Nuhuo: An Effective Estimation Model for Traffic Speed
Histogram Imputation on A Road Network

Haitao Yuan Gao Cong Guoliang Li
Nanyang Technological University Nanyang Technological University Tsinghua University
Singapore Singapore Beijing, China
haitao.yuan@ntu.edu.sg gaocong@ntu.edu.sg liguoliang@tsinghua.edu.cn

ABSTRACT

Traffic speed histograms show the distribution of traffic speeds over
a certain period. Traffic speed might not be recorded continuously,
leading to missing histograms for some links on a road network.
However, accurate imputation of missing histograms is a critical
yet challenging task. This paper introduces a novel framework to
address four previously unexplored dimensions crucial for precise
traffic speed histogram estimation: regionality, proximity, sparsity,
and volatility. First, to address the challenge of regionality and
proximity, we employ a global partition graph that captures both
regional and proximal correlations within the road network. Next,
in response to the challenge of sparsity, the framework features
a disentangled feature encoding pipeline, comprising a global en-
coder and a localized spatio-temporal encoder. This design allows
for the effective handling of entangled spatio-temporal dimensions,
thereby mitigating the issues related to input sparsity. In particu-
lar, the framework leverages graph neural networks and recurrent
neural networks to capture spatial and temporal correlations. In
addition, to encompass the complexities of spatio-temporal correla-
tions both on global and local scales, we employ a two-layer fusion
module with an attention-based mechanism for representation inte-
gration. Lastly, to mitigate the challenge of volatility due to missing
values, we incorporate a self-supervised learning task using an auto-
encoder framework, enhancing the stability and robustness of the
encoding models. Extensive evaluations on two real-world datasets
confirm that our method significantly outperforms state-of-the-art
solutions in terms of both accuracy and robustness.

PVLDB Reference Format:

Haitao Yuan, Gao Cong, and Guoliang Li. Nuhuo: An Effective Estimation
Model for Traffic Speed Histogram Imputation on A Road Network.
PVLDB, 17(7): 1605 - 1617, 2024.

doi:10.14778/3654621.3654628

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yuanhaitao/Nuhuo.git.

1 INTRODUCTION

The acquisition of traffic speed data across road networks serves as
a foundational preprocessing step for a myriad of transportation

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654628

applications. These range from travel time estimation [34, 35] and

optimal route planning [6, 23, 24, 33] to the identification of traffic
anomalies [21]. In certain real-world contexts, it becomes crucial to
examine the distribution of traffic speeds, often represented in his-
togram formats [14, 20]. However, the collection of comprehensive
traffic speed data often faces challenges due to the absence of loop
detectors or vehicle-generated data, resulting in numerous missing
values. To mitigate this, existing literature [10, 18, 20, 30] proposes
effective methodologies for imputing missing speed histograms or
general spatio-temporal data. Specifically, these methodologies
concentrate on learning spatio-temporal representations for link
features by harnessing spatial and temporal correlations. This is
typically achieved through the employment of technologies such as
Graph Neural Networks or Attention Mechanisms, which are adept
at encapsulating the constraints of the entire road network. Addi-
tionally, temporal convolutional networks and diffusion networks
are often utilized to effectively capture temporal dependencies. De-
spite these advancements, there remain critical gaps that have yet
to be addressed by current methodologies.

(1) Regionality and proximity: spatially multi-view corre-
lations. Spatial correlations in traffic speed data can be broadly
categorized into two distinct types: proximity-based and regionality-
based correlations [34, 36]. Proximity-based correlations illustrate
the direct impact of one road link’s traffic condition on neighboring
links. For instance, an incident on a link might initiate a cascading
effect, influencing the conditions on adjacent links, and thus alter-
ing their traffic speed patterns. On the other hand, regionality-based
correlations stem from distinct travel behaviors tied to specific re-
gions. An example of this can be seen in business districts, where
high vehicle concentration leads to decreased speeds during rush
hours. It’s crucial to note that existing methods struggle to accu-
rately capture both types of correlations simultaneously.

(2) Sparsity: ineffectiveness of entangled spatio-temporal
representations: A significant challenge arises from the frequent
absence of data on some links for some time intervals, leading to
sparse training data. Existing techniques [14, 20] often directly
produce entangled spatio-temporal representations due to their
reliance on more extensive training data, which can be inefficient.
For instance, consider spatial and temporal dimensions with respec-
tive sizes of m and n. In a simplistic scenario, a minimum of m + n
samples would suffice to span these dimensions. Yet, when these
dimensions are entangled, the minimum sample requirement for
effective representation increases to m X n, a number significantly
higher than the sum of the dimensions considered separately.

(3) Volatility: missing values in inputs lead to unstable encod-
ings. Existing learning-based methods generate representations

https://doi.org/10.14778/3654621.3654628
https://github.com/yuanhaitao/Nuhuo.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654628

from input features, but often struggle with raw traffic data contain-
ing missing values. Existing techniques either overlook these miss-
ing values [30] or use default values like historical averages [14, 20]
and linear interpolation [18], without constraining the resulting
representations. This leads to volatility in feature-based encodings.
For example, consider labeled data [1, 2, 3, 4]. If the first two items
are missing, the encoding becomes fp([?, ?, 3, 4]), whereas it would
be fp([1,2,?,7]) if the last two items are missing. Despite the dif-
ferences in input, a robust encoder should recognize the similarity
between these two encodings as they originate from the same la-
beled data. However, there is a notable lack of constraint in the
encoding generation process, which fails to address this volatility
issue adequately.

To comprehensively address the aforementioned challenges, we
introduce a novel framework, denoted as Nuhuo, designed for the
accurate estimation of missing traffic speed histograms. Initially, to
address the first challenge, we segment the entire road network
into non-overlapping partitions and construct a global partition
graph to encapsulate the network’s structure. This approach en-
ables us to capture regionality-based correlations by integrating
partition-specific encodings into the graph. Concurrently, it allows
for the assessment of proximity-based correlations among individ-
ual links within each partition. Next, in response to the second
challenge, we introduce a disentangled feature encoding pipeline
comprising a global encoder and a localized spatio-temporal en-
coder. Specifically, the global encoder is employed to independently
generate spatial and temporal representations at the partition level,
utilizing global features such as the partition graph and time in-
tervals. Subsequently, additional features pertinent to each parti-
tion are processed by the local spatio-temporal encoder, yielding
spatial and temporal representations at the link level. To further
capture spatio-temporal correlations both on global and local scales,
the final spatio-temporal representation is synthesized through a
two-layer fusion framework, which initially fuses global and lo-
cal representations from both spatial and temporal perspectives,
followed by a module that integrates these spatial and temporal
representations. At last, to enhance the robustness of our encoding
models in response to the third challenge, we incorporate a self-
supervised learning task. Specifically, we utilize an auto-encoder
framework to generate spatio-temporal representations for com-
plete ground-truth data, which then serve as supervisory labels for
the training of our encoding modules. In summary, we develop a
self-supervised task specifically designed to impose explicit con-
straints on the encoding model’s learning process. This strategic
intervention is aimed at significantly reducing the volatility typ-
ically associated with varying input data, thereby enhancing the
stability and reliability of the model’s output.

In summary, the main contributions are listed as follows.

o We identify and address four critical yet previously unexplored
dimensions essential for accurate traffic speed histogram impu-
tation: regionality, proximity, sparsity, and volatility. We then
develop a fine-grained pipeline that leverages features pertinent
to these dimensions. (Section 2)

e We design a comprehensive neural network model, Nuhuo, that
can fully exploit different spatio-temporal features to achieve an
accurate traffic speed histogram estimation. (Section 3)

Road Network l Link-
lo 1l o _ c .

‘1 < ~o P onnection
> 2 Graph

y/ -7 L:lk
ls;l Iy -1]

i} PN \ IP -
L oy _‘*)»llo Il 5 Link-Edge

\
[\\ '1a — ;j’ Partition

]

O Vertex =~ — Link

Partition-Edge

Figure 1: Road Network & Link-Connection Graph

e We employ a fusion module to encompass the complexities of
spatio-temporal correlations both on global and local scales. This
module leverages an attention-based mechanism to amalgamate
diverse representations. To enhance stability, we incorporate an
auto-encoder module into the learning process. (Section 4 and 5)

o We conduct a comprehensive evaluation on two real-world datasets.
Our method demonstrates significant improvements over ex-
isting state-of-the-art solutions in terms of both accuracy and
robustness. (Section 6)

2 PRELIMINARY

We first introduce some key concepts and then formalize the speed
histogram imputation problem on a road network.

2.1 Basic Concepts

Road Network & Link-Connection Graph(LCG). As shown
in the left part of Fig. 1, a road network is modeled as a directed
graph (V, L), where V is a vertex set and L is a link set. Each link
l; € L represents a road segment linking two vertices. In this paper,
we focus on spatio-temporal data of links, so we convert the road
network into a link-connection graph (LCG) G = (L, E), where each
node [€ L in the LCG corresponds to an edge (link) in the original
road network. Therefore, the number of nodes in the LCG is equal
to the number of edges in the road network. Edges in the LCG
are established based on the road network’s topology; specifically,
if two links are adjacent in the road network, this adjacency is
represented as an edge in the LCG.

