DITA: A Distributed In-Memory Trajectory Analytics System

Zeyuan Shang
Brown University
zeyuan_shang@brown.edu

ABSTRACT

Trajectory analytics can benefit many real-world applications, e.g.,
frequent trajectory based navigation systems, road planning, car
pooling, and transportation optimizations. In this paper, we demon-
strate a distributed in-memory trajectory analytics system DITA
to support large-scale trajectory data analytics. DITA exhibit three
unique features. First, DITA supports threshold-based and KNN-
based trajectory similarity search and join operations, as well as
range queries (i.e., space and time). Second, DITA is versatile to sup-
port most existing similarity functions to cater for different analytic
purposes and scenarios. Last, DITA is seamlessly integrated into
Spark SQL to support easy-to-use SQL and DataFrame API inter-
faces. Technically, DITA proposes an effective partitioning method,
global index and local index, to address the data locality problem.
It also devises cost-based techniques to balance the workload, and
develops a filter-verification framework for efficient and scalable
search and join.

ACM Reference Format:

Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: A Distributed
In-Memory Trajectory Analytics System. In SIGMOD’18: 2018 International
Conference on Management of Data, June 10-15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193553

1 INTRODUCTION

With the development of mobile devices and positioning technol-
ogy, trajectory data can be captured more accurately, where each
trajectory is a sequence of geo-locations of a moving object. For
example, a Uber car drives a passenger from a source location to a
destination location. In every 10 seconds, the GPS embedded in the
car reports a geo-location of the car, and the sequence of these loca-
tions forms a trajectory. With the increased popularization of online
ride-hailing service, the ride-hailing companies collect more and
more trajectory data. For instance, there have been 2 billion Uber
trips taken up to July 2016 and 62 million Uber trips in July 20161.
Most importantly, trajectory analytics can benefit many real-world
applications, e.g., frequent trajectory based navigation systems,
road planning, car pooling, and transportation optimizations.
Existing studies focus on optimizing the analytics techniques
in a single machine [3-8, 11]. However, the amount of trajectories

!http://expandedramblings.com/index.php/uber-statistics/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00
https://doi.org/10.1145/3183713.3193553

Guoliang Li
Tsinghua University
liguoliang@tsinghua.edu.cn

Zhifeng Bao
RMIT University
zhifeng.bao@rmit.edu.au

exceeds the storage and processing capability of a single machine,
and existing algorithms cannot be easily extended to efficiently
support large-scale trajectory data analytics in distributed envi-
ronments, because of (1) data locality problem: since trajectories
are distributed, it is challenging to design data partitioning and
indexing techniques to reduce heavy data transmission cost; (2)
load balance: it is challenging to balance the workload to make
full use of the computation power of the entire cluster; (3) easy-
to-use interface: it is challenging to provide full-fledged SQL-like
trajectory analytics system; (4) versatility to support various trajec-
tory similarity functions: there are various widely adopted similarity
functions, classified as the non-metric ones like DTW[12], LCSS[11]
and EDR[6], and the metric ones like Fréchet [2]. We observe that
existing studies either support one or two of them, or define its
own one, while it is critical to support all these similarity functions
in one system for different analytics purposes and/or scenarios.

To bridge the gap between the limited availability of large-scale
trajectory analytics techniques and the urgent need for efficient and
scalable trajectory analytics in real world, we develop a distributed
in-memory system DITA with easy-to-use SQL and DataFrame API
interfaces. First, for a trajectory T we propose to select some “rep-
resentative points” as pivots, and use the pivots to compute a lower
bound of the distance between the trajectory represented by those
pivots and another trajectory Q. If such a lower bound is already
larger than a threshold, then T and Q cannot be similar. We propose
a trie-like indexing structure to index the pivots, design a global
index to find relevant data partitions that contain possible answers,
and a local index to compute answers in each partition. We propose
effective filter-verification algorithms to compute the answers: the
filter step uses a light-weight filter to prune a large number of dis-
similar pairs and get a set of candidates, and the verification step
utilizes effective techniques to verify the candidates. We propose
a weighted bi-graph cost model, employ graph orientation mecha-
nism to coordinate the distributed join, and utilize load balancing
mechanisms to prevent from stragglers. All techniques can support
most existing trajectory similarity functions aforementioned.

As a distributed in-memory trajectory analytics systems, DITA
can be employed in a variety of real-world applications:

Trajectory Similarity Queries. Given two sets of trajectories (or
a single query trajectory and a set of trajectories), DITA can be used
to identify the pairs of trajectories whose similarity is either beyond
some threshold (i.e., threshold-based) or is among top K (i.e., KNN
based) with SQL syntax or DataFrame API for interactive analytics.
Trajectory Range Queries. Given a set of trajectories and a range
(e.g., a rectangle or circle) constraint on space or time DITA can be
used to find trajectories meeting the constraint efficiently.

