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Keyword search in XML documents has recently gained a lot of research attention. Given a
keyword query, existing approaches first compute the lowest common ancestors (LCAs) or
their variants of XML elements that contain the input keywords, and then identify the sub-
trees rooted at the LCAs as the answer. In this the paper we study how to use the rich struc-
tural relationships embedded in XML documents to facilitate the processing of keyword
queries. We develop a novel method, called SAIL, to index such structural relationships
for efficient XML keyword search. We propose the concept of minimal-cost trees to answer
keyword queries and devise structure-aware indices to maintain the structural relation-
ships for efficiently identifying the minimal-cost trees. For effectively and progressively
identifying the top-k answers, we develop techniques using link-based relevance ranking
and keyword-pair-based ranking. To reduce the index size, we incorporate a numbering
scheme, namely schema-aware dewey code, into our structure-aware indices. Experimental
results on real data sets show that our method outperforms state-of-the-art approaches
significantly, in both answer quality and search efficiency.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Keyword search is a widely accepted mechanism for querying document systems and the World Wide Web. Many
researchers have been studying challenges related to keyword search on XML documents [9,15,26,34,36,47,50,51]. One
important advantage of keyword search is that it enables users to search information without knowing a complex query lan-
guage such as XPath or XQuery, or having prior knowledge about the structure of the underlying data.

Many algorithms for XML keyword search use the notion of ‘‘lowest common ancestors” (LCAs) in the labeled tree mod-
eled from an XML document [9,15,34,47,50,51]. Intuitively, an LCA of a set of keywords is a lowest node in the tree that is the
common ancestor of nodes with these keywords. For a keyword query, these algorithms first retrieve content nodes in the
XML document that contain the input keywords using inverted indices. They then identify the LCAs of the content nodes,
and take the subtrees rooted at the LCAs as the answer to the query. For example, a bibliography XML document is shown
in Fig. 1. Suppose a user issues a keyword query ‘‘DB Tom”. Nodes 2, 12, and 15 are LCAs of the keyword query. Notice that
node 2 is the LCA of nodes 13 and 17. Evidently, node 2 is less relevant to the query than nodes 12 and 15, as nodes 13 and 17
correspond to values of different papers. To address this limitation of using LCAs as query answers, many methods have been
proposed [26,34,36,47,50] to improve search efficiency and effectiveness. They focus on proposing different semantics based
on LCAs and their variants to improve answer quality, and studying efficient algorithms for computing query answers.
. All rights reserved.
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Fig. 1. Keyword search using lowest common ancestors (LCAs).
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Existing algorithms have two main limitations. First, they use the default ‘‘AND” semantics between the input keywords
in a query, thus ignoring nodes that are relevant to some of the query keywords (but not all the keywords). For example,
suppose a user issues a keyword query ‘‘DB IR Tom” on the document above. The LCAs to the query are nodes 15, 5, and
1. Although nodes 12 and 23 do not have leaf nodes corresponding to all the three keywords, they might still be more rel-
evant than nodes 5 and 1, which contain many irrelevant papers. Second, in order to compute the best results to a query,
existing methods find candidate nodes first before ranking them, and this approach is not efficient for computing the best
answers. In the example above, existing methods need to first identify the LCAs of the three keywords, i.e., nodes 15, 5,
and 1, and then rank them. A more efficient algorithm might be able to find the best answers without generating all candi-
date nodes.

To address these limitations, we propose a structure-aware indexing method for effective XML keyword search, called
SAIL. We develop novel structure-aware ranking techniques and efficient search algorithms. In our approach, each node
on the XML tree could be potentially relevant to a keyword query, and we use a ranking function to decide the best answers
to the query. For each keyword in the tree, we index not only the nodes containing the keyword, but also those nodes whose
descendants contain the keyword. For instance, consider the XML document in Fig. 1. For the keyword ‘‘DB”, we index nodes
13, 16, 12, 15, 9, 2, 8, 1, and 5 for this keyword. For the keyword ‘‘IR”, we index nodes 6, 16, 24, 5, 15, 23, 2, 20, and 1. For the
keyword ‘‘Tom”, we index nodes 14, 17, 26, 12, 15, 23, 9, 2, 20, 8, 1, and 5. The nodes are sorted by their relevance to the
keyword. We develop different ranking techniques, one based on a link analysis, and another based on keyword-pair rele-
vancy. Our approach automatically supports ‘‘OR” semantics.

We can use this index to efficiently compute the best answers to a query. In particular, it allows us to use the classic
threshold-based techniques [12] to progressively and efficiently identify the top-k relevant answers to a query. For instance,
for the keyword query ‘‘DB IR Tom” in our running example, we can use the index to compute nodes 15, 12, and 23 as the top-
3 relevant nodes to the query. In addition, we study how to reduce the index size by using a novel numbering scheme,
namely schema-aware dewey code. To the best of our knowledge, our work is the first study that indexes structural relation-
ships to improve answer quality and efficiency of XML keyword search. To summarize, we make the following contributions:

� We propose the concept of ‘‘minimal-cost trees” to answer keyword queries over XML documents. We develop ranking
techniques based on link analysis and keyword-pair for finding relevant answers. We rank the minimal-cost trees by tak-
ing into account both the tf*idf based document relevance in the IR literature and the structural compactness of minimal-
cost trees from a database point of view.

� We devise novel structure-aware index structures by storing the structural relationships embedded in the XML document
for efficient keyword search. We adopt threshold-based techniques to progressively and efficiently identify the top-k rel-
evant answers.

� We employ a numbering scheme, namely schema-aware dewey code, in our structure-aware indices to reduce the index
size.

� We have conducted an extensive experimental study using both real datasets and synthetic datasets. The results show
that our method can find relevant results and achieve high search efficiency, and outperforms state-of-the-art approaches
significantly.
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The remainder of this paper is organized as follows. Section 2 introduces new ranking functions for effective XML key-
word search. We propose structure-aware indices in Section 3. Section 4 presents a numbering scheme to reduce the index
size. Extensive experimental evaluations are provided in Section 5. We review related work in Section 6, and conclude in
Section 7.

2. Relevance-based answers to keyword queries

In this section we introduce a new framework to find relevant answers to a keyword query on an XML document. In the
framework, each node on the tree is relevant to the query to some degree. For the node, we define its corresponding answer
to the query as its subtree with paths to nodes that include the query keywords. This subtree is called the ‘‘minimal-cost
tree” (MCT for short) for this node (Section 2.1). Different nodes correspond to different answers to the query, and we will
study how to quantify the relevance of each answer to the query for ranking (Section 2.2).

For ease of presentation, we first introduce some notations. An XML document can be modeled as a rooted, ordered, and
labeled tree. A node v in the tree corresponds to an element in the XML document, and has a label kðvÞ. A query K consists of
a set of keywords fk1; k2; . . . ; kmg. For each keyword ki, we call the nodes in the tree that contain the keyword the content
nodes for ki. The ancestor nodes1 of the content nodes are called the quasi content nodes of the keyword. For example, in
Fig. 1, title (node 16) is a content node for the keyword ‘‘DB”, and conf (node 2) is a quasi content node of the keyword.

