eliminating the subtrees that contain candidate
MCCTrees, if T still contains keywords, T must be an
MCCTree and is added into MCCTreeSet(lines 14–15).
MCCTreesGeneretorrepeats these steps until CMSet is
empty. Theorem 2 guarantees the correctness of this
algorithm.

Theorem 2. MCCTreesGeneretorcorrectly generates all

the MCCTrees for a CGTree. Its complexity is Oðm

Pm

i¼1jIijÞ,
where m is the number of keywords.

Proof. It is easy to figure out this algorithm is consistent
with Lemma 3.1. We here mainly prove the complexity.
For any node n, since jCKðnÞj � m, the complexity of
sorting its children is Oðm
 CNÞ through the bucket sort,
where CN is the number of the children of n. The total
complexity to generate the MCCTrees is Oðm
 NIÞ, where
NI is the total number of the nodes in the CGTree and

ARTICLE IN PRESS

Fig. 8. MCCTreesGeneretor algorithm.

J. Feng et al. / Information Systems 35 (2010) 186–203 195
NI � 2
Pm

i¼1jIij. Hence, the complexity of MCCTreesGen-
eretor is Oðm

Pm
i¼1jIijÞ. &

To further illustrate how the algorithm works, we walk
through our algorithm with a running example as shown
in Example 3.2.

Example 3.2. In Fig. 1, CKðTn0
Þ¼fk1; k2; k3; k4}. As CKðTn1

Þ¼

fk1; k2; k3; k4}, CKðTn19
Þ ¼ fk1; k3}, and CKðTn22

Þ ¼ fk2; k4},
the children of n0, sorted by the number of contained
keywords, are n1, n19 and n22. Subsequently, as
jCKðTn1

Þj ¼ jCKðTn0
Þj, CKðTn1

Þ must contain some candidate
MCCTrees, thus Tn1

is added into CMSet. In addition,
jCKðTn0

� Tn1
ÞjajCKðTn19

Þj, thus, Tn0
� Tn1

is an MCCTree.
As Tn1

is in CMSet and jCKðTn1
Þj ¼ jCKðTn2

Þj, Tn2
contains

some candidate MCCTrees and is added into CMSet.
Furthermore, jCKðTn18

Þj ¼ jCKðTn1
� Tn2

Þj, thus Tn18
is added

into CMSet. Consequently, Tn18
is an MCCTree while Tn2

is
not. Subsequently, Tn6

, Tn13
and Tn3

are orderly added into
CMSet and they are all MCCTrees. To sum up, there are five
MCCTrees in the CGTree as shown in the dashed circles.

4. Ranking

As there are many MCCTrees with different signifi-
cance (importance), we propose a ranking mechanism to
rank MCCTrees in order to return the top-k relevant
answers with the highest scores. Without loss of general-
ity, we only show how to rank MCCTrees and the same
method can be applied to the ranking of CCTrees.

4.1. MCCTree ranking model

The tf 	 idf based methods for ranking relevant docu-
ments have been proven to be effective for keyword
search in textual documents. However, traditional ranking
techniques in IR literature may not be effective to rank
those MCCTrees. As besides the term frequency (tf) and
inverse document frequency (idf), these MCCTrees also
contain rather rich structural information. For example, in
Fig. 1, T2 is much more relevant to the query than T1, as T2

is more compact. We incorporate the structural compact-
ness of an MCCTree into the ranking function and propose
Formula (4.1) to rank an MCCTree.

SimðK;TÞ ¼ d
 SimstrðK;TÞ þ ð1� dÞ
 SimtextðK;TÞ,

(4.1)

where SimstrðK;TÞ denotes the structural compactness of
T and SimtextðK;TÞ denotes the text similarity between
K and T. Note that structural compactness reflects the
compactness of an MCCTree from the DB point of view,
while text similarity captures the text relevancy, similar to
the document relevancy in IR literature. d is a real number
parameter to differentiate the importance of two scores.
Especially, if d is set to zero, it means that we only
consider the text similarity like traditional ranking
methods. While if d is set to one, it means that we only
consider the structural compactness. We will experimen-
tally demonstrate how to set d in Section 5. We will
introduce how to compute SimstrðK;TÞ and
SimtextðK;TÞ in Sections 4.2 and 4.3, respectively.

4.2. Structural compactness

We in this section introduce how to compute the
structural compactness. Intuitively, when an MCCTree is
more compact, it is more likely to be meaningful and
relevant. Thus, the structural compactness score should be
larger. As such, the compactness of an MCCTree should
include the structural relevancy between content nodes
and the relevancy between input keywords. We note that
when the distance between two content nodes is larger,
the relevancy between them is smaller. Further, there may
be multiple contents between two keywords, and we
should consider all of them. Based on the above rationale,
we propose Eq. (4.2) to score the relevancy between any
two keywords.