LCG Partitions. We further utilize some graph partition approaches
to divide the whole graph into disjoint partitions. The reason for
partitioning G is two-fold. On the one hand, capturing the rela-
tionship between every two links in the whole graph is inefficient,
especially when the number of links is too large. For example, if
there are N links in the whole graph, the adjacent matrix would be
in the shape of N X N. In contrast, if we keep the partition balance
and let the number of links in each partition be M (M < N), there
would be [%] partitions, and each partition corresponds to an ad-
jacent matrix with the shape of M X M, so the full size would be

[%]M XM~ N x M < N x N.On the other hand, according to
the first law of geography [19], near things are more related than
distant things, so it’s unnecessary to capture fine-grained corre-
lations for distant links. As shown in the right part of Fig. 1, we
use the link-edge to model the relationship between near links in a

partition while using the partition-edge to model the relationship
between distant links. For simplicity, we demote the k-partition
as Py = (Lg, E), where Ly C L,E; C E, and each e = (l;,[;) in
Ej means both [; and [; belong to L. Hence, we reformulate the
link-connection graph with G =< P, & >, where P = {P1,P2,--- }
denotes the set of partitions, and & denotes the set of edges between
partitions. Specifically, if |; € P, andl; € Py, (k1 # k2), there would
be an edge (Px,, Px,) € &.

Remark. In this paper, we use Metis [12] as the graph partition
method, which is chosen for its ability to minimize the impact of
partitioning on the overall graph structure, effectively balancing
the trade-offs between regionality and proximity. In particular, its
efficacy in road network partitioning is well-documented in previ-
ous studies [27, 32]. In addition, due to the uneven nature of graph
partitioning with the method Metis, the number of links in different
partitions inherently suggests varying granularities.

Traffic Speed Histogram. Given a time interval ¢ (e.g.,8:00-8:10AM)
and a link / in the LCG, we consider the speed of all vehicles
passing through the link during the time interval. Following the
prior work [20], we represent the speed distribution at the time
interval t as a histogram hist!. In particular, considering the link’s
speed range(e.g., 0 ~ 60km/h), we split it into m disjoint parts
(denoted as sloty, - - - ,slot;) to approximate the speed distribu-
tion histlt = a1, ,am], where 0 < ; < 1 and Z?:ll a; = 1.
For example, given five vehicles’ speed values (i.e., 5,2, 12, 15, 20)
and the two parts slot; = [0, 10) and slotz = [10, 20], the corre-
sponding histogram would be hist = [%, %]. Specifically, consid-
ering all links L in the LCG at the interval ¢, we represent their
speed distributions with a matrix hist]i = [histltl, ,histltlLl] €

RILIXm Furthermore, the traffic speeds at continuous time inter-
vals may have correlations, so we denote the speed histograms at
T = [t1,---,t7|] time intervals as the following tensor hist{ =

[[histltl,m], [,histltm]] € RILIXITIxm_
1 IT|

2.2 Problem Formulation

Traffic Speed Histogram Imputation on A Road Network. In
the real-world scenario, it’s impractical to collect all vehicles’ in-
formation to compute the traffic speed histogram for each link on
the road network, and there even exist some sparse links with-
out any speed value. Although we can leverage some statistical
methods (e.g., the average value of historical speeds) to impute
traffic speed histograms, it requires an effective method to generate
a more accurate speed histogram for each link in the road net-
work. To distinguish observed and missing speed distributions, we
use the matrix MLT € RILIXITI t6 label histograms in hist] where
MZ [1]1[t] = 0 means the speed distribution of / at the time interval
t is missing, otherwise MLT [1][¢] = 1. Formally, we define the speed
histogram imputation as an estimation problem as follows.

DEFINITION 1 (SPEED HISTOGRAM IMPUTATION). Given the LCG

= (L, E), a time interval sequence T = [t1,--- ,t|7|], the raw speed

distributions hist{ and the corresponding label matrix M , the goal is
~ T ~ T

to estimate a new tensor hist; such that each histogram histy [1][t]

is as close as possible to the ground truth hfst{ [1][t]. In other words,

Spatio- _/ neural
H s H, t temporal /—\ network
Encoder
Spatial Fusion Temporal Fusion Module [] loss
HY /\ HY H:/\Htg ST Fusion l:l main task
0000 000 [eXe)e) [auxillary task

@ e e el O O O OF-» lossy
Encoder Auto-Encoder

@ f Module

Generator

1
-« ~
f\ IS oo -

- @@ H\stogram
‘ 2 o V f A Generator
§o/” o 7 Lo ; |
wt
F¢ = {(Ly, Bx), histT , MEYEL 9 = {(P,€), T} Encoder L
T Graph Partition ?
=
hz.stL|' —————————————————————————— > l0333

Figure 2: The Architecture of Our Proposed Model Nuhuo

| (L, E), T, histf, M} |

we aim to learn a model gg(-) as follows:
argming d(h{stz, hi-st{)
s.t. hfstz =90(G,T, histZ,Mg)

where 0 represents the model’s parameter and d(-, -) is a metric eval-
uating the alignment between estimates and ground truth.

3 MODEL OVERVIEW

In this section, we introduce a fine-grained pipeline to illustrate the
process of deducing the estimated speed histograms from the given
input and then elaborate on the design of our model. In particular,
the model includes two learning tasks: the main imputation task
and an auxiliary task, where the main task is to generate stochas-
tic speed histograms following the outlined pipeline. Meanwhile,
the auxiliary task is specifically designed to augment the learning
of spatio-temporal hidden representations, thereby enriching the
model’s overall predictive capability.

3.1 A Pipeline of Speed Histogram Imputation

As shown in Fig. 2, the speed histogram imputation pipeline in-
cludes three steps as follows.

step @: The first step belongs to a pre-processing procedure,
which aims to extract local and global features from the given input
(ie., {{L,E), T, histT, MLT}). To improve the scalability, we utilize a
graph partition algorithm, such as Metis [12] (Notably, the partition
strategy is orthogonal to our proposed method), to divide the whole
graph LCG into disjoint parts, as well as the data histLT and MZ,

and hence generate the local feature fklc = {(Lg, Ex), histT R MT }

for each partition. For simplicity, we denote the set { fk }I?I

f I Moreover, to keep the spatial correlations among different
partitions, we denote (P, E) as the global spatial feature. Similarly,
we consider the feature T as the global temporal feature, which is
shared by all partitions. In summary, we denote all global features
as f9l = ((P, &), T}.

step 2): The second step aims to encode both global and local
spatio-temporal features into hidden representations. At first, to
capture the spatio-temporal correlation among different partitions,
we leverage the module Global Encoder to learn the hidden repre-
sentations of global features. Next, we feed them and local features

into the module Spatio-temporal Encoder to further generate spatio-
temporal representations of all links at different time intervals for
each partition. For the sake of simplicity, we denote them as the
set H{ = {H{k }Li)ll, where H{k € RILIXITIXd genotes all links’
representations in the k-th partitions and d is the representation’s
dimension.

Discussion. The intuitive method of generating HLT is to merge
global and local representations which are generated by two inde-
pendent modules respectively. However, it cannot capture the cor-
relation between global and local features. According to Bayesian
inference, training a regression model y = gy (x) equals to finding
the optimal parameter 8* = arg ming —log(P(0|x,y)). In our set-
ting, we have x = (f9!, ¢}, 0 = (61,6,) and y = HLT According to
the chain rule in probability theory, we have

log(P(6]x, 1)) = log(P(61, 02| f7", f'¢, H]))
=logP (61|, f'°, HY) + logP(8:16:, 9, ¢, HT)
=logP(6:1f9, z) + logP (0, |z f'¢, H]).

where z = gg, (£9) denotes the representation of 9!. Subsequently,
the whole model y = gy(x) can be converted into two sub-modules
z = gp, (9% and H{ = gp, (2 f¢), where 6; and 65 respectively
denote parameters in Global Encoder and Spatio-temporal Encoder.

step (3): The third step aims to deduce the speed histogram from
the spatio-temporal representation for each link at each time inter-
val. In particular, we first use the module Histogram Generator to

~ T
transform hidden representations into estimated histograms hist; .

3.2 Model Design

Main task. We leverage different neural networks to implement
three modules (i.e., Global Encoder, Spatio-temporal Encoder and
Histgoram Generator respectively) as depicted in Section 3.1. In
particular, Global Encoder aims to extract the spatial and temporal
backgrounds/contexts from the given global features. Therefore,
we design different neural networks in Global Encoder to generate
two hidden representations H? and Htg to denote spatially and tem-
porally global context. As for Spatio-temporal Encoder, we need to
generate spatio-temporal representation for local features based
on the global context. To achieve this goal, we first propose an
encoding network Local Encoder to generate the local-spatial repre-
sentation Hé and the local-temporal representation H, ! and then
fuse them with the global representations H and Hf . Specifically,
we propose a two-layer fusion mechanism to deduce the final spatio-
temporal representation HLT In the first layer, we aim to fuse global
and local representations from spatial and temporal perspectives
respectively. Therefore, we design the module Spatial Fusion to fuse
the local-spatial representation Hsl and the global-spatial represen-
tation HY into the spatial fused representation Hy. Similarly, we
design the module Temporal Fusion to generate the temporal fused
representation H; by fusing local and global temporal represen-
tations Hf and Htg . Subsequently, in the second layer, we design
the module ST Fusion to capture the correlation between spatial
and temporal dimensions by fusing Hf and Htg into the final spatio-
temporal representation HI. At last, we implement the module

L
Histogram Generator with neural networks and deduce the impu-

~ T ~ T
tation results hist; = {histy, }Lﬂ for all partitions. Notably, we

-, T .
denote the ground truth as hist} , so we can leverage some functions

to measure the loss loss; between h{stz and hi_st{, which can help
train the model by the back-propagation operation.