2.1. Answer to a keyword query for a node

Consider an XML document D, a keyword ki, and a content node or quasi content node n for ki. A pivotal node for keyword
ki and the node n, is a content node for ki, which is either a descendant of n or n itself, with a minimal distance to n. The path
from node n to this node is called the pivotal path of this pivotal node. In general, there can be more than one pivotal node for
ki and n. For example, in the XML document in Fig. 1, for a given keyword DB, node 9 is a quasi content node for DB. Node 13
is a pivotal node for node 9 and the keyword DB, and the path n9 ! n12 ! n13 is the corresponding pivotal path, where n9

denotes node 9. Intuitively, a pivotal node for a node n and ki is a very relevant node to n for this keyword.
Given a keyword query, each node n in the XML document is potentially relevant to the query. We introduce the notion of

minimal-cost tree (MCT for short) to define the answer to the query with respect to the node n. Later we will discuss how to
use relevance functions to quantify the quality of this answer.

Definition 1 (MCT). Given an XML document D, a node n in D, and a keyword query K ¼ fk1; k2; . . . ; kmg, the minimal-cost
tree of the query and node n is the subtree rooted at n that includes all the pivotal paths for the pivotal nodes with respect to
the input keywords and node n.

Example 1. Consider the XML document in Fig. 1 and a keyword query ‘‘WWW DB Tom”. Nodes 3, 13, 14, 16, 17, and 26 are
content nodes of the three keywords; nodes 1, 2, 5, 8, 9, 12, 15, 20, and 23 are their quasi content nodes. Node 3 is the pivotal
node for node 2 and WWW. Node 16 is the pivotal node for node 2 and DB. Node 17 is the pivotal node for node 2 and Tom. The
MCT of node 2 is the subtree rooted at node 2, which contains the paths: n2 ! n3;n2 ! n16, and n2 ! n17.

The main advantage of this definition is that, even if a node does not have descendant nodes that include all the keywords
in the query, this node could still be considered as a potential answer. In other words, this definition is relaxing the assump-
tion in existing semantics that all the query keywords need to appear in the descendants of an answer node. As we will see in
the next section, this definition still allows us to do indexing to answer queries efficiently.

2.2. Ranking query answers

Now we discuss how to rank the MCT for a node n as an answer to the query. Intuitively, we first evaluate the relevance
between node n and each input keyword, and then combine these relevance scores as the overall score of the MCT. We will
focus on different methods to quantify the relevance of node n to a query keyword, and how to combine these relevance
scores.

2.2.1. Method 1: ranking based on tf*idf
Our first ranking method models each node as a document that includes the terms in its subtree. We can then use the idea

of tf*idf to score the relevance of the node to a keyword. Given an XML document D, suppose there are p nodes and q key-
words in D. Given a node n 2 D and a keyword ki ð1 6 i 6 qÞ contained in n, we denote tf ðki;nÞ as the term frequency of ki in
n, which is the number of occurrences of ki in n. We denote idf ðkiÞ as the inverse document frequency of ki, i.e., idf ðkiÞ ¼ pþ1

Oki
þ1,

where Oki
is the number of nodes that include ki. We denote ntlðnÞ as the normalized term length of n, i.e., ntlðnÞ ¼ jnj

jnmax j,

where jnj denotes the number of terms in n and jnmaxj denotes the node with the maximal number of terms.
1 A node is not an ancestor nor a descendant of itself.
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Consider an input keyword query K ¼ fk1; k2; . . . ; kmg. Using our first ranking method, the relevance of the node n to a
keyword ki is defined as:
Score1ðn; kiÞ ¼
lnð1þ tf ðki; nÞÞ � lnðidf ðkiÞÞ

ð1� sÞ þ s � ntlðnÞ : ð1Þ
In the formula, s is a constant (usually set to 0.2 [35]). The relevance of the node n to all the keywords is defined as:
Score1ðn;KÞ ¼
Xm

k¼1

Score1ðn; kiÞ: ð2Þ
For instance, consider the XML document in Fig. 1. For node 24, we have Score1ðn24;XMLÞ ¼ lnð1þ1Þ�lnð28=3Þ
0:2þ0:8 ¼ 1:55 and

Score1ðn24;IRÞ ¼ lnð1þ1Þ�lnð28=4Þ
0:2þ0:8 ¼ 1:35. For node 25, we have Score1ðn25;JohnÞ ¼ lnð1þ1Þ�lnð28=3Þ

0:2þ0:8 ¼ 1:55.

2.2.2. Method 2: ranking based on ancestor–descendant relationships
Method 1 cannot rank a quasi content node that does not contain a query keyword. To address this issue, we extend it in

order to effectively score such quasi content nodes. Given a keyword kj, a content node c, and a quasi content node n w.r.t. c
and kj, the distance between n and c can indicate how relevant the node n is to keyword kj. Based on this observation, our
second ranking method scores the relevance n w.r.t. kj as follows:
Score2ðn; kjÞ ¼
X
p2P

adðn;pÞ � Score1ðp; kjÞ; ð3Þ
where P is the set of pivotal nodes for n and kj;a is a damping factor between 0 and 1, and dðn; pÞ denotes the distance be-
tween node n and node p. As the distance between n and p increases, n becomes less relevant to kj. Our experiments sug-
gested that a good value for a is 0.8 (Section 5). The computation of ScoreIRðp; kjÞ is using Eq. (1) as p must contain kj.
Accordingly, if n is a content node for kj, we adopt Eq. (1) to score n w.r.t. kj; otherwise, if n is a quasi content node for kj,
we use Eq. (3) to compute the score.

Given a keyword query K ¼ fk1; k2; . . . ; kmg and a node n, we take the sum of the scores of node n on every ki as the over-
all score of node n on K:
ScoreSKðn;KÞ ¼
Xm

k¼1

ScoreSKðn; kiÞ; ð4Þ
where ScoreSKðn; kiÞ denotes the single keyword score of keyword ki to node n. ScoreSKðn; kiÞ ¼ Score1ðn; kiÞ if n is a content
node for ki; ScoreSKðn; kiÞ ¼ Score2ðn; kiÞ if n is a quasi content node for ki.