Relðki; kjÞ ¼
X

ni2Cki
;nj2Ckj

1

distðni;njÞ þ 1
, (4.2)

ARTICLE IN PRESS

k1 k2

k3

k1 k2 k3 k4 k1 k2 k3 k4k1 k2 k3 k4 k1 k2 k3 k4

Fig. 9. Five MCCTrees of a keyword query K ¼ fk1 ; k2 ; k3 ; k4}. (a) Ta; (b) Tb; (c) Tc; (d) Td :Te .

J. Feng et al. / Information Systems 35 (2010) 186–203196
where Cki
denotes the set of all content nodes that contain

ki in the MCCTree and distðni;njÞ denotes the distance
between ni and nj. Moreover, it is obvious that the more
succinct of an MCCTree, the higher score of the structural
compactness. We employ the distance between each
content node and the root of the MCCTree to capture the
structural compactness. It is evident that the larger this
distance, the less succinct the MCCTree, and thus the
smaller the structural compactness score. The succinct-
ness of the MCCTree should be reflected in the function.
We present Formula (4.3) to compute the compactness of
an MCCTree,

CompactðTÞ ¼
X

c2Tc

1

lc � lr þ 1
, (4.3)

where Tc denotes the content node set in T, r denotes
the root of T, and lcðlrÞ denotes the level of cðrÞ in the XML
document. We present Formula (4.4) to compute the
overall compactness of an MCCTree:

SimstrðK;TÞ ¼
X

1�ioj�m

Relðki; kjÞ
 CompactðTÞ. (4.4)

Example 4.1. Given a keyword query K ¼ fk1; k2; k3; k4},
suppose that there are five MCCTrees as illustrated in
Fig. 9, where the dashed nodes in the MCCTrees denote
that they are linked nodes. For Ta, we have Relðk1; k2Þ ¼

1
3,

CompactðT1Þ ¼
1
3þ

1
3þ

1
2, and WstrðK;TÞ ¼ 35

36. We sort
these five MCCTrees by their structural compactness in
descending order, Tb, Tc , Ta, Td and Te.

4.3. Text similarity

In this section, we present how to compute textual
similarity. We present Eq. (4.5) to compute the text
similarity,

SimtextðK;TÞ ¼
X

ki2K

Wtextðki;TÞ, (4.5)

where Wtextðki;TÞ denotes the importance of ki in T.
There may be different content nodes that contain ki in T.
Therefore, we first compute the text similarity between ki

and each content node c that contains ki in T, denoted as
W(ki,c), and then take the sum of each W(ki,c) as the text
similarity of ki in T. We propose Formula (4.6) to
compute Wtextðki;TÞ,

Wtextðki;TÞ ¼
1

SizeðTÞ

X

c2Tc\Iki

Wðki; cÞ, (4.6)
where Tc denotes the content node set in T and Iki

denotes the input keyword list w.r.t. ki. As an MCCTree
contains more content nodes does not imply it is more
meaningful, we employ the size of T, SizeðTÞ, to
normalize the text similarity, which is the number of
nodes in T.

Furthermore, since ki can be taken as either the tag/
label of a content node, c, or a term in the content of c, and
both of them will affect the text similarity between ki and
c, i.e., Wðki; cÞ. To accurately capture this similarity, we
should take both of these two cases into consideration.
Accordingly we propose Formula (4.7) to compute
Wðki; cÞ:

Wðki; cÞ ¼Wlabelðki; cÞ þWtextðki; cÞ. (4.7)

On the one hand, if ki is considered as the tag of c, its term
frequency should be one. Therefore, we only consider its
inverse document frequency and take this frequency as
the text similarity between ki and c, i.e., Wlabelðki; cÞ, as
described in Formula (4.8),

Wlabelðki; cÞ ¼ ln
N þ 1

Nc þ 1
, (4.8)

where N is the number of the elements in the XML
document and Nc is the number of such elements with
tag c.

On the other hand, if ki is taken as a term in the content
of c, we should consider both its normalized term
frequency (ntf) as shown in Formula (4.10) and inverse
document frequency (idf) as described in Formula (4.11).
In addition, the longer the content of a node, the more
terms in it, thus we propose the normalized text length
(ntl) to normalize the text length (tl) of a node as
described in Formula (4.12). Hence, we compute
Wtextðki; cÞ by taking into consideration the three para-
meters as shown in Formula (4.19):

Wtextðki; cÞ ¼
ntf
 idf

ntl
, (4.9)

ntf ¼ 1þ lnðtf Þ, (4.10)

idf ¼ ln
Nc þ 1

Nðki ;cÞ þ 1
, (4.11)

ntl ¼ ð1� sÞ þ s

tlc

avgtlc

. (4.12)

Formula (4.10) is used to compute ntf, where tf is the
term frequency of ki in c. Formula (4.11) is adopted to
compute idf, where Nðki ;cÞ is the number of nodes, which

ARTICLE IN PRESS

Table 1
Forty keyword queries on DBLP dataset used in the experiments.