Auxiliary task. To enhance the model’s effectiveness, we design
an auxiliary branch to assist the learning of the spatio-temporal
representation HLT On the one hand, I:Ig can be regarded as a

~ T
low-dimensional representation of the estimated result hist; . On
the other hand, the main goal of our problem is to make the esti-

mated result h{stz close to the ground truth hfst{. Therefore, we
first design the encoder module Histogram Encoder to convert the
ground truth hi_st{ into another low-dimensional representation
I:IE, and then leverage some distance functions to constrain the
loss lossz between ﬁg and HLT when training the whole model. In
addition, to better train the encoder Histogram Encoder, we borrow
the training structure of auto-encoder [28], which applies a genera-
tor module to covert the encoded low-dimensional representation
into raw data and learn both the encoder and the generator in the
self-supervised mode. Specifically, we set the generator to be the
same as the generator module Histogram Generator in the main
branch. In other words, these two generator modules share neural
network weights. Subsequently, we can get new estimated results

~ T ~ T .
hist; = {histp, }Lill for all partitions and hence can compute the

loss [oss3 between his tz and the ground truth his tz with the similar
function as lossy.

To sum up, the main components in our model consist of three
encoder modules (i.e., Global Encoder, Local Encoder and Histogram
Encoder), three fusion modules (i.e., Spatial Fusion, Temporal Fusion
and ST Fusion), and a generator module (i.e., Histogram Generator).
Notably, all modules are first trained with labeled samples in the
training phase, and then we can leverage trained modules in the
main branch to infer estimated results for testing samples. Next,
we will elaborate on each module’s detail to effectively incorporate
both global-local and spatio-temporal characteristics.

4 MAIN BRANCH

As described in Section 3, the main branch in Nuhuo, aiming to
generate speed histograms from given local and global features,
includes a global encoder module, a spatio-temporal encoder mod-
ule, and a histogram generator module, where the spatio-temporal
encoder module consists of a local encoder and three fusion sub-
modules. In particular, we first explain the design of the global
encoder in Section 4.1, and then elaborate on the spatio-temporal
encoder’s details in Section 4.2, which can effectively incorporate
spatio-temporal correlation among global and local features. At
last, we focus on the procedure of speed histogram generation from
encoded results in Sectoin 4.3.

4.1 Global Encoder

In the global encoding module, we take as input the global fea-
tures G = (P, &) and T, where G represents all partitions of the
link-connection graph, and T means the time intervals. The in-
tuitive method is to encode G and T into spatial and temporal
representations respectively. However, inter-regional traffic condi-
tions between different partitions in G are dynamic according to the

i

S o
O]
LSTM ——(

Oulil @ 1,
Time = 8
interval i 8 re
Tuesday s
8:55-9:00 <33-9:00
Y, %H FCy 8

JBOU0D
00000

0 p
ti Oulil] Halil& HY
FCy FCy | L) —
v]
—>(¢ b >(o ta —>®
Bnf [A [A] | D
k] m
| GCN | \GE)N\ | GCN |
\/:/\?; 4 ?Hg Hg Hg
— 1 Average
G = (P,&) JiilodeEmbedting) FCs Pooling

Figure 3: The Framework of Global Encoder

change of time intervals T. For example, the traffic demands differ
between daytime and nighttime, and the weather varies at different
time intervals. These variations can influence individuals’ choices
of transportation modes, consequently resulting in variations in
the traffic congestion levels. In addition, from a perspective of prob-
ability and statistics, the joint distribution p(G, T) can decomposed
as p(T) - p(G|T), where p(T) models the prior distribution of the
global temporal feature T and p(G|T) models the conditional dis-
tribution of G given T. Therefore, we first design a global temporal
encoder to encode T into Htg , based on which we then design a
global spatial encoder to encode G into HY.

Encoding T. As mentioned before, T is composed of time intervals
[t1, t2, -, t|T|]. Therefore, we first design the time interval embed-
ding module to encode each time interval ¢;. Due to the continuous
nature of time intervals, it is unrealistic to embed every time inter-
val. Thanks to the weekly periodicity, we only need to consider time
intervals of a week. In particular, we can regard the time interval as
a combination of “day-in-week” (1 to 7 for Monday-Sunday) and
“time-in-day” (1 to % if the size of a time interval is At minutes).
As shown in Figure 3, the time interval (Tuesday 8:55-9:00Am)

x

corresponds to 2 and % for “day-in-week” and “timein-day”, re-

spectively. Next, we use one-hot codes to represent them, denoted
as O, € R7and Oy € R Later, we use two fully connected
neural networks (FC; and FCy) to embed O,, and Oy into dense
vectors H,, € R% and Hy e Rdd, which are then concatenated to
denote the time interval’s representation. To get the global tem-
poral representation Hf € RITIXd: of the sequence T, we need
to consider the sequential influence among different time inter-
vals. Therefore, we apply the effective recurrent neural network
LSTM [9] to further encode each time interval’s representation,
which can be formulated as follows:

HY[i] = LSTM(concat (Hi,[i], Hyli]), HY [i - 1]) 2)
where the output of LSTM at the i-th step (i.e., Hf [i] € R%) could
incorporate sequential information of previous time intervals.
Encoding G given T. The aim of encoding G is to generate global
spatial representations HY € RIP1Xds for all partitions in G. At first,

we propose the module Node Embedding to generate each partition’s
embedding, similar to time interval embedding. In particular, we

first use one-hot embedding Oy[k] € RI? to represent the partition
Py and then apply a fully connected neural network FC3 to embed
Oy[k] into a dense vector Hy[k] € RY% . However, the significant
point is to consider the correlation between different partitions
given the graph structure, which cannot be captured by Hy. To
address this issue, we first build the adjacent matrix A to represent
the graph, where A[k;, kj] = 1 if there is an edge in & linking the
two partitions Py, and Py, and then apply the currently effective
graph neural network GCN [14] to further encode H;. Notably, to
incorporate the given temporal condition T, we first generate a
new adjacent matrix Aj for each time interval t;, where A; [k;, k il =
Alki, kj] © FC4(Htg[i]) means using the fully connected neural
network FCy to generate different weight values for different new
adjacent matrices at different time intervals. Later, we respectively
use GCN to further encode H, into Hgt" based on A; at each time
interval t;, which leads to a sequence of spatial representations

t
(Hy, -

spatial representation Hsg = Avg([Ht‘, S H;T|]), where Avg(-) is
the average pooling function and the partition Pj. corresponds to
the representation HY [k] € R%.

,H_‘;m]. At last, we compute their mean value as the global

4.2 Spatio-temporal Encoder

Actually, the goal of the spatio-temporal encoder is to convert raw
speed histograms histLT into hidden representations I:I{k for each
partition Py = (Lg, Eg). Notably, global spatial and temporal con-
texts should be taken into account. To achieve this goal, as shown
in Figure 4, we first generate spatial representations H:[k] and
temporal representations Hf [k] from hist{k, and then fuse them

with global-spatial representation H?[k] and global temporal rep-
resentation Htg , respectively. At last, the fused spatial and temporal
representations are further fused with two attention modules: the
spatial-to-temporal (S2T Attention) and the temporal-to-spatial (725
Attention), which would lead to the final spatio-temporal represen-
tation H LT . Next, according to Figure 2, we will introduce the whole
procedure, which includes three stages as follows.

phase 1 [local encoder]: In this stage, we aim to extract spatial

and temporal representations from the local features hist{k for

each given partition. In particular, hist{ can be regarded as a set of
|Lg| X |T| histograms, where |Li | and |L| denote the number of links
and time intervals, respectively. Therefore, to generate the local
spatial representation Hé [k] € RIPxIXds | we need to compress the
temporal dimension, so we apply an LSTM module to capture the
temporal sequence characteristic and then merge all elements in
the temporal sequence with the average pooling operator, which is
formulated as follows:

Hik] = Aog(LSTM (hist], ,dim = 1), dim = 2) (3)
In contrast, we need to compress the spatial dimension for gen-
erating the local temporal representation H; (k] € RITIXd: 50 we
apply an GCN module to capture the spatial graph characteristic
and then merge all elements in the spatial graph with the average
pooling operator, which is formulated as follows:

Hlk] = Avg(GCN(hist[k,dim =2),dim=1) (4)