Example 2. For instance, consider the XML document in Fig. 1. Given a keyword query K ¼ fXML;IR;Johng, for node 23, we
have
ScoreSKðn23;XMLÞ ¼ a1 � ScoreSKðn24;XMLÞ ¼ 0:8 � 1:55 ¼ 1:24;

ScoreSKðn23;IRÞ ¼ a1 � ScoreSKðn24;IRÞ ¼ 0:8 � 1:35 ¼ 1:08;

ScoreSKðn23;JohnÞ ¼ a1 � ScoreSKðn25;JohnÞ ¼ 0:8 � 1:55 ¼ 1:24;

ScoreSKðn23;KÞ ¼ 1:08þ 1:24þ 1:24 ¼ 3:56:
Suppose a user submits a query ‘‘IR John Smith”. Nodes 15 and 23 have the same score. However, the latter is more relevant
to the query, as keywords ‘‘John” and ‘‘Smith” are in the same node. This example shows that we can improve the ranking
functions by considering the structural relationships.
2.2.3. Method 3: ranking based on keyword-pairs
Example 2 suggests that we can improve the second ranking method by considering keyword-pairs. Consider two key-

words ki and kj, and a node n that contains the two keywords. If ki and kj are in the same pivotal node, they are related
to each other. Moreover, the smaller the distance between the pivotal nodes w.r.t. ki and kj is, they are more relevant to node
n. Based on this observation, we can measure the relevance between the two keywords w.r.t. node n as follows:
Relðhki; kjijnÞ ¼ maxfadðpi ;pjÞjpi; pj are pivotal nodes for n w:r:t ki and kjg; ð5Þ
where dðpi; pjÞ denotes the minimal distance between pi and pj. This relevance based on keyword-pairs captures the struc-
tural information between two keywords.

Notice that if Relhki; ktijnÞ and Relðhkt ; kjijnÞ are large, Relðhki; kjijnÞ should also be large, and thus ki; kj, and kt should be
very relevant to each other. We can use keyword-pair-based relevance to effectively quantify the compactness of a mini-
mal-cost tree by considering the structural relationships among the keywords. Our third ranking method computes the score
of a node n w.r.t. a keyword-pair hki; kji as:
ScoreKPðn; hki; kjiÞ ¼ Relðhki; kjijnÞ � ðScoreSKðn; kiÞ þ ScoreSKðn; kjÞÞ: ð6Þ
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Accordingly, by combining the three ranking methods, we propose Eq. (7) to effectively score node n w.r.t. an input keyword
query.
2 In t
Scoreðn;KÞ ¼
X

16i<j6m

ScoreKPðn; hki; kjiÞ þ
Xm

l¼1

ScoreSKðn; klÞ: ð7Þ
For instance, consider the query ‘‘IR John Smith” in Example 2. We have
ScoreKPðn23; hJohn;SmithiÞ ¼ 0:80 � ð1:24þ 1:24Þ ¼ 2:48;

ScoreKPðn15; hJohn;SmithiÞ ¼ 0:82 � ð1:24þ 1:24Þ ¼ 1:58:
The keyword-pair-based score of node 23 (using the third ranking method) is larger than that of node 15, since the three
input keywords are more relevant to the subtree rooted at node 23. Thus, the keyword-pair-based ranking method can rank
the minimal-cost tree rooted at node 23 as the most relevant answer.

3. Efficient indexing for computing answers

In this section, we study how to build an index structure to compute answers to keyword queries, as defined in the pre-
vious section. We focus on answering top-k queries using Eq. (7) as the ranking measure.

3.1. Indexing construction

We develop an efficient stack-based method to identify the pivotal paths using a single-pass over the XML document. We
traverse the XML document tree in pre-order. When traversing the document, we maintain a stack to keep the paths from
the current node to the document root. Each element in the stack is the child of the element directly below it, where the
stack grows down-top. We maintain a hash table for each element in the stack, which is used to keep the terms2 included
in the element and the corresponding pivotal paths. The entries of the hash table w.r.t. a node n, denoted by Hn, are the terms
included in the node n or n’s descendants, and the values are their corresponding pivotal paths, as illustrated by Fig. 2a.

During the traversal, consider the case where we meet the start tag of a node n. Let t be the label of node n or a term in the
text of n. We insert ht;ni into the hash table of n (i.e., Hn), and push node n with Hn into the stack. When we see the end tag
of the node n, we pop the top element from the stack. For each term t in Hn, if t is not in the hash table of the current top
element ntop (i.e., Hntop ), we insert ht;ntop �HnðtÞi into Hntop , where HnðtÞ is the hash value of t in Hn (i.e., the path from n to
jðn;tÞ), and ntop �HnðtÞ denotes the path by concatenating ntop with HnðtÞ; otherwise, if the length of term t to node ntop is the
same as that of the current pivotal path w.r.t. Hntop ðtÞ, there should be multiple pivotal nodes, and thus we update Hntop ðtÞ by
inserting ntop �HnðtÞ.

Example 3. Consider the XML document in Fig. 1. During the traversal, after visiting the nodes hbibiðn1Þ; hconfiðn2Þ, and
hnameiðn3Þ, we have hbib;bibi in Hbib; hconf;confi in Hconf; hWWW;namei and hname;namei in Hname. These three
elements were pushed into the stack, as shown in Fig. 2b. When we see h=nameiðn3Þ during the traversal, we put
hWWW;conf � namei and hname;conf � namei into Hconf, as shown in Fig. 2c, because name and WWW are not contained in
Hconf . In general, we compute the pivotal paths after traversing the XML document once.

Then, based on the constructed hash tables, we compute the three scores as follows. First, we compute tf, idf, and ntl, and
compute Score1 according to Eq. (1). Then, for each hash table Hn and each of its entries t, we compute Score2ðn; tÞ based on
the pivotal paths in HnðtÞ according to Eq. (3). Finally, for any two entries ki and kj in Hn, we compute Relðhki; ktijnÞ based on
the pivotal paths HnðkiÞ and HnðkjÞ according to Eq. (5). Accordingly, we can compute the three scores.

Next, we devise two structure-aware indices to maintain the pivotal paths and scores. The first one, called ‘‘EI-Index”, is
an inverted index extended to maintain single keyword scores. Each entry of the EI-Index is a term t, and the value is a set of
triples hn; p; si, where n is a quasi content node or content node for t; p is the corresponding pivotal path, and s is ScoreSKðn; tÞ.
For example, given the XML document in Fig. 1, the corresponding EI-Index is illustrated in Table 1. The second index struc-
ture, called ‘‘KP-Index,” is used to compute keyword-pair-based scores. Each entry in the index is a keyword-pair with the
corresponding nodes that contain the two keywords and their scores, i.e., ScoreKPðn; hki; kjiÞ. The KP-Index of the XML docu-
ment in Fig. 1 is illustrated in Table 2.

3.2. Answering queries using indices

Given a keyword query K ¼ fk1; k2; . . . ; kmg, we focus on finding the top-k relevant answers based on the scoring function
in Eq. (7). There are many threshold-based techniques, such as Fagin’s Algorithm (FA) [11], the Threshold Algorithm (TA)
[12,3,22,45,13], to progressively identify the top-k answers with the highes scores. We use the TA algorithm in this paper.
We first retrieve each single keyword list from the EI-Index and each keyword-pair list from the KP-Index. Then, we identify
his paper, ‘‘keyword” denotes a user input keyword, and ‘‘term” denotes a keyword tokenized in an XML document.



Table 1
EI-Index.