Q1
3

XML database system Q1
4

jim gray title year

Q2
3

XML SIGMOD search Q2
4

author database index 2003

Q3
3

keyword search author Q3
4

phdthesis title author school

Q4
3

proximity keyword author Q4
4

schema data integration url

Q5
3

jim gray david Q5
4

booktitle jim gray year

Q6
3

gray book year Q6
4

XML ICDE author year

Q7
3

VLDB keyword XML Q7
4

data mining author 2006

Q8
3

keyword search journal Q8
4

twig join 2005 author

Q9
3

XML keyword search Q9
4

IR XML author year

Q10
3

proximity keyword search Q10
4

data stream 2006 author

Q1
5

jim gray data year author Q1
6

keyword search XML author 2006 url

Q2
5

data stream VLDB author year Q2
6

jim gray database ACM url year

Q3
5

keyword search XML journal author Q3
6

XML cache view 2005 authorpages

Q4
5

article data stream 2006 author Q4
6

jim gray Ullman ACM title url

Q5
5

XML database privacy author pages Q5
6

data mining jiawei 2005 title url

Q6
5

XML twig join 2005 url Q6
6

graph mining VLDB pdf year author

Q7
5

keyword search database 2004 author Q7
6

data stream 2005 pdf author url

Q8
5

nested XML year author SIGMOD Q8
6

jagadish XML ICDE conf year mdate

Q9
5

keyword search XML 2006 author Q9
6

Alfred Ullman title STOC year pages

Q10
5

IR VLDB conf pages url Q10
6

twig XML query 2005 author url

J. Feng et al. / Information Systems 35 (2010) 186–203 197
also contain ki and have the same tag with c. We use
Formula (4.12) to compute ntl, where tlc is the number of
terms in c and avgtlc is the average number of terms
among all such nodes with tag c. s is a constant parameter
borrowed from IR literature [27], which is usually set
to 0.2.
5. Experimental study

We have designed and performed a comprehensive set
of experiments to evaluate the performance of our
approach. We used real datasets DBLP3 and TreeBank4 in
our experiments. The DBLP dataset is highly structured.
The Treebank dataset is also structured with deep
recursion. It has a very complicated structure (without
explicit schema). It is composed of English sentences,
tagged with parts of speech. The text nodes have been
encrypted because they are copywritten text from the
Wall Street Journal. The deep recursive structure of this
data makes it an interesting case for experiments. The raw
files of DBLP and TreeBank were, respectively 470 and
82 MB. We compared with the state-of-the-art ap-
proaches, XSEarch [6], XRank [9], and MSLCA [35].

To better understand the performance of our method
on different keyword queries with various characteristics,
we selected 40 keyword queries on DBLP with the number
of keywords varying from 3 to 6 as illustrated in Table 1
and 40 keyword queries on TreeBank. All the experiments
were conducted on an Intel(R) Pentium(R) 2.4 GHz
computer with 2 GB of RAM running Windows XP
Professional. The algorithms were implemented in Java.
3 http://dblp.uni-trier.de/xml/.
4 http://www.cs.washington.edu/research/xmldatasets/.
5.1. Efficiency

This section evaluates search efficiency. We first
compared MCCTreesGenerator with MSLCA [35],
XSEarch [6], and XRank [9] in terms of conjunctive
semantics, and then compared CCTreesGenerator with
them in terms of disjunctive semantics. CCTreesGen-
erator is evolved from MCCTreesGenerator and used
to generate CCTrees. Figs. 10 and 11 illustrate experi-
mental results on the two datasets, respectively. In the
figures, MCCTree and CCTree, respectively denote
MCCTreesGenerator and CCTreesGenerator.

Fig. 10(a) describes the obtained results in considering
the conjunctive semantics. We observe that MCCTree is
better than XSEarch and XRank, and is comparable with
MSLCA. This reflects that MCCTree is at least as good as
MSLCA in terms of conjunctive semantics. More impor-
tantly, CCTree significantly outperforms the four existing
methods when considering the disjunctive semantics as
illustrated in Fig. 10(b). Furthermore, XRank only con-
siders the conjunctive semantics, and we enumerated all
the combinations of keywords to make XRank support the
disjunctive semantics. Thus, XRank is not efficient to
answer keyword proximity queries in terms of disjunctive
semantics. However, our method is naturally efficient for
both conjunctive semantics and disjunctive semantics.
Especially, for Q2

6 and Q4
6, XSEarch, XRank and MSLCA take

more than 107, 107, 106 ms, respectively, while CCTree
only takes 104 ms. Moreover, we observe that the more
keywords involved in a query, the more improvement of
our method over the existing approaches. The main
reason is that, XSEarch has to maintain an all-pairs
interconnection index to check the connectivity between
any two nodes, which is rather inefficient for large XML
documents.