HY[K]

s

17
Spatial Fusion

Temporal
?» Fusion
: HK|HK

1
Hlk] e ool —
7\
‘ S2T T2S
lﬁ—ﬁl l%g—ﬁl Htt[k] tr“‘”‘i Attention Attention
4 4 H;[k] H k]
Temporal Spatial
Average || LSTM Average
Poolin: Pooling :
Local Encoder ST Fusion
a .o ===
W e T,
\ o . o - =
""\‘ I lly 041 0 ,‘;‘\ , ’ ’ \\\’
histT W o0 oo [} N 4 N
(o) TN 02,0 Mo W wm wms 1,

Figure 4: The Framework of Spatio-temporal Encoder

phase 2 [spatial fusion & temporal fusion]: In the spatial fu-

sion, we aim to further encode each link’s representation HSI [k] by
incorporating the corresponding partition’s global code H? [k]. In
partition, we add the global code into each link’s code, and then
use a GCN module to capture the local correlation between dif-
ferent links and generate the fused representation Hg[k], which is
formulated as follows:
Hy[k] = GCN (H;[k] ® H] [k]))
As for temporal fusion, we consider each time interval’s global code
Htg [ti] for each local temporal code Hg [k][ti]. Hence, we first add
Hf [#i] into Hg [k][ti], and then apply an LSTM module to capture
the sequential characteristic, which is formulated as follows:
He[k][t:] = LSTM(H{ [K][t:] @ H] [:]).1 < t: < |T| (6)
phase 3 [ST fusion]: According to the previous steps, there are
two representations Hs[k] € RIXI*X4s and H,[k] € RITIXd: for
each partition Py, requiring a fusion operator to generate the final
spatio-temporal tensor ﬁLTk € RILk[IXITIx(ds+dt) Ope intuitive fu-

sion method is to concatenate them with the formula HLTk [li,tj] =
concatenate(Hs[k][I;], H; [k][¢;]) for each link [; at each time in-
terval t;. However, this method is too straight to capture the spatio-
temporal correlation between the two representations. To address
this issue, we leverage the attention mechanism to convert one
representation into the other representation’s space, which is im-
plemented in the two modules T2S Attention and S2T Attention. In
T2S Attention, we aim to use all temporal representations H! [k]
to enhance each spatial representation Hg[k][[;]. In particular, we
first compute the attention score between the spatial representation
Hg[k][l;] and each temporal representation H;[k][t;], and then
use the scores to calculate the weighted sum of H; [k], which would
be added with Hs[k][l;] to generate the enhanced result H:[k].
The whole procedure can be formulated as follows:

Scores[li, tj] = (Hs[k][1;] x W) x (H,[k][£;] x W)
Weights[l;] = Softmaxje(1 1) ({Scores[l;,t;]}) € RI7!
IT|

H{[k][1:] = Hs[k][L:] +ZWei9hts[li][fj] < (Hel[k][tj] x W)
j=1

™

where W € Rsxdn W e R%Xdn and WS € R%*9s are learnable
matrix parameters aligning the dimensions of different represen-
tations. In contrast, the goal in S2T Attention is to use all spatial
representations Hg[k] to enhance each temporal representation
H; [k][t;], which can be formulated as follows:

Score:[tj,1;] = (He[k][£;] x W)) x (Hs[k][L;] x whH)T
Weight;[t;] = Softmaxic|y 1, ({Score:[t;,1;]}) € RIFI

[Lg|
H;[k][t;] = He[k][2;] + ZWeightr[t][li] - (Hs[k][L:] x Wy)
i=1

At last, we concatenate two enhanced results into the final spatio-
temporal representation HLTk [li, tj]= concat (HE[K][1i], HI[k][t;]).

4.3 Histogram Generator

We have encoded all features (a.k.a., global and local features)

and generated the associated representation H{ for each parti-

tion Pj. Subsequently, we merge them into the whole histogram
5T _ AT APl |LIX|T| % (ds+d;)

tensor H; = concatenate({HLk }k=1) eR . Next, we

need to generate the estimated histograms h{st{k based on PAILTk.
As shown in Figure 2, we design the module Histogram Genera-
tor to achieve the goal. In particular, this generation procedure is
composed of the following two steps:

phase 1 [estimating for all links]: To make the estimation more

efficient (i.g., batch operators on GPUs make the tensor computa-
tion more efficient), we apply a two-layer fully connected neural
network to batch estimate all speed histograms based on all links’
spatio-temporal representations HY , and the associated process is
formulated as:
hist”'] = ReLU (AT x W} +bl) x W2 + b2 € RILIXITIxm o
hist') [i, j] = Softmax(hist”} [i, j,:]) € R™
where W} € R(ds*+dt)xdn and pl € R% denote the weight matrix
and bias vector parameters of the first layer, W2 € R&Xm and
b2 € R™ indicate the affiliated parameters of the second layer,
Relu(-) and Softmax(-) are two activation functions. Notably, the
usage of Softmax(-) is to make each speed histogram under the
constraint of X712, a; = 1.
phase 2 [refining with label matrix Mg]: Our primary aim is

to accurately impute data at missing positions, which are indicated
by zero values in the label matrix Mg, Therefore, we need to refine

~ T ~ T
the estimated result hist’; into the final result hist; with the la-
bel matrix MZ Formally, the refinement process is formalized as
follows:
A T ~ T
hist; = (1- M}) © hist’; + M] © hist] (10)
where hist{ represents raw input histograms.

~ T
In summary, we denote the whole generation process as hist; =
Generator(H!, MLT W, W2, bl, b2) for simplicity.

e

5 MODEL LEARNING

In this section, we first focus on the auxiliary training task, aiming
to leverage the auto-encoder model to supervise the learning of
spatio-temporal representations H{ . Next, we discuss how to train
Nuhuo with training data on the two tasks.

5.1 Auto-Encoder Branch

Motivation. Rethinking the imputation problem, our goal is to
estimate missing speed histograms based on observable speed his-
tograms and other observable contexts (i.e., road network graph
and time interval sequence). For simplicity, we denote observable
histograms, missing histograms, and observable contexts as x,, xm
and c, respectively. Therefore, the encoder-generator framework
of our model Nuhuo is equivalent to first encoding both x, and
ce into hidden representations z = (z,, zmm), and then generating
x = (X, Xm) based on z, where z, and z,, correspond to the hid-
den representations of x, and x, respectively. In particular, the
optimization target of Nuhuo can be formulated as follows:

argming — logpg (x, z|x,, ce)

= —(logpo (z|xo, ce) +logpe (x|z))
—_— —

encoder generator

However, there are no explicit supervised signals for optimizing
the encoder part logpg(z|xo, c¢) in the training data, which makes
it ineffective to generate the hidden representation z. To address
this issue, we apply the auto-encoder framework [28] to generate
supervised signal z’ = (z},,, z},) from x = (xm, X0). In particular, the
framework consists of an encoder module En (i.e., (z’) = En(x))
and a decoder module De (i.e., x = De(z’)), where we can train
the two modules with the loss of reconstruction on histograms.
Therefore, the optimization target of Nuhuo is reformulated as
follows:
argming — (logpg (x, z|Xo, ce, 2") +logp, (2'|x)
= —(logpo (2]xo, ce, 2') +logpg (x|2) +logpy (2|x) +logpe (x|2’))
i
enhanced encoder generator encoder En decoder De
In particular, the raw encoder py(z|xo, c¢) is enhanced by the su-
pervised signal z’, which leads to the new encoder pg(z|xo, ce, 2”).
Notably, the decoder De(-) is the same as the generator, and both
of them aim to convert representations from the same hidden space
into the same speed histograms.
Encoder module. As shown in Fig 2, the encoder module En is
designed to covert each ground-truth histogram hi_stz [li,tj] e R™
into a hidden representation P_Ig [li,tj] € R4*d: and we apply a
two-layer fully connected neural network to achieve a goal, which
is formulated as:

AT = ReLU (hist] x W +bL) x W2 + b2 (11)

where W} € R™%% and b},
bias vector parameters of the first layer, W2 €
b? € R(ds*d:) indicate the affiliated parameters of the second layer.
Decoder Module. As mentioned before, the decoder should be
the same as the generator in the main branch. Hence, we reuse the
generator module Histogram Generator in Sec. 4.3 to decode the

€ R% denote the weight matrix and

Rdh X (ds+d;) and

~ T
new estimated histograms hist; from the hidden representations
HZ. Similarly, the whole decoder procedure can be denoted as

~ T —
hist; = Generator(HY, MT|W1 W2,bl,b2).

5.2 Model Training

In this section, we will first introduce the overall learning objective,
which is composed of three losses. Afterwards, we will illustrate
the whole training algorithm.

Algorithm 1: Model Learning for Nuhuo

Input: training inputs (L, E), T, hist!, MZ training labels h{st{,
five parts of the whole model (local encoder M., global
encoder Mgy, fusion module My; (i.e., three fusion
sub-modules), auto-encoder Mg, auto-decoder (i.e.,
histogram generator) Mge, learning rate Ir, training epochs
ep, batch size bs, loss weight A.