Term [Node, pivotal path, score]

IR ½n6; n6;1:35�; ½n16; n16;1:35�; ½n24;n24;1:35�; ½n5; n5—n6;1:08�; ½n15;n15—n16;1:08�; ½n23;n23—n24;1:08� � � �
XML ½n6; n6;1:55�; ½n24; n24;1:55�; ½n5;n5—n6;1:24�; ½n23; n23—n24;1:24�; � � �
John ½n18;n18;1:55�; ½n25; n25;1:55�; ½n15; n15—n18;1:24�; ½n23; n23—n25;1:24�; � � �
Smith ½n17;n17;1:55�; ½n25; n25;1:55�; ½n15; n15—n17;1:24�; ½n23; n23—n25;1:24�; � � �
� � � � � �

Table 2
KP-Index.

Keyword-pair [Node, score]

hIR;XMLi ½n6;2:90�; ½n24;2:90�; ½n5;2:32�; ½n23;2:32�; � � �
hJohn; Smithi ½n25;3:10�; ½n23;2:48�; ½n20;1:98�; ½n15;1:58�; � � �
hIR; Johni ½n15;1:48�; ½n23;1:48�; � � �
hIR; Smithi ½n15;1:48�; ½n23;1:48�; � � �
hXML; Johni ½n23;1:59�; ½n20;1:27�; � � �
hXML; Smithi ½n23;1:59�; ½n20;1:27�; � � �
� � � � � �

Fig. 2. Stack with a hash table for each element.
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the top-k relevant nodes from the lists. Next, we construct the minimal-cost trees rooted at the identified nodes based on the
pivotal paths in the EI-Index. In addition, note that we can efficiently identify all the results in terms of the ‘‘AND” predicate
as follows. We use the indexed lookup eager algorithm (IL) in [45] to compute the intersection of inverted lists (note that the
lists should be sorted by the node ids). We scan every node in the shortest list (with minimal number of nodes), and check
whether each node appears in other lists (using binary-search or hash based methods). Different from the IL algorithm, for
each node v in the shortest list, we need not find the right match and the left match of node v. Instead, we only need to check
whether v appears in every inverted list, which is more efficient than the IL algorithm.

Example 4. Consider a keyword query ‘‘XML IR John” over the XML document in Fig. 1. We first get the top-1 relevant node,
i.e., n23, using the threshold-based method on the EI-Index and the KP-Index. Then, we construct the minimal-cost tree
rooted at n23 based on the pivotal paths in the EI-Index, i.e., the subtree rooted n23 and containing paths: n23 ! n24, and
n23 ! n25. Note that existing methods use their semantics (such as exclusive LCA [15], meaningful LCA [34], and smallest LCA
[50]) to identify query results. Instead, we adopt the ranking-based techniques to identify the most relevant answers.
4. Schema-aware dewey code

To reduce the size of the EI-Index, we propose another index, which only maintains the pivotal nodes, as opposed to the
pivotal paths. Moreover, we can efficiently deduce the pivotal paths based on the pivotal nodes. To achieve our goal, we
introduce a novel numbering scheme, called schema-aware dewey code (SADC for short), which is inspired by the dewey code
in [25,39,48]. The dewey code assigns to each node a vector that represents the path from the document’s root to the node.
The dewey code captures sibling order relationships. However, we cannot deduce a label from a dewey code. Instead, our
proposed schema-aware dewey code captures schema information, and we can easily deduce the label of a node and its
ancestor’s labels based on the schema-aware dewey code.

Generally, given an XML document, there is a corresponding DTD (or schema) associated with it, which describes the doc-
ument type definition. A DTD is typically much smaller than its corresponding XML document, and therefore it is much eas-
ier to manipulate. Even if there does not exist a DTD, we can extract one from the XML document[52,7]. For example, in
Fig. 3, (a) is an XML document and (b) is the DTD extracted from this XML document.



Fig. 3. An example XML document and its DTD.
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Given an XML document, we encode its nodes based on the corresponding DTD. Let parentðnÞ denote the parent of n and
presibðnÞ denote the preceding sibling (neighboring) of n. Suppose the schema-aware dewey code of the root is � and Cn de-
notes the schema-aware dewey code of node n. We can encode each node from the root to the leaf as follows: for any node n,
its schema-aware dewey code is its parent’s schema-aware dewey code, CparentðnÞ, concatenated with an assigned and ordered
number On, i.e., Cn=CparentðnÞ � On. Without loss of generality, let l0; l1; . . . ; lm�1 denote m distinct labels contained among the
children of parentðnÞ in DTD3 and suppose kðnÞ is the kth ð0 6 k 6 m� 1Þ label. We can compute On and Cn through Eqs. (8)
and (9), respectively. It is obvious that On%m ¼ k, that is, the siblings with the same label will get the same remainder when
divided by the total number of distinct labels among their siblings. The schema-aware dewey code captures the following sali-
ent features:

(i) Node a is an ancestor of node d, iff, Ca is a prefix of Cd. a is the parent of d, iff, Ca is a prefix of Cd and jCaj ¼ jCdj � 1,
where jCv j denotes the length of Cv , i.e., the depth of node v in the XML document tree.

(ii) Node a follows (or precedes) node b iff Ca is greater (or smaller) than Cd in lexicographical order.
3 For
4 a �
On ¼
k if n is the first child of parentðnÞ;
OpresibðnÞ þ k� OpresibðnÞ%m else if OpresibðnÞ%m < k;

OpresibðnÞ þmþ k� OpresibðnÞ%m otherwise;

8><
>: ð8Þ

Cn ¼
� if n is the root node;
CparentðnÞ � On

4 otherwise:

(
ð9Þ
(iii) Given the schema-aware dewey code of a node, we can deduce its ancestors’ schema-aware dewey codes and the corre-
sponding labels based on the numbering scheme.

(i) and (ii) are obvious according to the encoding strategy. Based on the two properties, we can efficiently compute the
LCA of two or more nodes. (iii) is the salient feature of the schema-aware dewey code, which the general dewey numbering
schemes do not capture. Given the schema-aware dewey code of node n, we demonstrate how to infer the labels of the
ancestors of n as follows. As the schema-aware dewey code of the root is always �, we deduce the labels iteratively from
the root, and here we only introduce how to infer the label of a given node according to its schema-aware dewey code
and its parent’s label that has already been deduced. Consider that the schema-aware dewey code of node n is
CparentðnÞ � On, and its parent’s label kðparentðnÞÞ has been obtained through iteration. Suppose the distinct labels of
parentðnÞ’s children are, in order, l0; l1; . . . ; lm�1, which can be gotten from the corresponding DTD. We can compute the order
the ‘‘ANY element” in DTD, we need enumerate and preserve all the parsable sub-elements under it.
b denotes another code constructed by concatenating a and b with a delimiter (e.g., a dot) between them.



Table 4
SADC-KP-Index.

Keyword-pair [Node, score]

hIR;XMLi [0.2.0, 2.90]; [1.2.0, 2.90]; [0.2, 2.32]; [1.2, 2.32];� � �
hJohn; Smithi [1.2.1, 3.10]; [1.2, 2.48]; [1, 1.98]; [0.6, 1.58];� � �
hIR; Johni [0.6, 1.48]; [1.2, 1.48]; � � �
hIR; Smithi [0.6, 1.48]; [1.2, 1.48]; � � �
hXML; Johni [1.2, 1.59]; [1, 1.27]; � � �
hXML; Smithi [1.2, 1.59]; [1, 1.27]; � � �
� � � � � �� � �

Table 3
SADC-EI-Index.