ARTICLE IN PRESS

 1

 10

 100

 1000

 10000

 100000

Q6
4Q6

2Q5
9Q5

6Q4
5Q4

4Q3
2Q3

7 Q6
4Q6

2Q5
9Q5

6Q4
5Q4

4Q3
2Q3

7

E
la

ps
ed

 T
im

e
(m

s)

MSLCA
XRank

XSEarch
MCCTree

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

E
la

ps
ed

 T
im

e
(m

s)

MSLCA
XRank

XSEarch
CCTree

Fig. 10. Efficiency of various algorithms on DBLP. (a) Conjunctive Semantics; (b) Disjunctive Semantics.

 1

 10

 100

 1000

 10000

 100000

QT
8QT

7QT
6QT

5QT
4QT

3QT
2QT

1 QT
8QT

7QT
6QT

5QT
4QT

3QT
2QT

1

E
la

ps
ed

 T
im

e
(m

s)

MSLCA
XRank

XSEarch
MCCTree

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008
E

la
ps

ed
 T

im
e

(m
s)

MSLCA
XRank

XSEarch
CCTree

Fig. 11. Efficiency of various algorithms on TreeBank. (a) Conjunctive Semantics; (b) Disjunctive Semantics.

J. Feng et al. / Information Systems 35 (2010) 186–203198
5.2. Effectiveness

This section evaluates the search effectiveness. We first
evaluated the effect of d, which differentiates the
importance of the structural compactness and the text
similarity, and then demonstrated how to select a best d
for our ranking mechanism. Finally, we evaluated the
search quality of our method.

To evaluate the effectiveness of an algorithm, we
employed the well-known metrics precision and recall.
In order to compute the correct answers of a keyword
query, we transformed the query into its corresponding
schema-aware XQuery statement based on the structure
of DBLP and took the answer of the transformed query as a
baseline to compute precision and recall. For example,
consider Q6

4 ¼ fXML ICDE author yearg, we translated it
to a XQuery,
For $p in $doc//paper
For $t in $p/title
For $b in $p/booktitlewherecontains
($t/text(), ‘‘XML’’) and contains($b/text(), ‘‘ICDE’’) return

hpaperi {$t, $b, $p/author, $p/year } h=paperi

Without loss of generality, suppose AR is the correct
result of a specified query Q, i.e., the answer of the
transformed XQuery, and PR is the approximate result of a
given algorithm. We defined the precision of the given
algorithm in terms of conjunctive semantics as jAR \ PRj=

jPRj and recall is jAR \ PRj=jARj. Similarly, we can define
the precision and recall in terms of disjunctive semantics,
and we will compare the precision by considering both
conjunctive semantics and disjunctive semantics in Sec-
tion 5.2.2. Furthermore, to evaluate the search quality of
an algorithm, we employed another good metric, top-k

precision, which measures the ratio of the number of
accurate answers among the first k returned results with
highest scores of an algorithm to k.
5.2.1. Effect of d
This section evaluates the effect of d and introduces

how to select a best d for our ranking mechanism. We still

ARTICLE IN PRESS

 40

 50

 60

 70

 80

 90

 100

10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n
(%

)

Top-1
Top-10
Top-50

Top-100

Top-1
Top-10
Top-50

Top-100

Top-1
Top-10
Top-50

Top-100

 40

 50

 60

 70

 80

 90

 100

10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n
(%

)

 40

 50

 60

 70

 80

 90

 100

10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n
(%

)

Fig. 12. top-k precision vs. different values of d on DBLP. (a) d(jQj ¼ 4); (b) d(jQj ¼ 5); (c) d(jQj ¼ 6).

 40

 50

 60

 70

 80

 90

 100

10.90.80.70.60.50.40.30.20.10 10.90.80.70.60.50.40.30.20.10 10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n
(%

)

Top-1
Top-10
Top-50

Top-100

 40

 50

 60

 70

 80

 90

 100

Pr
ec

is
io

n
(%

)

Top-1
Top-10
Top-50

Top-100

 40

 50

 60

 70

 80

 90

 100

Pr
ec

is
io

n
(%

)

Top-1
Top-10
Top-50

Top-100

Fig. 13. top-k precision vs. different values of d on TreeBank. (a) d(jQj ¼ 4); (b) d(jQj ¼ 5); (c) d(jQj ¼ 6).

J. Feng et al. / Information Systems 35 (2010) 186–203 199
employed the 40 keyword queries with various keyword
numbers in Table 1. We varied different values of d and
computed the corresponding top-k precision. The obtained
results are illustrated in Figs. 12 and 13, where (a), (b) and
(c) describe the average top-k precision of the 10 keyword
queries with different keyword numbers of 4, 5, and 6,
respectively.

We observe that our method achieves much better
precision when d in the range of 0.7 and 0.9. Our method
has a perfect precision when d is set to 0.8. As expected,
our method always achieves high precision for various
queries with different characteristics. Especially, the top-k

precision of our method exceeds 90% when d falls in the
range of 0.7 and 0.9, and even reaches 100% for many
queries. This further demonstrates that the structure
compactness and the text similarity are both important
to rank those tree-structured answers. The tree compact-
ness will rank the answers with more succinct tree-
structure higher, while the text similarity will rank the
answers with more meaningful keywords higher.