Output: parameters 0;c, 041, Ofs, Oge, Oge, for the five parts M,

Mgl; Mfs: Mae, Mge
1 generate (P, &) based on (L, E);
2 partition (L, E), histT, MT and h{stz into local features

{{Lg, E.), hlStT ,MT }\73\ and labels {hfstzk }Lill;

3 initialize 0y, 04, Gfs, Hae, 0ge with normal distribution;
4 fori—1---epdo
5 O1c: g1, 0f 5, Oae, Oge — ModelTrain((P, E),T,

o | (L Ex), hist] ME 3 (hiser, 37 rbs, 2);
7 using 0y, Og1, Qfs, Gae, Oge to respectively update M., Mgy,

Mgs, Mae and Mge;

Function ModelTrain

. -, T \|P
Input: (P, E), T, { (L, Ex), hlstTk, M{k, hlSth }L:‘l, Ir,bs, A

[

training iterations 71 = L% 1B

2 shuffle partitions {(Lg, Ex), histTk,MEk, hi_st}:k }Kll);

all global representations HY, H) — Mg ((P, &), T);
fori—1---TIdo

5 k1= (i—1)bs+1,ky =iXbs;

6 fetch the batch {(Lg, Ex), histT ,MT hfst{k, }]I:Zk ;

7 fetch the global representations {Hg[k] Hg[k] }k Ik

8 {Hl[k] HY [k]}k: — Myc({{Lx, Ex), hist] }k)

o | e - Mfs({Hg[k] Hg[k],Hé[k],Hl[kJ}kl),
10 {hlSth}k:kl — Mge({H] }k kl)

~ T 3
w | {histy, 52— Mge(Mae (T 32));
12 L « using Equations 12-15 and A;
13 O1c, 041, Ors, Oae, Oge — AdamOpt (L, Ir);

(™)

'S

-

4 return Oyc, Og1, Ofs, Oae, Oge;

Overall learning objective. As shown in Fig 2, the first loss loss;
is designed to measure the difference between the estimated his-

togram h{stz and the ground-truth histogram hfst{. Considering
that each speed histogram indicates a speed distribution, we lever-
age the KL-divergence function to compute the distance, which is
defined as follows:

YleL NiteT KL(hISfl ||hist})
[L] % |T]

ZleL 2iteT Zl<1<m(h13tl [i]log
|L| x |T|

lossy =

hlStl[l]) (12)
isty 1]

where each ground-truth histogram hi_stf corresponds to the es-
. st . .

timated result hist;. Similarly, the third loss loss3 is proposed to
measure the distance between the reconstructed histogram hist L

and the ground-truth histogram hi_st{ in the auto-encoder branch.
Therefore, we also leverage the KL-divergence function to compute

it, denoting as follows:
s -
Sier Seer KL(hist; | hist}) (13)
IL| x|T|
At last, the second loss loss; is introduced to supervise the learn-
ing of hidden representations HLT using the auto-encoder branch.

lossy =

Hence, we need to measure the similarity between HLT and the
encoded result HLT in the auto-encoder branch. In particular, we
leverage the MSE(Mean-Square Error) function to compute the
similarity, which is denoted as follows:

2ileL 2iteT Zi(HLT[i] - H]'[i])?

[LI X |T| x (ds +d¢)

For simplicity, we denote the sum of lossz and loss3 as the auxiliary
loss Lgy = lossy +1oss3 due to that the two losses are introduced by
the auxiliary task in the auto-encoder branch. In contrast, we denote
lossy as the main loss L, = loss;. Therefore, we can compute the
overall learning objective as follows:

L=Lna+1 Lau (15)

where A is the hyper-parameter to control the weights of the kinds
of losses.

Offline training. Algorithm 1 outlines the training process. At
first, we extract different features from given inputs. Specifically,
the whole link-connected graph (L, E) is divided into |P| parts,
where the k-th part includes local features (Lk,Ek)histTk, MLZ and

loss, = MSE(HI,AT) = (14)

labels h{stzk. Next, we initialize all parameters for the whole model
with a normal distribution (lines 1-3). Then we iteratively train
the whole model with the given epochs ep (lines 4-7). ModelTrain
explains the training process for each epoch. We first compute the
training iterations T1 based on a given batch size b, and then shuf-
fle all partitions. In addition, we leverage the global encoder Mg to
encode global features (#, &), T into representations HY, Htg (line
1-3). In each iteration, we collect b partitions and their correspond-
ing global representations for generating estimated histograms.
Moreover, we use the above objective function to compute the total
loss £ and utilize Adam Optimizer [13] to optimize all parameters
by minimizing £ (lines 5-13).

6 EXPERIMENTS

In this section, we aim to rigorously assess the effectiveness, effi-
ciency, and scalability of our method, substantiating our underly-
ing motivations and claims. Specifically, we explore the model’s
handling of regionality by examining the effectiveness of the
partition number |P| in Section 6.6. Subsequent ablation studies
are conducted to ascertain the model’s capacity to simultaneously
capture regionality and proximity, as well as its ability to ad-
dress volatility through the auto-encoder module, as outlined in
Section 6.3. Finally, we investigate the impact of data sparsity in
Section 6.5, culminating in a comparative analysis of the robustness
and scalability of our method against existing methods.

6.1 Experimental Setup

Datasets. (1) LCG. We respectively construct LCG for two road
networks (i.e., Chengdu Road Network (CD) and Xi’an Road Net-
work (XA)) extracted from OpenStreetMap [2]. In particular, CD
includes 16,874 links and 50, 263 edges, and XA includes 12,028

Table 1: Parameter settings

Parameters |P| p m At/minutes| T/hours
Values |1, 32, 64, 128, 256|0.2, 0.4, 0.6, 0.8|2, 4, 8, 165, 10, 15, 30|1, 6, 12, 24

links and 36,304 edges. We divide each graph into disjoint parti-
tions. As shown in Table 1, we vary the number |#| across the set
{1,32,64, 128,256} to determine the optimal number of partitions,
where || = 1 means we do not partition the whole road network.

Speed Histogram. We extract speed information from taxi orders
of Didi Chuxing [1], where thre are 5.8M and 3.4M trajectories on
CD and XA [35, 36] respectively, both from 10/01/2016 to 11/30/2016.
In particular, we divide the whole speed scale into m slots and then
count the ratio of trajectories in each slot as the speed histogram
during a time interval At. Following [20], we construct the histor-
ical average speed histogram as the ground truth for links with
fewer than 5 speed records. To emulate scenarios of missing in-
formation, we selectively omit the actual speed histograms from a
random subset of links that possess adequate speed records, thereby
excluding those represented by historical average speed histograms.
Consequently, for each time interval, we can adjust the missing rate
p= % where |Lp,| represents the number of links lacking speed
histograms during that interval, and |L,| represents the number of
links with actual speed histograms. This manipulation allows for a
comprehensive evaluation of system scalability under varying con-
ditions of data completeness. As shown in Table 1, our experiments
cover various settings of the relative parameters p, m, At, and T,
with their respective default values distinguished in bold.

(3) Training, Validation and Test. We divide a dataset into train-
ing, validation and test data by splitting the time intervals with the
ratios of 75%:10%:15%. Specifically, the corresponding dates for train-

ing, validation, and test data are respectively [10/01/2016, 11/15/2016],

[11/16/2016,11/21/2016], [11/22/2016,11/30/2016].

Baseline methods. We compare our models with eight methods:

o Avg: We extract all speeds from training data for each link, and
then compute the traffic speed histogram as the result.

e MLP [8]: This a fully connected neural network based on the
deep residual structure, which is a general model for the task of
traffic prediction.

e TCN [15]: This is a deep learning method based on a tempo-
ral convolutional network, which is used to encode temporal
correlations for estimating speed histograms.

e MetaNet [22]: This method applies three stacked RNNs com-
bined with an attention mechanism and meta-knowledge to
forecast the average speed.

e GCWC [10]: This is a graph neural network, which uses GCNs
to capture spatial dependencies between the stochastic speeds.

e SSTGCN [20]: This is an end-to-end method, combining TCNs
and GCNs to capture the spatio-temporal correlations.

e STCPA [30]: This is the current state-of-the-art method, which
captures complex traffic correlations among the spatial and tem-
poral dimensions via the attention mechanism.

o PriSTI [18]: This approach constitutes a general method for
spatio-temporal imputation, utilizing the attention mechanism
and the diffusion model to deduce missing values from noise.
Notably, the last seven methods are learning-based methods. For

a fair comparison, we make their parameter scale (a.k.a., model size)

similar to ours, which is shown in Sec. 6.4.