Term [Node, SADC, score]

IR [0.2.0, 0.2.0, 1.35]; [0.6.0, 0.6.0, 1.35]; [1.2.0, 1.2.0, 1.35]; [0.2, 0.2.0, 1.08]; � � �
XML [0.2.0, 0.2.0, 1.55]; [1.2.0, 1.2.0, 1.55]; [0.2, 0.2.0, 1.24]; [1.2, 1.2.0, 1.24]; � � �
John [0.6.4, 0.6.4, 1.55]; [1.2.1, 1.2.1, 1.55]; [0.6, 0.6.4, 1.24]; [1.2, 1.2.1, 1.24]; � � �
Smith [0.6.1, 0.6.1, 1.55]; [1.2.1, 1.2.1, 1.55]; [0.6, 0.6.1, 1.24]; [1.2, 1.2.1, 1.24]; � � �
� � � � � �
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of kðnÞ among these labels, i.e., On%m, and accordingly get its label, i.e., lOn%m. Hence, given the schema-aware dewey code of
a node, we can deduce the labels of its ancestors from the root to itself iteratively.

Based on this salient feature of the schema-aware dewey code, we only need to maintain the pivotal nodes in the EI-In-
dex, instead of the pivotal paths. The pivotal paths can be deduced based on the schema-aware dewey code. Accordingly, we
devise another two structure-aware indices, the schema-aware dewey code based EI-Index (SADC-EI-Index) and the schema-
aware dewey code based KP-Index (SADC-KP-Index). The difference between the EI-Index and the SADC-EI-Index is that the
former maintains the pivotal paths while the latter preserves the schema-aware dewey codes of pivotal nodes. Tables 3 and
4, respectively, illustrate the SADC-EI-Index and the SADC-KP-Index of the XML document in Fig. 3, where underlined num-
bers denote the corresponding scores. To better understand the key feature of the SADC-EI-Index, we walk through an exam-
ple to describe how to compute schema-aware dewey codes and how to deduce the labels based on the schema-aware
dewey codes as follows.

Example 5. Consider the XML document in Fig. 3a and its DTD in Fig. 3b. The schema-aware dewey code of conf (the first
child of the root node(bib)) is 0 according to Eq. (9). Node conf(0) has four child labels, name, year, paper, chair, thus
m ¼ 4. As name is the first child of conf(0), k ¼ 0 and Oname ¼ 0 according to Eq. (8), thus Cname ¼ 0:0. As year is the second
child label of conf(0), k ¼ 1. As Oname%m ¼ 0 < k;Oyear ¼ Oname þ k� Oname%m ¼ 1, thus Cyear ¼ 0:1. Similarly, Opaper1 ¼ 25

and Cpaper1 ¼ 0:2. As Opaper1 %m ¼ k ¼ 2;Opaper2 ¼ Opaper1 þmþ k� Opaper1 %m ¼ 6 based on Eq. (8). Thus, Cpaper2 ¼ 0:6. Accord-
ingly, we can encode the nodes in the document in Fig. 3a as shown in Tables 3 and 4.

Given a schema-aware dewey code 0.6.1, its ancestors’ schema-aware dewey codes are, respectively, �;0;0:6. Suppose the
level of the root is 0. Let j0:6j denote the level of node 0.6 in the XML document. We have j0:6j ¼ 2 and j0:6:1j ¼ 3. As
j0:6j ¼ j0:6:1j � 1;0:6 is the parent of 0:6:1. We can deduce the labels of 0.6.1’s ancestors based on the DTD. As the root is
bib, the label of 0.6.1’s ancestor at level 0 is bib. bib has only one child label, i.e., conf, in the DTD. As the assigned and
ordered number of 0.6.1’s ancestor at level 1 ðO1Þ is 0, and O1%1 ¼ 0, so the ancestor of 0.6.1 at level 1 is conf. Node conf(0)
has four ðm ¼ 4Þ distinct child labels, in order name, year, paper, chair, according to the DTD. Since the assigned and
ordered number of 0.6.1’s ancestor at level 2 is 6, and O2%m ¼ 6%4 ¼ 2, so the ancestor of 0.6.1 at level 2 is paper. In the
same way, as paper has three distinct child labels, in order title, author, bib, and O3%m ¼ 1%3 ¼ 1, so the label of 0.6.1
is author. Therefore, the labels of 0.6.1’s ancestors from the root to itself, are bib, conf, paper, author. Given node
conf(0) and keyword ‘‘Tom”, their pivotal node is author(0.6.1). We only need to maintain the pivotal node (0.6.1).
Moreover, the pivotal path conf-paper-author can be deduced according to the schema-aware dewey code.

Note that the schema-aware dewey code can reduce the index size as (1) suppose there are n nodes in the XML document.
The EI-Index needs logðnÞ bits to encode each node by assigning an integer; while the SADC-EI-Index employs a relative
encoding scheme (encoding a node among the children of its parent node), which can reduce the space as discussed in
[41]; and (2) the EI-Index needs to keep the pivotal paths6; while the SADC-EI-Index only maintains the schema-aware dewey
code and the DTD.
5 paper1 refers to the first paper of conf(0); paper2 refers to the second paper.
6 Even if the EI-Index maintains nodes’s IDs in the pivotal paths, it needs to keep a set of mappings from ids to labels.



Table 5
Queries (a part) employed in the experiments.

Query ID Queries

(a) DBLP dataset
Q1 IR Database
Q2 DB IR XML
Q3 XML Keyword Search Li
Q4 XML Relational Keyword Search Yu
Q5 Amer-Yahia DB IR XML 2006

(b) SIGMOD Record dataset
Q6 XML IR
Q7 Database IR XML
Q8 Xu Yu XML Search
Q9 Lin Guo Search XML IR
Q10 Data Mining Han 2002 VLDB

(c) TreeBank dataset
Q11 NP EMPTY
Q12 IN PP CC
Q13 ADJ NNS NP DT
Q14 VB VP SBAP NN DT
Q15 VBN VBG CC NNS NN PP

(d) XMark dataset
Q16 Shipping charges
Q17 Money order payment
Q18 Listitem admiration pledges date
Q19 Accompany pardon itemref initial bidder
Q20 Ambitious impotent flourish parlist emph
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5. Experimental study

We have designed and performed a comprehensive set of experiments to evaluate the performance of our proposed algo-
rithm. We compared SAIL with state-of-the-art algorithms, XRank [15], smallest LCA (SLCA) [50] and Meaningful LCA
(MSLCA) [47]. For XRank, we implemented the ElemRank computation and the hybrid Dewey inverted list (HDIL) algorithm.
The inverted lists were implemented using Lucene,7 and we built a rmBþ-tree over the inverted lists. We set the parameters for
ElemRank as in [15], e.g., d1 ¼ 0:35;d2 ¼ 0:25;d3 ¼ 0:25, and the convergence threshold is 0.00002. For SLCA, we implemented
the indexed lookup eager algorithm which is the best one among the three algorithms proposed in [50].