Note that in this paper, we focus on data-centric XML
documents, thus d is set to a high value. For the
document-centric XML data, XML content (text values)
should be more important and d should be set to a small
value. In future work, we plan to study how to set d
effectively for document-centric XML data. In the remain-
ing experiments, we set d to 0.8 to further evaluate the
search performance of our method.

5.2.2. Precision and recall

This section evaluates result quality in terms of
precision and recall. Fig. 14 shows the 11-pt precision/
recall graph. We observe that MCCTree outperforms the
existing methods, and always achieves higher precision
than them on whatever values of recall. Moreover, the
precision of XSEarch falls sharply with the increase of
recall, while that of MCCTree varies slightly.

To further evaluate the effectiveness, we compared the
precision in terms of both the disjunctive semantics and
conjunctive semantics. Given a keyword query, for the
conjunctive semantics, we took the answers of XQuery
translated from the query as the accurate answers. For the
disjunctive semantics, we enumerated all the combina-
tions of keywords in the query, transformed the query of
each combination into its corresponding schema-aware
XQuery statement, and took all the answers of XQuery
queries as the accurate results. We computed the
corresponding precision for different algorithms. Figs. 15
and 16 depict the precision.

We implemented the ‘‘optional nodes’’ for XSEarch to
support the disjunctive semantics. We observe that
MCCTree achieves better precision for both conjunctive
and disjunctive semantics. XRank performs poorly on
many queries. Especially, for disjunctive semantics, XRank
is far worse than MCCTree. This is because XRank cannot
support the disjunctive semantics. In terms of the
disjunctive semantics, XSEarch with ‘‘optional nodes’’
achieve higher precision than XRank but is worse than
MCCTree. The reason is that their answers are cover trees,
which are not as compact as MCCTrees. MCCTree

significantly outperforms existing methods on TreeBank
in terms of effectiveness as they involve many false
negatives. This reflects that our method outperforms the
existing approaches on various datasets.

ARTICLE IN PRESS

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

Recall (DBLP)

MSLCA
XSEarch

XRank
MCCTree

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

Recall

MSLCA
XSEarch

XRank
RACE

Fig. 14. Precision/recall curves of different algorithms. (a) Recall (DBLP); (b) Recall.

 40

 50

 60

 70

 80

 90

 100

|Q| = 6|Q| = 5|Q| = 4|Q| = 3

C
on

ju
nc

tiv
e

Pr
ec

is
io

n
(%

)

Conjunctive Semantics

 40

 50

 60

 70

 80

 90

 100

|Q| = 6|Q| = 5|Q| = 4|Q| = 3

D
is

ju
nc

tiv
e

Pr
ec

is
io

n
(%

)

Disjunctive Semantics

MSLCA XSEarch XRank RACE

Fig. 15. Precision for conjunctive and disjunctive semantics on DBLP. (a) Conjunctive Semantics; (b) Disjunctive Semantics.

J. Feng et al. / Information Systems 35 (2010) 186–203200
As users are usually interested in the top-k answers, we
employed top-1, top-5, top-10, top-20, top-50 and top-100
precision to evaluate the selected algorithms. The ob-
tained results of the average top-k precision for those 40
queries are illustrated in Table 2. As expected, MCCTree

always achieves more than 90% top-k precision, which is
about 10–35% higher than those of XSEarch and XRank.
The reason is that, XSEarch only considers the traditional
IR parameters which are ineffective for ranking the tree-
structured answers; XRank does not normalize the overall
ranking score, since a connected subtree containing more
content nodes does not imply the subtree is more
meaningful. We normalize the overall ranking score
by dividing the number of content nodes and take
both structural compactness and textual similarity into
account.
5.3. User study

To evaluate the result quality, we conduct a user study.
We took a group of 20 randomly selected people and
asked them to evaluate the keyword queries in Table 3
against MCCTree, MSLCA, XRank and XSEarch. For each
query, each user was asked to describe in natural language
the semantics of the query. If there are more than one
semantics, the truth is the one provided by the majority of
the users. The semantics of all the queries described by
natural language is shown in Table 3.

As users are usually interested in the top-k answers, we
employed top-k answer relevancy (the ratio of the number
of answers deemed to be relevant in the first k results to k)
to compare those algorithms. The obtained result of the
average top-k answer relevancy is illustrated in Fig. 17. As
expected, MCCTree always achieves more than 80%
answer relevancy, which is about 10–40% higher than
those of other methods on various queries. This is because
MCCTree identifies the compact MCCTrees as the answer
and ranks the MCCTrees by taking both structural
compactness and textual similarity.
6. Related work

The first area of research related to our work is the
computation of the LCA of two or more nodes, which has
been studied in [10,34]. As an extension of LCA, mean-
ingful LCA (MLCA), smallest LCA (SLCA), multiway-SLCA

ARTICLE IN PRESS

Table 2
top-k precision.