[—o— CD
MSE(10~3)

—— XA

MKLR(%) WKLR(%)

22

6

2014 .6:4.....20
H~————"H

180 0.1 1.0 10 100 2O 0.1 1.0 10 100 180 0.1 1.0 10 100

Figure 5: Loss on Validation Data vs. the Loss Weight 1

22

Evaluation metrics. We evaluate our proposed methods and base-
line methods based on two metrics: MKLR (Mean Kullback-Leibler
divergence Ratio) and MSE (Mean Square Error), which are widely
adopted by the baselines we compare with. Specifically, suppose
the ground truth is represented as y = {y;} and the predicted re-
sult is denoted as §¥ = {7;}, where 1 < i < N, these metrics are
2 LKL (yil9:) Sy
SN KL (w1l laogy” MOEYI)=
ﬁ Zgl(yi — §#")2, where avg; is the estimated result of the Avg
method, J; is an indicator of whether the corresponding estimated
speed histogram needs to be evaluated. In particular, we set I; = 0
if the corresponding edge is not covered by traffic data; other-
wise, we set I; = 1. In addition, the function KL(-||-) computes
the KL-divergence between two distributions, i.e., two speed his-
tograms. The lower a KL-divergence value is, the more similar
the two histograms are, indicating more accurate estimation or
prediction. Hence, lower MKLR values indicate higher improve-
ments over Avg. Furthermore, acknowledging the varying pop-
ularity of individual links within a road network, we assign a
weight to each link based on the number of trajectories covering it.
These weights are then utilized to compute a modified metric, the
Weighted Kullback-Leibler Divergence Ratio (WKLR), denoted as
o 2 WiliKL(yil|9:)
WKLRGY: $)= S8 KL o vy
reflecting the popularity of the link. This means that the more fre-
quently a link is traversed, the greater its influence on the WKLR
metric, thereby aligning the importance of each link with its actual
use within the network.
Environment settings. All deep learning methods were imple-
mented with PyTorch 1.0 and Python 3.6, and trained with a Tesla
K40 GPU. The platform ran on Ubuntu 16.04 OS. In addition, we
used Adam [13] as the optimization method with the mini-batch
size of 100. The initial learning rate was 0.001.

computed as follows: MKLR(y, y)=

, where W; represents the weight

6.2 Setting of Model’s Hyper-parameters

we consider the following hyper-parameters: (1) the number (N)
of graph neural network (GCN) layers; (2) the spatial and tempo-
ral embedding sizes (dy, dg, dg), where d,, = (f—‘g; (3) the settable-
dimension size (dj) of some hidden representations. (4) the settable-
dimension sizes (ds, dr) of the spatial representations and the tem-
poral representations. In particular, given a hyper-parameter, we
first select its value range according to the experience under some
constraints (e.g., the limitation of GPU memory). Then, we conduct
experiments on the validation CD and XA to determine its optimal
value. As shown in Fig. 8, we plot the MKLR for different hyper-
parameters. In summary, we set each hyper-parameter with the
value corresponding to the optimal performance as follows: (1) For

Table 2: Effectiveness Results on Test Data

CD XA

Method |MKLR(%) MSE(10~3) WKLR(%)| MKLR(%) MSE(10~3) WKLR(%)

Avg 100 31.46 100 100 24.13 100

MLP 65.85 25.03 67.94 66.20 19.34 67.26

TCN 44.79 15.59 41.27 33.34 9.06 30.53

MetaNet| 32.35 9.89 32.03 31.79 9.23 33.21

GCWC | 32.09 10.23 32.61 34.78 10.55 35.32

SSTGCN| 26.93 7.52 27.78 28.07 7.60 28.81

STCPA | 24.44 5.59 24.05 26.01 4.76 25.91

PriSTI | 26.79 7.22 26.20 27.99 5.58 28.32

NG 19.88 3.91 20.25 20.29 2.94 22.14

NL 20.38 3.90 19.76 21.24 2.90 21.17

NF 19.79 3.82 20.26 20.35 2.74 22.20

NA 19.58 3.74 21.67 19.87 2.64 22.79

Nuhuo | 19.36 3.68 18.97 19.06 2.46 19.86

CD, we have N = 1, dy, = % = 20, d; = 10, dj, = 150, ds = 100,
d; = 5. (2) For XA, we have N = 1, dy, = % = 20, d; = 10, d}, = 50,
dg =20,d; =5.

6.3 Effectiveness Comparison

Apart from comparing Nuhuo with baseline methods, we replace
our Nuhuo by four variations, namely NG, NL, NF and NA, to
evaluate the effectiveness of different parts of encodings in Nuhuo.
In NG, we utilize fully connected neural networks (FCN) to gen-
erate global encodings in the global encoder. This is instrumental
for evaluating the effectiveness of our proposed method, Nuhuo,
particularly in terms of its ability to capture regionality. In NL, we
use FCN to generate local encodings in the local encoder, which
is designed to evaluate the effectiveness of Nuhuo for capturing
the proximity. In NF, we leverage FNC to fuse global and local
encodings, which is designed to demonstrate the significant advan-
tage of fusion in capturing the spatially multi-view correlations.
At last, we remove the auto-encoder branch in NA to evaluate its
effectiveness. This modification also allows us to understand the
specific influence of volatility on the overall performance.

Table 2 reports the evaluation results of all methods with the
default settings of At, and we have the following observations:
(1) Avg is worse than deep learning-based methods because the
latter can approximately fit any function. In addition, it is not
sufficient for providing accurate predictions when historical data
are sparse for the Avg method.
(2) When examining the outcomes of NG, NL, NF, NA, and Nuhuo,
we observe that the local encoder is the most crucial component
of Nuhuo, as NL performs worst on CD and XA. Furthermore, the
significance of other modules varies depending on the dataset. For
instance, for XA, the fusion module is more significant than the
global module.
(3) Nuhuo exhibits the best performance across all metrics. For
instance, Nuhuo outperforms the best existing methods (e.g., SST-
GCN, STCPA and PriSTI) by 20% on MKLR for the test data of CD.
The reason behind this success is that our method more effectively
encodes and fuses the given global and local features.
(4) When comparing the MSE metric on CD and XA, the perfor-
mance of all methods except Avg is better on XA than that on CD.

—*— SSTGCN --#- PriSTI
STCPA --®-- Nuhuo

XA, At/minutes

—e— MLP —*— MetaNet
—— TCN —4— GCWC

CD, At/minutes

128

64— @69 | 4® e
 —— 4
= M~ =
i]
O @@ g @----oomooooe o-- °
1675 10 5 30 1673 10 15
128 CD,m 128 XA.m

CD, T/hours

« o

Figure 6: MKLR(%) vs. Variables At & m & T. (The title of each sub-
figure is labeled in the form of “A, B”, where “A” and “B” respectively
refer to one dataset and a kind of variable.)

This can be attributed to two primary factors: Firstly, the traffic
speed distribution on XA exhibits greater complexity, including
extreme values, when compared to CD. Consequently, Avg lacking
the capability to adapt to input dynamics fails to capture these
intricate distributions. Secondly, the speed distributions on XA ex-
hibit stronger correlations with the provided features, making them
better suited for handling by advanced deep-learning techniques.
(5) In comparing MKLR and WKLR metrics, most methods per-
form worse on WKLR, suggesting higher prediction difficulty for
more popular links. However, our method shows a smaller perfor-
mance decline on WKLR and can sometimes enhance performance,
particularly for the dataset CD.

Furthermore, we evaluate the robustness of different models by
respectively varying the values of At, m, and T in Figure 6. We have
the following observations:

(1) As At increases, the metric of most methods exhibits a decline.
The reason is that larger time intervals inherently contain more
traffic data, leading to smoother distributions of traffic speed and
fewer missing values. For instance, a one-hot histogram represented
as [0,0,1,0] poses greater predictive challenges compared to a
uniform distribution [0.25, 0.25, 0.25, 0.25].

(2) Most methods exhibit fluctuating performance with varying
slot size m due to the trade-off between data sparsity and distribu-
tion smoothness. Larger slot sizes increase data sparsity but also
smooth out the distribution. While sparsity generally deteriorates
performance, smoothness can enhance it. Specifically, MLP’s per-
formance significantly declines, primarily affected by increased
sparsity.

(3) Most methods’ performance deteriorates with an increase in T,
as more time intervals add complexity to prediction tasks. However,
MLP and Nuhuo are less affected: the former due to its non-reliance
on sequential features, and the latter due to its robustness in cap-
turing such features.

(4) No matter how At, m and T change, our method Nuhuo con-
sistently has the best performance. In particular, the performance
disparity between Nuhuo and the three superior baselines, namely
SSTGCN, STCPA and PriSTI, widens as the dataset complexity

Table 3: Efficiency of Test Result (At=15min)
estimation time

memory usage | training time

(Byte) (minutes/ep) (seconds/K)
CD XA CD XA CD XA
Avg 1.5K 1.5K 0.48 0.31

MLP 8.6K 8.6K 1.52 0.80 1.13 1.06
TCN 74M 56M | 2.00 0.95 1.16 1.08
MetaNet | 48M 37M | 646 4.32 4.14 3.76
GCWC | 53M 39M | 250 2.57 1.18 1.06
SSTGCN | 5.5M 40M | 397 3.28 2.45 2.48
STCPA | 721K 721K | 4.47 2.43 2.77 2.71
PriSTI 1.IM 1.1IM | 394 232 2.62 1.51
Nuhuo 2.6M 24M | 3.22 1.44 1.62 1.25

increases (e.g., the value of T increases). This outcome underscores
the enhanced robustness of our proposed method, Nuhuo, in com-
parison to other advanced techniques. Furthermore, the incorpo-
ration of an auto-encode module ensures that Nuhuo yields stable
encoding outcomes across diverse configurations.