We used both real and synthetic datasets. The synthetic dataset was generated using the XMark benchmark8 with a factor
of 1.0 and the raw file was about 115 MB. We also employed the real datasets DBLP,9 SIGMOD Record,10 and TreeBank dataset11

from the Washington XML Data Repository to explore the performance of various algorithms. The sizes of DBLP, SIGMOD Record
and TreeBank were about 420 MB, 700 KB and 82 MB, respectively. To better understand the performance of our algorithms, we
selected various keyword queries with different selectivities. For each dataset, we selected one hundred keyword queries con-
sisting of two to six keywords each. Some of the selected queries are illustrated in Table 5. To evaluate the effectiveness of our
algorithm, we also used the INEX dataset (Section 5.2).12

We employed four metrics, elapsed time, precision, recall and F-measure to evaluate the efficiency and effectiveness of
these algorithms. To compute precision and recall, we reformulated the keyword queries into schema-aware XQuery queries
according to the schemas of the datasets as discussed in [34], took the results of these transformed queries as the accurate
answers, and then computed precision and recall of given queries as follows. Given a keyword query K and its correspond-
ing transformed XQuery X, the accurate result set of K, i.e., the answer of X, is denoted as AR,13 and the approximate result
set, i.e., the result of an algorithm on K, is denoted as PR. PR is composed of subtrees, path trees, or minimal-cost trees for dif-
ferent algorithms [36]. If two trees are with the same root, we take them as the same result. Accordingly, we can define the
precision and recall of an algorithm as follows. Precision of an algorithm is the ratio between jAR \ PRj and jPRj. Recall is the
ratio between jAR \ PRj and jARj, where AR \ PR denotes the set of trees that are in both AR and PR, and jPRj denotes the number
of trees in PR. Let F;P and R denote F-measure, precision and recall of an algorithm respectively. If P – 0 and R – 0,
F ¼ 2�P�R

PþR ; otherwise, F ¼ 0.
7 http://lucene.apache.org/java/docs/index.html.
8 http://www.xml-benchmark.org/.
9 http://dblp.uni-trier.de/xml/.

10 http://www.sigmod.org/record/xml/.
11 http://www.cs.washington.edu/research/xmldatasets/.
12 http://inex.is.informatik.uni-duisburg.de.
13 To compute all the accurate results, we consider the ‘‘AND” predicate. For the top-k keyword queries, we use the ‘‘OR” predicate.

http://lucene.apache.org/java/docs/index.html
http://www.xml-benchmark.org/
http://dblp.uni-trier.de/xml/
http://www.sigmod.org/record/xml/
http://www.cs.washington.edu/research/xmldatasets/
http://inex.is.informatik.uni-duisburg.de
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The experiments were conducted on an Intel(R) Pentium(R) 2.0@2GHz computer with 2GB RAM running Windows XP.
The algorithms were implemented in Java and the parsing of the XML files was performed using the SAX API of the Xerces
Java Parser.

5.1. Search quality

This section evaluates the quality of a search technique in terms of accuracy and completeness using the standard met-
rics, precision, recall and F-measure, borrowed from the IR literature, where the correct results are the answers returned by
the corresponding schema-aware languages. Precision measures accuracy, indicating the fraction of results in the approxi-
mate answer that are correct; while recall measures completeness, indicating the fraction of all correct results actually cap-
tured in the approximate answer.

We used the selected one hundred keyword queries, performed the selected algorithms on them, and then computed the
corresponding precision, recall and F-measure. We set a to 0.8 as a trade-off in the experiments and SAIL achieves the best
performance at this point. This is so because, it will degrade the importance of ancestor nodes for a smaller a and thus may
miss some meaningful and relevant results; on the contrary, it will involve many duplicates and less important results for a
lager a. As MSLCA mainly improves search efficiency of SLCA and there is no distinct difference between SLCA and MSLCA in
terms of search quality, we only report the experimental results of MSLCA in terms of precision and recall in the remainder of
this paper.

5.1.1. Search accuracy
We first evaluated the precision of the selected algorithms with different numbers of input keywords and Fig. 4 shows the

experimental results obtained. Since SLCA and MSLCA may cause false positives as they will prune some LCAs, they will lead
to low search accuracy. In addition, XRank and MSLCA do not consider the structural relevance, and they may involve false
positives by integrating irrelevant nodes as the query results and thus lead to low precision. Alternatively, SAIL(EI+KP-Index)
achieves much higher precision than other approaches, because it employs better ranking methods based on novel tech-
niques using link-based relevance ranking and keyword-pair ranking to capture the structural information embedded in
XML documents.

We then compared the top-k answer relevance of different algorithms by varying the values of k. The top-k answer rel-
evance measures the ratio of the number of relevant answers among the first k answers with the highest scores to k. The
experimental results are illustrated in Fig. 5. As MSLCA does not provide a ranking mechanism, we rank them by using tra-
ditional tf*idf based IR-style ranking methods as described in Eq. (2). We observe that SAIL(EI+KP-Index) achieves much bet-
ter top-k precision than state-of-the-art methods, and even leads to 10–40% over XRank and MSLCA. This is because our
ranking method is much more effective. Moreover, SAIL(EI+KP-Index) outperforms SAIL(EI-Index), which reflects the bene-
fits of our proposed keyword-pair ranking mechanism.
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Fig. 4. Search accuracy for different numbers of input keywords.
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Fig. 5. Top-k precision for different values of k.
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Fig. 6. Search completeness for different numbers of input keywords.
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5.1.2. Search completeness
In this section we compare the search completeness of different algorithms, which indicates the fraction of all correct re-

sults actually captured in the approximate answer. Fig. 6 illustrates the search completeness with different numbers of input
keywords. Table 6 shows the average recall among all the selected queries and Fig. 7 describes the 11-pt precision/recall
curves for all the queries. We can see SAIL achieves much higher recall, outperforming XRank and MSLCA by about 20–
30%. As existing methods identify the subtrees rooted at LCAs or its variants and cause false negatives. Instead, SAIL identifies
the answers ranked by the relevancy with an effective ranking mechanism. This comparison further reflects the effectiveness



Table 6
Average search completeness.

Recall (%) SIGMOD Record DBLP XMark TreeBank

XRank 84 82 76 68
MSLCA 78 73 65 54
SAIL(EI-index) 100 100 100 100
SAIL(EI+KP-index) 100 100 100 100

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

(a) Recall (SIGMOD Record)

XRank
MSLCA

SAIL(EI-index)
SAIL(EI+PK-index)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n
(b) Recall (DBLP)

XRank
MSLCA

SAIL(EI-index)
SAIL(EI+PK-index)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

(c) Recall (XMark)

XRank
MSLCA

SAIL(EI-index)
SAIL(EI+PK-index)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

(d) Recall (TreeBank)

XRank
MSLCA

SAIL(EI-index)
SAIL(EI+PK-index)
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of our proposed method. Moreover, in Fig. 7, we observe that SAIL outperforms the existing methods, and always achieves
higher precision than the other methods. The precision of other methods falls sharply with the increase of recall, while that
of SAIL varies slightly.