DBLP top-1

(%)

top-5

(%)

top-10

(%)

top-20

(%)

top-50

(%)

top-100

(%)

(a) DBLP

MSLCA 66.5 70.0 71.0 68.0 62.5 66.0

XSEarch 77.5 84.5 81.5 78.0 74.0 70.5

XRank 82.5 83.0 84.5 80.5 78.0 75.0

MCCTree 92.5 94.5 96.0 95.5 96.0 94.5

TreeBank top-1

(%)

top-5

(%)

top-10

(%)

top-20

(%)

top-50

(%)

top-100

(%)

(b) TreeBank

MSLCA 61.5 62.0 64.0 58.5 60.5 59.0

XSEarch 71.5 76.0 77.5 77.0 76.0 70.5

XRank 78.5 81.5 80.5 81.5 79.0 75.0

MCCTree 90.0 92.5 94.0 93.5 95.5 94.5

Table 3
Queries for user study.

Q1 jim gray title Find titles of papers written by ‘‘jim gray’’

Q2 DB IR XML author Find authors who publish papers about

‘‘DB IR XML’’

Q3 jiawei han title

year VLDB

Find papers written by ‘‘jiawei han’’ and

published in ‘‘VLDB’’

Q4 jim gray david

title

Find titles of papers co-authored by ‘‘jim

gray’’ and ‘‘david’’

Q5 jagadish XML

ICDE title

Find papers written by jagadish and

published in ‘‘ICDE’’

Q6 VP DT NN Find the sentences with ‘‘VP DT NN’’

structures

Q7 NP VP VBD NNS Find the sentences with ‘‘NP VP VBD NNS’’

structures

Q8 NN SBAR WDT Find the sentences with ‘‘NN SBAR WDT’’

structures

Q9 IN VB VP Find the sentences with ‘‘IN VB VP’’

structures

Q10 VB NP NNP POS Find the sentences with ‘‘VB NP NNP POS’’

structures

100

90

80

70

60

50
|Q| = 6|Q| = 5|Q| = 4|Q| = 3

C
on

ju
nc

tiv
e

Pr
ec

is
io

n
(%

)

Conjunctive Semantics

100

90

80

70

60

50
|Q| = 6|Q| = 5|Q| = 4|Q| = 3

D
is

ju
nc

tiv
e

Pr
ec

is
io

n
(%

)

Disjunctive Semantics

MSLCA XSEarch XRank RACE

Fig. 16. Precision for conjunctive and disjunctive semantics on TreeBank. (a) Conjunctive Semantics; (b) Disjunctive Semantics.

5 http://inex.is.informatik.uni-duisburg.de/2006/index.html.

J. Feng et al. / Information Systems 35 (2010) 186–203 201
(MSLCA), grouped distance minimum connecting tree
(GDMCT), valuable LCA (VLCA), and XSeek have been
proposed to improve the efficiency and effectiveness
of keyword search against LCA in [26,37,35,13,18,28],
respectively.

MSLCA employs a strategy of multiway-SLCA to
improve search efficiency. GDMCT returns cover trees as
answers, which are not so meaningful as MCCTrees, since
we integrate the most relevant cover trees together.
XRank [9] and XSEarch [6] are two systems facilitating
keyword search in XML documents, which return subtrees
rooted at LCAs or their variants as answers. XRank
presents a ranking method, which, given a tree containing
all the keywords, assigns a score to it using an adaptation
of PageRank for XML documents. XSEarch focuses on the
semantics and the ranking of the results, and during
execution it uses an all-pairs interconnection index to
check the connectivity between the nodes. It is not
efficient for large XML documents. XKeyword [15] is a
system that offers keyword proximity search in XML
documents that conform to an XML schema, however it
has to compute candidate networks and is constrained by
the underlying schemas. XSeek [28] generates return
nodes, which can be explicitly inferred from keywords
or dynamically constructed according to the entities in the
data that are relevant to the search. XSeek is orthogonal to
our work as it only considers the conjunctive semantics
and identify the relevant answers by considering the
structural information. Our prior work [18] proposes
valuable LCAs to improve the meaningfulness and com-
pleteness of answers by considering the XML structures.
This manuscript is an extended version of a poster from
WWW 2008 [19].

Furthermore, various XML full-text query languages
have been proposed [24,25], and a workshop INEX,5

INitiative for the Evaluation of XML retrieval, aiming at
evaluating XML retrieval effectiveness, has also been
organized. Two algebras for keyword search over XML
documents have been proposed in [2,32]. The XFT algebra

http://inex.is.informatik.uni-duisburg.de/2006/index.html

ARTICLE IN PRESS

 30

 40

 50

 60

 70

 80

 90

 100

top
-1

00

top
-5

0

top
-2

0

top
-1

0
top

-5
top

-1

To
p-

k
Pr

ec
is

io
n

(%
)

top-k (DBLP)

 30

 40

 50

 60

 70

 80

 90

 100

top
-1

00

top
-5

0

top
-2

0

top
-1

0
top

-5
top

-1

To
p-

k
Pr

ec
is

io
n

(%
)

top-k (Tree Bank)

MSLCA XSEarch XRank MCCTree

Fig. 17. top-k precision for user study. (a) top-k (DBLP); (b) top-k (TreeBank).