6.4 Efficiency Comparison

For efficiency evaluation, we consider three metrics: memory usage,
training time, and estimation time. Memory usage quantifies the
amount of memory required to implement the respective methods,
serving as an indicator of memory efficiency. Training time assesses
the offline learning efficiency, particularly for methods based on
neural networks. Specifically, we calculate the average time taken
for one epoch for each method. Estimation time serves as a measure
of online prediction efficiency. To elucidate, we employ various
methods to estimate results for 1,000 samples and subsequently
record the latency for each. The outcomes of these evaluations
are presented in Table 3. From our observations, we deduce the
following:

(1) Methods such as TCN, MetaNet, GCWC, SSTGCN, and Nuhuo
demand more memory compared to their counterparts. This in-
creased requirement can be attributed to their need to embed links.
The size of these embeddings is directly proportional to the number
of links. In contrast, other learning techniques merely require the
loading of model parameters, the size of which remains consistent
across different datasets.

(2) Owing to the computational intricacies of the graph neural
network, methods like GCWC, SSTGCN, PriSTI, and Nuhuo ne-
cessitate longer training and estimation durations compared to Avg,
MLP, and TCN. Notably, the presence of a loop operator within
the STCPA framework results in significantly extended training
and estimation times for STCPA.

(3) When compared with prevailing state-of-the-art methods, specif-
ically SSTGCN, STCPA and PriSTI, our proposed model, Nuhuo,
exhibits superior efficiency.

6.5 Scalability Comparison

We evaluate the scalability of various learning methods from two
perspectives. Firstly, we adjust the size of the training dataset by
extracting subsets that represent 25%, 50%, 75%, and 100% of the
total data. Secondly, we alter the ratio p of links to ascertain the
impact of training data sparsity on model performance. Specifically,
p values are modified within the set [0.2,0.4, 0.6, 0.8], indicating

FF MLP —*— MetaNet —=— SSTGCN —@— PriSTI

—— TCN —4— GCWC STCPA --#-- Nuhuo
CD, training_data XA, training_data

64 64

L + t

— o 2
32 * —4 | 32

L e R u L - g
16357 50% 5% T00% 1625% 50% 7% 100%
128 CD, p XA, p

8 128 /
64 64
32 = e 32 % .'

" [-
165 04 056 08 1002 04 06 08

Figure 7: MKLR(%) vs. the Scalability. (The title of each subfigure is
labeled in the form of “A, B”, where “A” refers to the dataset and “B”
refers to the scalability type.)

[-0- CD-MKLR(%) =—— XA-MKLR(%)

Evaluating N Evaluating dy, % Evaluating dg

22 22

20 ;:% 20 w P Y : _—_:
18 1 2 3 5 18 5 10 20 30 18 5 10 20 30
2 Evaluating dp » Evaluating ds 2 Evaluating d
1850 100 150 200 1820 50 100 150 18 2 5 10 20

Figure 8: MKLR(%) vs. Hyper-parameters

the proportion of links that require imputation at each time inter-
val, with 0.2 representing a 20% imputation need. These measures
collectively provide insight into the robustness and adaptability
of the learning methods under varying data quantity and quality
scenarios. Observations derived from Figure 7 are as follows:

(1) All evaluated methods demonstrate improved performance with
increased volumes of training data, indicating that larger datasets,
which cover a more diverse array of scenarios, contribute to more ef-
fective and comprehensive model training. Conversely, an increase
in the proportion of imputation (denoted as p) inversely affects
performance, likely due to the diminished quality and representa-
tiveness of the training data.

(2) Among the methods evaluated, our method Nuhuo is more
scalable and robust compared to other deep learning techniques.
For instance, the MKLR of STCPA on the CD dataset escalates
b % = 21.64% when restricted to 25% of the training
data. In contrast, the increment for our method, Nuhuo, is a mere
W = 10.12%. This disparity underscores that while ex-
isting methods necessitate substantial data to maintain optimal
performance, our method exhibits stability, a trait attributed to the
integration of the auto-encoder module.

—e— CD
MKLR(%) MSE(1073)

22
20
18

32 64 128256 32 64 128256 32 64 128256
Flgure 9: Loss on Validation Data vs. the Partition Number |P|

—— XA

WKLR(%)

w/o auto-encoder on CD w/ auto-encoder on CD

100 r
%..‘ 35 150 : 0.” P Y 35
. o ® 30 100{ o - “ 30
® ° 'o‘ 25 50 Q" % 0%, 25
o ? “ () 20 o8 !] C'S 20
‘ @ 01°% & o Ve o
° fe 21 15 hd ® @, 15
-50 o .’. -50 8o %
® 10 < 4 10
100 > & &
-100 5 <) 5
* ﬂ o 150 e 5, «*® R
-100 -50 0 50 100 -100 0 100
100 w/o auto-encoder on XA 100 w/ auto- encoder on XA
X] 70
35
50 © "ﬂ‘!n' o300 60 5o 30
‘f) ?"‘Jn‘l'r t 50 f” " 25
o PeH®
0% fv,, K% rﬁc‘Q ‘ 9 40 0 . 20
N % WRE,” | 30 ’c , 15
_s0 Q‘.‘r,) BB < ! C\'
oD ’ 20 -50 (< “‘1 @ 10
J > A VA X
S 10 iy 5
-100 o -100 d o
-100 -50 [50 100 -100 -50 0 50 100

Figure 10: Visualization of t-SNE Embeddings learned w/ and w/o
the auto-encoder module on CD and XA

(3) Our method, Nuhuo, consistently outperforms its counterparts.
Notably, in several instances (e.g., reducing training data on datasets
CD and XA), as the sampling rate diminishes, the performance gap
between Nuhuo and other methods widens.

6.6 Effectiveness of Loss Weight and Partition

To fine-tune the loss weight A, we vary it from 0 to 100 with the
scale of 10 when training. We compute the two metrics for the
validation data. The result is plotted in Figure 5, from which we
find that the performance first improves with the increase of A
but is much worsened when exceeding a certain threshold. This is
because there is a trade-off between the main loss and the auxiliary
loss. Based on the majority voting rule, the best values of A for
CD and XA are 1.0 and 0.1 respectively, set as the default values in
subsequent experiments.

Additionally, we further optimize the partition number |#|. The
outcomes are illustrated in Figure 9, and they align closely with the
observations made for A. In essence, the partition number signifies
the granularity of regions, thereby affecting the balance between
global and local correlations. Specifically, performance is notably
inferior in scenarios without partitions (i.e., when |P| = 1), affirm-
ing the significant role that partitioning plays in enhancing the
effectiveness of the method. For clarity, in the default configuration,
both datasets are optimally divided into 128 partitions.

6.7 Encoding Visualization

To further analyze the effectiveness of encoding modules within
Nuhuo, we employ t-SNE [26] to visualize the distribution of spatio-
temporal encodings pertaining to prediction results on datasets CD

and XA. Specifically, we select 40 links from each road network
and subsequently extract their corresponding spatio-temporal en-
codings from H{ . These encodings, aggregated by the hour, are
averaged to represent the encoding for that specific hour, resulting
in 40 x 24 encodings per dataset. The t-SNE embeddings for these
encodings are then computed and depicted in Figure 10. To further
elucidate the impact of the auto-encoder module, we also present
embeddings derived without the auxiliary task. Observations from
the figure include:

(1) The disparity in traffic states across different links on CD is
more pronounced than on XA. Consequently, most learning meth-
ods exhibit suboptimal performance on CD, as evidenced in Table 2.
This suggests that traffic states exhibit greater variability across
different links within the CD dataset.

(2) Leveraging the auto-encoder module enables our method to more
effectively differentiate between links. This enhancement bolsters
the method’s resilience, particularly in addressing the instability of
encodings arising from missing values.

7 RELATED WORK
7.1 Network-based Traffic Estimation

There are two network-based traffic estimation problems: fore-
casting and imputation. In particular, the forecasting task aims
to estimate future traffic based on historical observations, while
the imputation problem means the estimation of missing traffic,
especially the traffic speed.

Traffic forecasting. Deep learning has emerged as the preemi-
nent choice due to its exceptional capacity for approximating ar-
bitrary functions, with the central concern being the effective en-
coding of spatio-temporal traffic features. Notably, the work of
Li et al. [16] has advocated the utilization of Graph Convolution
Networks (GCN) for modeling spatial dependencies and recurrent
neural networks (RNN) to capture temporal dynamics. However, it
has been observed that such an approach may fall short in capturing
global correlations and dynamic traffic data patterns. In response to
this limitation, Guo et al. [7] and Jiang. [11] have incorporated atten-
tion mechanisms, Fang et al. [4] have introduced a multi-resolution
temporal module along with a global correlated spatial module,
and Pan et al. [22] have leveraged meta-learning to construct meta
Graph Neural Network (GNN) and meta RNN models, enabling the
capture of dynamic correlations in traffic data.

Traffic speed imputation. The work [10] is the first approach
that studies stochastic speed estimation, utilizing GCNs to encode
road network topology and estimate missing speed distributions.
In particular, it applied a graph pooling layer, reducing graph di-
mensionality and demonstrating the superior ability of GCNs to
capture complex spatial correlations. However, this method ne-
glected temporal correlations, limiting its accuracy. In contrast,
Muiiiz-Cuza et al. [20] addressed this limitation by introducing a
temporal component based on Temporal Convolutional Networks
(TCNs) to capture temporal correlations between consecutive time
intervals. However, both methods rely on GCN, which may not
perform well under conditions of severe data sparsity. Hence, Xu et
al. [30] and Liu et al.[18] incorporated the attention mechanism to
dynamically capture intricate traffic data correlations, addressing
data sparsity issues. Furthermore, to enhance the performance, [30]

introduces a cost-effective imputation cycle consistency strategy to
create cycles and generate approximate ground truth, while [18] ap-
ply a diffusion model to generate data from random noise. However,
existing methods cannot fully exploit the hybrid spatio-temporal
correlation at both region-level and link-level. These inspire us to
design our efficient models.