5.1.3. F-measure
To further compare the selected algorithms, we employed another good metric, the F-measure. We used the selected one

hundred keyword queries and compared their average F-measure. We can see that SAIL beats the other algorithms and
achieves the best F-measure as shown in Table 7. For example, on TreeBank, the F-measure of SAIL(EI+KP-Index) reaches
92%, the F-measure of SAIL(EI-Index) is 81%; while those of the other ones are less than 60%, and especially that of MSLCA
is only 53%.
Table 7
F-measure.

F-measureð%Þ XRank MSLCA SAIL(EI-Index) SAIL(EI+KP-Index)

SIGMOD Record 83 75 90 98
DBLP 78 71 88 97
XMark 73 66 86 95
TreeBank 59 53 81 92
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5.2. Usability study

To evaluate the usability of different algorithms, we used the INEX dataset. Usability is evaluated by human judgement.
The INEX corpus is composed of the full-texts, marked up in XML, consisting of 16819 articles of the IEEE Computer Society’s
publications from 12 magazines and 6 transactions, covering the period of 1995–2004, and totaling 735 megabytes in size.
The collection has a suitably complex XML structure (192 different content models in DTD) and contains scientific articles of
varying length. On average an article contains 1532 XML nodes, where the average depth of a node is 6.9.

INEX uses two graded dimensions to express relevance: exhaustivity and specificity. Exhaustivity is defined as a measure
of how exhaustively an XML element discusses the topic of request, while specificity is defined as a measure of how focused
the element is on the topic of request (i.e., discusses no other, irrelevant topics). Exhaustivity refers to the standard relevance
criterion used in IR, whereas specificity provides a measure with respect to the size of a component as it measures the ratio
of relevant to non-relevant content within an element. The combination of the two dimensions is used to identify those rel-
evant XML elements.

The INEX collection consists of 30 CAS (content and structure) topics and 30 CO (content only) topics. Here, we focus on
the CAS topics. A content and structure topic consists of a NEXI [49] query, an explanation of the requested information in
plain English, and finally a narrative that describes the criteria used by the INEX assessors to determine whether an answer
to the query is relevant. We issued 30 queries based on the 30 CAS topics. Fig. 8 illustrates the precision computed using the
INEX-provided utilities. Fig. 9 gives the average precision-recall graph on the 30 queries. We observe that our method still
achieves high precision and recall. This is because we use effective ranking techniques to identify the answers, instead of
finding answers based on a restrictive semantics.

5.3. Search efficiency

We evaluated the efficiency of SAIL, XRank, SLCA and MSLCA on the SIGMOD Record, DBLP, XMark and TreeBank datasets
in this section, and compared their elapsed time for various queries. We first compared the search efficiency with different
numbers of keywords and the experimental results are illustrated in Fig. 10, where SAIL(EI-Index) employs the SADC-EI-In-
dex and SAIL(EI+KP-Index) adopts both the SADC-EI-Index and the SADC-KP-Index. We observe that SAIL achieves high
search efficiency and outperforms state-of-the-art methods significantly. More importantly, with the an increasing number
of input keywords the search efficiency of XRank, SLCA and MSLCA degrades. This is because it is rather inefficient to discover
the rich structural relationships between content nodes on the fly. SAIL can efficiently identify minimal-cost trees by
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employing the skip-based method as discussed in Section 3, and in IR literature such methods have been proven to be very
effective for retrieving relevant documents based on inverted indices.

We then compared SAIL with state-of-the-art methods by identifying the top-k answers with different values of k, as
users are usually interesting in the top-k results. Fig. 11 gives the experimental results obtained. Note that SAIL has a key
feature that it can progressively identify the top-k answers by adopting the threshold-based techniques [12], which can effi-
ciently retrieve the top-k answers from multiple inverted lists in a progressive way; while the other methods have to first
retrieve all the relevant answers and then rank them. Accordingly, SAIL outperforms the alternative methods significantly,
and even is two orders of magnitude faster than the other approaches.

5.4. Index size

In this section, we report the storage size of our proposed structure-aware indices. The experimental results are illus-
trated in Table 8. We observe that the size of the SADC-EI-Index is smaller than that of the EI-Index. This is because the
SADC-EI-Index employs relative encoding scheme and need not maintain pivotal paths as discussed in Section 4. Moreover,
the SADC-EI-Index is a bit larger than general inverted indices since it also indexes the quasi content nodes besides the con-
tent nodes. Although the SADC-KP-Index is a little larger than the SADC-EI-Index, it achieves higher search quality than the
SADC-EI-index as experimentally shown in Section 5.1.

6. Related work

6.1. XML keyword search

In the literature there are different ways to define the answers to a keyword query on an XML document. A commonly
used one is based on the notion of ‘‘lowest common ancestor” (LCA) [16,44]. Given an XML document D and some of its
nodes v1;v2; . . . ;vm, we say a node u in the documents is the LCA of these nodes if 81 6 i 6 m, node u is node v i or an ances-
tor of v i, and there does not exist another node u0 in the document such that u � u0, and for each v i;u0 is either v i or an ances-
tor of v i. There are many LCA-based studies [15,25,50] to answer keyword queries over XML documents.



Table 8
Sizes of indexes.

Space (MB) SIGMOD Record DBLP XMark TreeBank

EI-Index 1.34 2642 694 641
Inverted-Index 0.18 287 94 61
SADC-EI-Index 0.21 481 136 101
SADC-KP-Index 0.36 768 198 156
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Fig. 11. Search efficiency for different values of k.
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To improve the answer quality, many semantics have been proposed [51,50]. Yu et al. [51] proposed the semantics of
exclusive LCA (ELCA) to improve result quality. An LCA is an ELCA if it is still an LCA after excluding its LCA descendants.
The intuition is that if a sub-element already contains all of the query keywords, it (or one of its descendants) will be a more
specific result for the query, and thus should be returned in lieu of the parent element [15]. Yu et al. [50] proposed the small-
est LCA (SLCA) to answer a keyword query. The basic idea behind SLCA is that, if node v contains all the input keywords, its
ancestors will be less meaningful than v. Hence, SLCA introduces the concept of smallest tree, which is a tree that contains all
the keywords but contains no subtrees that also contain all the keywords. Clearly SLCAðKÞ# ELCAðKÞ# LCAðKÞ. The key
property of SLCA search is that, given two keywords ki and kj and a node v that contains keyword ki, one need not inspect
the whole node list of keyword kj in order to discover potential solutions. Instead, one only needs to find the left and right
match of v in the list of kj, where the left (right) match is the node with the greatest (least) id that is smaller (greater) than or
equal to the id of v. Thus, one can skip many elements to find SLCAs and the property can be generalized to more than two
keywords. Moreover, one can scan the shortest lists and find the SLCAs by binary-searching other inverted lists. Guo et al.
[15] proposed XRank to improve search efficiency. Both XRank [15] and ELCA [51] employ the semantics of ELCA to answer
XML keyword queries. XRank extends PageRank’s ranking mechanism to XML by taking the nested structure of XML into
account, and proposes two core algorithms, DIL (Dewey Inverted List) and RDIL (Ranked Dewey Inverted List), to return
the top-k answers from ELCAs. The DIL algorithm sort-merges the m inverted lists of the query keywords to find the ELCAs.
The RDIL algorithm in [15] introduces Bþ-trees built on inverted lists sorted by Dewey ids to improve the efficiency. XRank
develops a hybrid algorithm which starts using RDIL and switches to DIL when it finds out that RDIL has spent too much time
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on answering the query. Multiway SLCA-based (MSLCA) keyword search in XML data [47] generalizes the SLCA query seman-
tics to support keyword search beyond the ‘‘AND” semantics to include both ‘‘AND” and ‘‘OR” boolean operators. For AND-
only SLCA query semantics, MSLCA notices that one need not completely scan the smallest keyword list for certain data in-
stances. Instead, certain keyword instances in the smallest keyword list can be skipped for faster processing. Yu et al. [51]
extended the SLCA idea to identify ELCAs. They presented an efficient algorithm, named Indexed Stack (IS) based on the ELCA
semantics by combing the stack-based mechanism and the skip-based techniques introduced in [50].