Moreover, DITA can visualize the results on an map interactively
to better interpret the results. Our source code is publicized at https:
//github.com/TsinghuaDatabaseGroup/DITA. For more technical
details, please refer to our full research paper [10].

https://doi.org/10.1145/3183713.3193553
https://doi.org/10.1145/3183713.3193553
https://github.com/TsinghuaDatabaseGroup/DITA
https://github.com/TsinghuaDatabaseGroup/DITA

2 OVERVIEW
2.1 Definitions

Trajectory. A trajectory is a sequence of points generated from a
moving object, defined as below.

Definition 2.1. A trajectory T is a sequence of points (t1,- - , tm),
where each point is a d-dimensional tuple.

Supported Trajectory Similarity Functions. We support Dy-
namic Time Warping (DTW) [9], Fréchet distance [2], edit distance
on real sequence (EDR) [6] and longest common subsequence dis-
tance (LCSS) [11] for measuring the distance between trajectories.

Trajectory Range Function. We define that a trajectory T is in a
spatio-temporal object (e.g., a rectangle, a circle) if all of its points
are in the corresponding object.

2.2 Supported Query Operations

Our system can support the following six core query operations on
trajectories.

Definition 2.2 (Threshold-based Trajectory Similarity Search). Given
a query trajectory Q, a collection of trajectories 7, a trajectory sim-
ilarity function f (e.g., DTW) and a threshold 7, the threshold-based
trajectory similarity search operator finds all trajectories T € 7,
such that f(T,Q) < .

Definition 2.3 (KNN-based Trajectory Similarity Search). Given
a query trajectory Q, a collection of trajectories 7, a trajectory
similarity function f (e.g., DTW) and an integer k, the knn-based
trajectory similarity search operator finds a set of k trajectories
KT, such that foreach KeK and T € 7-K, f(K,Q) < f(T,Q).

Definition 2.4 (Threshold-based Trajectory Similarity Join). Given
two collections of trajectories 7 and @, a similarity function f
(e.g., DTW) and a threshold 7, the threshold-based trajectory simi-
larity join operator finds all similar pairs (T, Q) € 7 X@Q, such that
FT.Q) <.

Definition 2.5 (KNN-based Trajectory Similarity Join). Given two
collections of trajectories 7~ and Q, a trajectory similarity function
f (e.g., DTW) and an integer k, the knn-based trajectory similarity
join operator finds a set of k similar pairs #, such that for each

(T,Q) e Pand (T’,Q") e T xQ - P, f(T,Q) < f(T", Q).

Definition 2.6 (Trajectory Range Search). Given a query spatio-
temporal object Q, and a collection of trajectories 7, the trajectory
range search operator finds all trajectories Te€7", such that T is in Q.

2.3 System Architecture of DITA

Next, we briefly describe the architecture of DITA (Figure 1).
Extended SQL. We extend Spark SQL to support the core query
operations described in Section 2.2.

(1) Trajectory Similarity Search. Users can utilize the query below to
find trajectories in table 7~ that are similar to a query trajectory Q
w.r.t. a similarity function f and a threshold 7 or a K-NN count k.
SELECT * FROM 7~ WHERE £(7,0) <t
SELECT * FROM 7~ WHERE f (7", Q) KNN k

(CLl) (JDBC) C Scala Program)
Extended SQL Extended
Parser Dataframe API

C
C
€

-

D C

Spark

>
>

D
D

(RDBMS) (HDFS) (Hive) (NF‘;"S‘[’)e)

Figure 1: DITA Architecture

(2) Trajectory Similarity Join. Users can utilize the following query
to find trajectory pairs (T, Q) in tables 7 and Q where T € 7 is
similar to Q € Q w.r.t. a similarity function f and a threshold 7.

SELECT *FROM 7~ JOINQON f(7,Q) <t
SELECT * FROM 7~ JOIN Q ON f(7,Q) KNN k

(3) Trajectory Range Queries. Users can utilize the following query
to find trajectories in table 7 that are within the range w.rt. a
rectangle with the bottom-left point (x1,y;) and top-right point
(x2,y2) or a circle with the center (x,y) and radius r. Note that
DITA can support multi-dimensional points.

SELECT * FROM 7~ WHERE 7~ IN MBRRANGE (POINT (x1, y1), POINT(x2,12))

SELECT * FROM 7~ WHERE 7~ IN CIRCLERANGE (POINT(x,y),r)

DataFrame. In addition to the extended SQL syntax, users can
perform these operations over DataFrame objects using a domain-
specific language similar to R. We also extend Spark’s DataFrame
API to support trajectory similarity queries and range queries.