7.2 Deep Learning for Spatio-temporal Data

As Al advances, deep learning is increasingly used in managing
and mining spatio-temporal data. First, Recurrent Neural Networks
(RNNSs) are now applied to model trajectories. For instance, Wu et
al. [29] demonstrated the superiority of RNNs over older models in
predicting movements. Similarly, the study in [5] employs RNNs to
effectively decipher user mobility patterns. Dong et al. [3] even de-
signed a stacked RNN model to identify driving styles. Second, Con-
volutional Neural Networks (CNNs) play a role too. Song et al.[25]
use them for simulating human mobility and transportation. In[37],
they treat road network crowd density as images, using a deep
network to forecast crowd flows. Third, Graph Neural Networks
(GNNis) are used to tackle traffic prediction problems, considering
road network structures in tasks like travel demand prediction [31]
and traffic flow prediction [17, 22]. Fourth, attention mechanisms
help capture complex spatio-temporal correlations. For example,
Yuan et al. [36] use attention to jointly predict travel demands and
traffic flows.

8 CONCLUSION

This paper has introduced Nuhuo, a novel and comprehensive
framework designed to address the complex challenge of accurately
imputing missing traffic speed histograms. We have identified and
tackled three critical yet previously unexplored dimensions that are
essential for achieving precise estimations: regionality and proxim-
ity, sparsity, and volatility. At first, we employed a global partition
graph, enabling the capture of both regional and proximal correla-
tions within the road network. Next, we introduced a disentangled
feature encoding pipeline that effectively mitigates issues related to
input sparsity by separately handling spatial and temporal dimen-
sions. In addition, we incorporated a self-supervised learning task
using an auto-encoder framework, thereby enhancing the stabil-
ity and robustness of our encoding models. Extensive evaluations
on two real-world datasets have confirmed the efficacy of Nuhuo.
However, deploying Nuhuo effectively requires comprehensive his-
torical traffic data to train the model, including various trajectory
data. Therefore, our future work aims to employ few-shot learning
methods to mitigate the limitations posed by scarce training data.

ACKNOWLEDGMENTS

This study is supported by NCS Pte Ltd through the Singtel Cogni-
tive and Artificial Intelligence Lab for Enterprises (SCALE@NTU),
and is also supported in part by a Singapore MOE AcRF Tier-2 grant
MOE-T2EP20221-0015 and a Singapore MOE AcRF Tier-1 project
RT6/23. Guoliang Li is supported by National Key R&D Program
of China (2023YFB4503600), NSF of China (61925205, 62232009,
62102215), and Zhongguancun Lab.

REFERENCES

(1]
(2]
(3]

(4]

O

(5]

[11]

[15]

[16]

[17]

2021. GAIA. https://outreach.didichuxing.com/research/opendata/.

2021. OpenStreetMap. https://www.openstreetmap.org.

Weishan Dong, Jian Li, Renjie Yao, Changsheng Li, Ting Yuan, and Lanjun Wang.
2016. Characterizing driving styles with deep learning. CoRR (2016).

Shen Fang, Qi Zhang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. 2019.
Gstnet: Global spatial-temporal network for traffic flow prediction. In IJCAL
10-16.

Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and
Fengli Zhang. 2017. Identifying Human Mobility via Trajectory Embeddings.. In
IJCAL 1689-1695.

Chenjuan Guo, Bin Yang, Jilin Hu, and Christian S. Jensen. 2018. Learning to
Route with Sparse Trajectory Sets. In ICDE. 1073-1084.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention based spatial-temporal graph convolutional networks for traffic flow
forecasting. In AAAL Vol. 33. 922-929.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770-778.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S. Jensen. 2019. Stochastic
Weight Completion for Road Networks Using Graph Convolutional Networks.
In ICDE. 1274-1285.

Yue Jiang, Xiucheng Li, Yile Chen, Shuai Liu, Weilong Kong, Antonis F. Lentzakis,
and Gao Cong. 2024. SAGDFN: A Scalable Adaptive Graph Diffusion Forecasting
Network for Multivariate Time Series Forecasting. In ICDE.

George Karypis and Vipin Kumar. 1998. A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering. Journal of parallel and distributed
computing 48, 1 (1998), 71-95.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR(Poster).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR (Poster).

Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.
2017. Temporal convolutional networks for action segmentation and detection.
In CVPR. 156-165.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting. ICLR(Poster) (2018).
Yanan Li, Haitao Yuan, Zhe Fu, Xiao Ma, Mengwei Xu, and Shangguang Wang.
2023. ELASTIC: Edge Workload Forecasting based on Collaborative Cloud-Edge
Deep Learning. In WWW. 3056-3066.

Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. 2023.
PriSTIL: A Conditional Diffusion Framework for Spatiotemporal Imputation. In
IEEE. 1927-1939.

Harvey J Miller. 2004. Tobler’s first law and spatial analysis. Annals of the
association of American geographers 94, 2 (2004), 284-289.

[20

[21]

[22]

®
=

Carlos Enrique Mufiiz-Cuza, Nguyen Ho, Eleni Tzirita Zacharatou, Torben Bach
Pedersen, and Bin Yang. 2022. Spatio-temporal graph convolutional network for
stochastic traffic speed imputation. In SIGSPATIAL. 14:1-14:12.

Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. 2013. Crowd sensing of
traffic anomalies based on human mobility and social media. In SIGSPATIAL.
344-353.

Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.
2019. Urban traffic prediction from spatio-temporal data using deep meta learning.
In SIGKDD. 1720-1730.

Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Anytime
Stochastic Routing with Hybrid Learning. Proc. VLDB Endow. 13, 9 (2020), 1555—
1567.

Simon Aagaard Pedersen, Bin Yang, Christian S Jensen, and Jesper Meller. 2023.
Stochastic Routing with Arrival Windows. ACM Transactions on Spatial Algo-
rithms and Systems 9, 4 (2023), 1-48.

Xuan Song, Hiroshi Kanasugi, and Ryosuke Shibasaki. 2016. DeepTransport:
Prediction and Simulation of Human Mobility and Transportation Mode at a
Citywide Level.. In IJCAL 2618-2624.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. JMLR 9, 11 (2008).

Yong Wang, Guoliang Li, and Nan Tang. 2019. Querying Shortest Paths on Time
Dependent Road Networks. PVLDB 12, 11 (2019), 1249-1261.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. 2016. Auto-encoder based dimen-
sionality reduction. Neurocomputing 184 (2016), 232-242.

Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. 2017. Model-
ing Trajectories with Recurrent Neural Networks. In IJCAL 3083-3090.
Qianxiong Xu, Sijie Ruan, Cheng Long, Liang Yu, and Chen Zhang. 2022. Traf-
fic Speed Imputation with Spatio-Temporal Attentions and Cycle-Perceptual
Training. In CIKM. 2280-2289.

Ying Xu and Dongsheng Li. 2019. Incorporating graph attention and recurrent

architectures for city-wide taxi demand prediction. Geo-Inf 8, 9 (2019), 414.
Haitao Yuan and Guoliang Li. 2019. Distributed In-memory Trajectory Similarity

Search and Join on Road Network. In ICDE. 1262-1273.

Haitao Yuan and Guoliang Li. 2021. A Survey of Traffic Prediction: from Spatio-
Temporal Data to Intelligent Transportation. Data Sci. Eng. 6, 1 (2021), 63-85.
Haitao Yuan, Guoliang Li, and Zhifeng Bao. 2022. Route Travel Time Estima-
tion on A Road Network Revisited: Heterogeneity, Proximity, Periodicity and
Dynamicity. PVLDB 16, 3 (2022), 393-405.

Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2020. Effective Travel
Time Estimation: When Historical Trajectories over Road Networks Matter. In
SIGMOD. 2135-2149.

Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2021. An Effective Joint
Prediction Model for Travel Demands and Traffic Flows. In ICDE.

Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based
prediction model for spatio-temporal data. In SIGSPATIAL. 1-4.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Basic Concepts
	2.2 Problem Formulation

	3 Model Overview
	3.1 A Pipeline of Speed Histogram Imputation
	3.2 Model Design

	4 Main Branch
	4.1 Global Encoder
	4.2 Spatio-temporal Encoder
	4.3 Histogram Generator

	5 Model Learning
	5.1 Auto-Encoder Branch
	5.2 Model Training

	6 Experiments
	6.1 Experimental Setup
	6.2 Setting of Model's Hyper-parameters
	6.3 Effectiveness Comparison
	6.4 Efficiency Comparison
	6.5 Scalability Comparison
	6.6 Effectiveness of Loss Weight and Partition
	6.7 Encoding Visualization

	7 Related work
	7.1 Network-based Traffic Estimation
	7.2 Deep Learning for Spatio-temporal Data

	8 Conclusion
	Acknowledgments
	References