Schema-Free XQuery [34] uses the idea of meaningful LCA (MLCA), and proposes a stack-based sort-merge algorithm by
considering some structural properties and incorporating a new function mlcas into XQuery. XSeek [36] studies the problem
of inferring the most relevant return nodes without elicitation of user preferences. XSeek generates two types of nodes: re-
turn nodes that can be inferred explicitly by analyzing keyword match patterns; and return nodes that can be inferred
implicitly by considering both keyword match patterns and the XML data structure. Cohen et al. [8] proposed interconnec-
tion semantics to improve search quality. XSEarch [9] supports extended keyword search and focuses on the semantics and
the ranking of the results. It employs the semantics of meaningfully related nodes to answer keyword queries. Two nodes are
meaningfully related if they are in a pre-defined set, which can be given by administrators. It uses an all-pairs interconnec-
tion index to check whether two nodes are connected and meaningfully related. Li et al. [25] proposed valuable LCA (VLCA),
to improve the meaningfulness and completeness of answers beyond XSEarch. VLCA considers the semantics of the XML doc-
ument structures, which is similar to the meaningfully related semantics. VLCA proposes a more efficient algorithm to iden-
tify the answers based on a stack-based algorithm. XKeyword [21] is a system that offers keyword proximity search over
XML databases. It models XML documents as graphs by considering IDREFs and is therefore more related to keyword search
over graphs. Hristidis et al. [19] proposed the grouped distance minimum connecting tree (GDMCT) to answer keyword que-
ries by grouping the relevant subtrees. Their algorithm first identifies the minimum connected tree, which is a subtree with
minimum number of edges, and then groups such trees to answer keyword queries. Shao et al. [46] studied the problem of
keyword search over XML views. Liu et al. [37] proposed to reason and identify relevant answers. Huang et al. [38] studies to
find snippets to answer keyword queries. Li et al. [26] proposed a more effective ranking mechanism to improve search effec-
tiveness by combining structural compactness and textual relevance to rank the answers. The ranking functions are indepen-
dent of the search algorithms, and thus could be applied to any search algorithm.

Various XML full-text query languages have also been proposed [6,32,33], and the workshop INEX,14 INitiative for the
Evaluation of XML retrieval, aiming at evaluating XML retrieval effectiveness, has also been organized. More recently, two alge-
bras for keyword search over XML documents have been proposed in [2,42]. Amer-Yahia et al. [2] presented the XFT algebra that
accounts for element nesting in the XML document structure to evaluate queries with complex full-text predicates, while Prad-
han et al. [42] demonstrated several optimization techniques that guarantee better efficiency for keyword search over tree-
structured documents. You et al. [53] studied to rank an answers.

6.2. Keyword search over databases

In addition, the database research community has been studying keyword search over relational databases [1,4,20], graph
databases [17,23], and heterogenous data sources [27,31]. The different approaches for keyword search over relational dat-
abases can be broadly classified into three categories: the methods based on the candidate network [18,20,1,40], those based
on Steiner trees [4,10,17,23,35], and others based on Steiner graphs [31]. Kimelfeld et al. [24] demonstrated keyword prox-
imity search in relational databases, which shows that the answer of keyword proximity search can be enumerated in ranked
order with polynomial delay. Sayyadian et al. [43] introduced schema mapping into keyword search and proposed a method
to answer keyword queries across heterogeneous databases. Guo et al. [14] proposed data topology search to retrieve mean-
ingful structures from biological databases. Li et al. [28] proposed progressive ranking for effective keyword search over rela-
tional databases by indexing the primary–foreign-key relationships. He et al. [17] proposed the BLINK index to improve
search efficiency, which employed a keyword-to-node index to facilitate identifying Steiner trees. Dalvi [5] et al. proposed
a keyword search method on external memory graphs, which introduces a multi-granular graph representation to support
large graphs. Li et al. [29] proposed tuple units, which are composed of the most relevant tuples in the underlying databases,
to improve search effectiveness of keyword queries over relational databases. More recently, Li et al. [27] proposed a unified
keyword search framework, namely SAILER, for answering keyword queries over unstructured and semi-structured data. Li
et al. [31] proposed EASE to adaptively and effectively answer keyword queries over heterogenous data sources composed of
unstructured, semi-structured and structured data by summarizing the graphs transformed from the heterogenous data
sources. They proposed Steiner subgraphs to effectively answer keyword queries over graphs. Li et al. [30] studied type-
ahead search in relational databases.

7. Conclusion

In this paper, we have investigated the problem of effective keyword search over XML documents, with the aim of iden-
tifying the most relevant subtrees to answer XML keyword queries. We proposed an effective and progressive top-k keyword
14 http://inex.is.informatik.uni-duisburg.de/.

http://inex.is.informatik.uni-duisburg.de/
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search method. As opposed to existing LCA-based methods, we identified and indexed the structural relationships embedded
in XML documents into structure-aware indices and used the indices to improve the performance of XML keyword search.
We devised several structure-aware indices for efficiently identifying the minimal-cost trees. We developed the techniques
of link-based relevance ranking and keyword-pair ranking for effective keyword search over XML documents. We used the
threshold-based techniques to progressively identify the top-k answers. We incorporated a numbering scheme into our
structure-aware indices to reduce the index size. Our extensive experimental results show that our method achieves high
search efficiency and answer quality on both synthetic and real datasets for various queries, and outperforms state-of-
the-art approaches significantly.

The experimental study proves that keyword search provides an alternative way to query XML data. One important
advantage of keyword search is that it enables users to search information without knowing a complex query language such
as XPath or XQuery, or having prior knowledge about the structure of the underlying data and provides a user-friendly way
for querying XML data.
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