J. Feng et al. / Information Systems 35 (2010) 186–203202
[2] that accounts for element nesting in XML document
structure was proposed to evaluate queries with complex
full-text predicates, while several optimization techniques
that guarantee better efficiency for keyword search over
tree-structured documents have been demonstrated
in [32].

In addition, there have been many studies of keyword
search in relational databases. DISCOVER [14], BANKS [4]
and DBXplorer [1] are systems built on top of relational
databases. DISCOVER and DBXplorer output trees of tuples
connected through primary-foreign key relationships that
contain all the keywords of a given keyword query, while
BANKS identifies connected trees in a labeled graph by
using an approximation to the Steiner tree problem. More
recently, Liu et al. [27] proposed a novel ranking strategy
to solve the effectiveness problem for relational databases,
which employs phrase-based and concept-based models
to improve search effectiveness. Kimelfeld et al. [17]
demonstrated keyword proximity search in relational
databases, which shows that the answer of keyword
proximity search can be enumerated in ranked order with
polynomial delay, under data complexity. Sayyadian et al.
[33] introduced schema mapping into keyword search and
proposed a method to answer keyword search across
heterogenous databases. Ding et al. [7] employed dyna-
mical programming to improve the efficiency of identify-
ing the Steiner trees while Guo et al. [8] proposed data
topology search to retrieve meaningful structures from
much richer structural data–biological databases. Our
previous work SAILER [20] proposes a unified keyword
search framework for unstructured and semi-structured
data. We proposed EASE [22] to adaptively and effectively
answer keyword search over heterogenous data sources
composed of unstructured, semi-structured, and struc-
tured data. We proposed compact Steiner tree [23] to
approximate Steiner tree problem for efficiently answer-
ing keyword queries in relational databases.

7. Conclusion

In this paper, we have investigated the problem of
effective keyword proximity search in XML documents,
with the aim of identifying the relevant content nodes
that contain input keywords, along with a meaningful
compact connected trees to describe how each result
matches a given keyword query. To improve the search
performance of keyword search over XML documents, we
first introduce the notions of CLCA and MCLCA to capture
the focuses of keyword queries, and then propose two
concepts of CCTree and MCCTree to effectively and
efficiently answer keyword proximity queries. More
importantly, we give the theoretical upper bounds of the
numbers of CLCAs, MCLCAs, CCTrees and MCCTrees,
respectively, and devise an efficient algorithm to generate
the MCCTrees. Furthermore, we present a ranking me-
chanism to rank the compact connected trees, by taking
into consideration both structural compactness from DB
point of view and text similarity from IR perspective.
Finally, we have conducted an extensive performance
study to evaluate the search efficiency and result quality
of our method. The experimental results show that our
approach achieves both high search efficiency and
accuracy for keyword proximity search, and outperforms
existing approaches significantly.

In this paper, we focus on data-centric XML docu-
ments. For the document-centric XML data, XML content
should be more important and we need propose more
effective ranking functions. In future work, we will study
effective keyword search in document-centric XML data.
Acknowledgments

This work is partly supported by the National Natural
Science Foundation of China under Grant No. 60873065,
the National High Technology Development 863 Programs
of China under Grant No.2007AA01Z152 & 2009AA011906,
and the National Grand Fundamental Research 973
Program of China under Grant No.2006CB303103.

References

[1] S. Agrawal, S. Chaudhuri, G. Das, Dbxplorer: a system for keyword-
based search over relational databases, in: ICDE, 2002, pp. 5–16.

ARTICLE IN PRESS

J. Feng et al. / Information Systems 35 (2010) 186–203 203
[2] S. Amer-Yahia, E. Curtmola, A. Deutsch, Flexible and efficient
xml search with complex full-text predicates, in: SIGMOD, 2006,
pp. 575–586.

[3] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, D. Toman,
Structure and content scoring for xml, in: VLDB, 2005.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Sudarshan,
Keyword searching and browsing in databases using banks, in:
ICDE, 2002, pp. 431–440.

[5] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: optimal XML
pattern matching, in: SIGMOD, 2002, pp. 310–321.

[6] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, Xsearch: a semantic search
engine for xml, in: VLDB, 2003, pp. 45–56.

[7] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, X. Lin, Finding top-k
min-cost connected trees in databases, in: ICDE, 2007.

[8] L. Guo, J. Shanmugasundaram, G. Yona, Topology search over
biological databases, in: ICDE, 2007.

[9] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram, Xrank: ranked
keyword search over xml documents, in: SIGMOD, 2003, pp. 16–27.

[10] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common
ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.

[11] H. He, H. Wang, J. Yang, P. Yu, Blinks: ranked keyword searches on
graphs, in: SIGMOD, 2007.

[12] V. Hristidis, L. Gravano, Y. Papakonstantinou, Efficient ir-style
keyword search over relational databases, in: VLDB, 2003,
pp. 850–861.

[13] V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava, Keyword
proximity search in xml trees, in: IEEE TKDE, vol. 18, no. 4, 2006,
pp. 525–539.

[14] V. Hristidis, Y. Papakonstantinou, Discover: keyword search in
relational databases, in: VLDB, 2002, pp. 670–681.

[15] V. Hristidis, Y. Papakonstantinou, A. Balmin, Keyword proximity
search on xml graphs, in: ICDE, 2003, pp. 367–378.

[16] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, H.
Karambelkar, Bidirectional expansion for keyword search on graph
databases, in: VLDB, 2005, pp. 505–516.

[17] B. Kimelfeld, Y. Sagiv, Finding and approximating top-k answers in
keyword proximity search, in: PODS, 2006, pp. 173–182.

[18] G. Li, J. Feng, J. Wang, L. Zhou, Efficient keyword search for valuable
lcas over xml documents, in: CIKM, 2007.

[19] G. Li, J. Feng, J. Wang, L. Zhou, Race: Finding and ranking compact
connected trees for keyword proximity search over xml documents,
in: WWW, 2008.
[20] G. Li, J. Feng, J. Wang, L. Zhou, Sailer: an effective search engine for
unified retrieval of heterogeneous xml and web documents, in:
WWW, 2008.

[21] G. Li, J. Feng, L. Zhou, Progressive ranking for efficient keyword
search over relational databases, in: BNCOD, 2008.

[22] G. Li, B.C. Ooi, J. Feng, J. Wang, L. Zhou, Ease: an effective 3-in-1
keyword search method for unstructured, semi-structured and
structured data, in: SIGMOD, 2008.

[23] G. Li, X. Zhou, J. Feng, L. Zhou, Progressive top-k keyword search in
relational database, in: ICDE, 2009.

[24] Y. Li, H. Yang, H.V. Jagadish, Nalix: an interactive natural language
interface for querying xml, in: SIGMOD, 2005, pp. 900–902.

[25] Y. Li, H. Yang, H.V. Jagadish, Constructing a generic natural language
interface for an xml database, in: EDBT, 2006, pp. 737–754.

[26] Y. Li, C. Yu, H.V. Jagadish, Schema-free xquery, in: VLDB, 2004.
[27] F. Liu, C. Yu, W. Meng, A. Chowdhury, Effective keyword search in

relational databases, in: SIGMOD, 2006, pp. 563–574.
[28] Z. Liu, Y. Chen, Identifying return information for xml keyword

search, in: SIGMOD, 2007.
[29] J. Lu, T.W. Ling, C.-Y. Chan, T. Chen, From region encoding to

extended Dewey: on efficient processing of xml twig pattern
matching, in: VLDB, 2005, pp. 193–204.

[30] Y. Luo, X. Lin, W. Wang, X. Zhou, Spark: top-k keyword query in
relational databases, in: SIGMOD, 2007.

[31] A. Marian, S. Amer-Yahia, N. Koudas, D. Srivastava, Adaptive
processing of top-k queries in xml, in: ICDE, 2005, pp. 162–173.

[32] S. Pradhan, An algebraic query model for effective and efficient
retrieval of xml fragments, in: VLDB, 2006, pp. 295–306.

[33] M. Sayyadian, H. LeKhac, A. Doan, L. Gravano, Efficient keyword
search across heterogeneous relational databases, in: ICDE, 2007.

[34] B. Schieber, U. Vishkin, On finding lowest common ancestors:
simplification and parallelization, SIAM J. Comput. 17 (6) (1988)
1253–1262.

[35] C. Sun, C.Y. Chan, A.K. Goenka, Multiway SLCA-based keyword
search in XML data, in: WWW, 2007, pp. 1043–1052.

[36] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita,
C. Zhang, Storing and querying ordered xml using a relational
database system, in: SIGMOD, 2002, pp. 204–215.

[37] Y. Xu, Y. Papakonstantinou, Efficient keyword search for smallest
LCAs in xml databases, in: SIGMOD, 2005, pp. 527–538.

[38] Y. Xu, Y. Papakonstantinou, Efficient LCA based keyword search in
XML data, in: EDBT, 2008.

	Finding and ranking compact connected trees for effective keyword proximity search in XML documents
	Introduction
	Compact connected trees
	Notations
	Compact lowest common ancestor
	Compact global tree
	Compact connected trees
	Maximal CLCA and maximal CCTree

	Algorithms
	CGTreeGenerator
	MCCTreesGenerator

	Ranking
	MCCTree ranking model
	Structural compactness
	Text similarity

	Experimental study
	Efficiency
	Effectiveness
	Effect of
	Precision and recall

	User study

	Related work
	Conclusion
	Acknowledgments
	References