Index. We extend Spark SQL to support index construction for

trajectory similarity search and join. Users can utilize the following

query to create a trie-like index (including both global and local

index) on table 7, which will be elaborated in Section 3.1.
CREATE INDEX TrieIndex ON 7~ USE TRIE.

Query Processing. Given a SQL query or DataFrame API request,
DITA transforms it into a logical plan, and then optimizes it with
rule-based optimizations (e.g., predicate pushdown, constant fold-
ing). Afterwards, DITA generates the most effective physical plan by
applying both our cost-based optimizations and Spark SQL internal
optimizations. The physical plan is executed on Spark to generate
the results.

Query Optimization. We introduce a cost-based optimization
(CBO) module to optimize trajectory similarity queries. The CBO
module leverages the global and local index to optimize complex
SQL queries, which will be discussed in Section 3.3.
Interactivity. We integrate our system with Spark SQL and Apache
Zeppelin[1] to provide interactive analytics. We further implement
a user-friendly interface which visualizes the results on the map.

second pivot point [MBR:,:;I’? [MBR;:;’LA@ AAAAAA
T

last pivot point [MBR;):'I;’I] \ [MBR;'I}'I’NL]

Figure 2: Trie Index

3 IMPLEMENTATION OF THE DITA SYSTEM
3.1 Indexing

3.1.1 Basic Idea. To facilitate illustrating our idea, we will use
the DTW similarity function as an instance by default. We first select
several pivot points from a trajectory T to approximately represent
it, and then the distance between a trajectory query Q and those
pivot points of T is essentially a lower bound of the distance be-
tween Q and T. If the lower bound is already larger than a given
threshold 7, then T cannot be similar to Q and thus T can be pruned.
Next, we devise a trie-like structure to index these pivot points,
which supports accumulating the distance level by level to improve
the pruning power. Details can be found in our full paper [10].

Pivot Points Selection. Without loss of generality each point is
assigned a weight, and our goal is to select K points with the largest
weights as pivot points. We have several strategies in calculating
the weight, e.g., we use the distance between neighbor points or
the distance between first/last points as the weights.

Trie Index. We use the first, last and pivot points of trajectories
to build the trie index, as shown in Figure 2. We first group all
trajectories by their first points into Ng disjoint buckets, then we
further group the trajectories in each bucket by their last points
into Ng sub-buckets. Next, we repeat this process using the first
pivot point, then the second one, until the last pivot point. For
each bucket, we calculate the minimum bounding rectangle (MBR).
When querying the index, we calculate the distance between MBR
and the trajectory and use it as the lower bound of the distance
between trajectories. If it is beyond the threshold 7, we could safely
prune this trie node; otherwise we update the threshold by subtract-
ing the distance from it, which could improve our pruning power.
In other words, we query the index by accumulating the distance
level by level in order to enable early termination.

Distributed Indexing. When building an index on a huge collec-
tion of trajectories, we first divide them into multiple partitions on
different machines for distributed computation. Then DITA employs
two levels of indexes: (1) the global index that finds relevant parti-
tions that may contain trajectories similar to Q; (2) the local index
that finds candidate trajectories in each relevant partition locally.
We use the trie index scheme in all steps (including partitioning,
global indexing and local indexing).

3.2 Search Query Implementations

Threshold-based Similarity Search. The search queries are pro-
cessed in three steps: (1) the master (called the driver in Spark)
uses the global index to locate relevant partitions that contain tra-
jectories similar to query Q, and sends Q to the corresponding

Table 1: Dataset
Cardinality | AvgLen | MinLen | MaxLen
293,536 | 30.07 10 72

Datasets
Beijing

workers (called the executors in Spark) of these partitions; (2) in
each partition, workers first use the local index to generate can-
didate trajectories of query Q and then generate the local results
by verifying whether they are actually similar to Q; (3) the master
collects results and returns them to the user.

KNN-based Similarity Search. First, we need to estimate a simi-
larity threshold 7 which guarantees to have at least K trajectories
whose distance to Q is less than or equal to 7. Besides, we would like
to make 7 as small as possible to reduce computation. To achieve
this, we replicate the query trajectory Q to all partitions. In each
partition, we query the local index to get the number of candidates,
and we employ a binary search to find the minimum threshold
such that there are more than K candidates. We then compute the
similarity between these candidates and the query trajectory, and
aggregate them to get the least K distance as the estimated thresh-
old 7,in. Next, we run the threshold-based similarity search with
the threshold 7,,;, and get the K trajectories with least distances.

Range Search. Similar to threshold-based similarity search, we use
the global and local index to find the results in the spatio-temporal
object (e.g, a circle or a rectangle).

3.3 Join Query Implementations

Threshold-based Similarity Join. Although join can be imple-
mented based on our search method, we further devise cost-based
optimizations to better coordinate the distributed join. The idea is
to measure the computation cost and transmission cost by joining
on a sampled dataset, and use these costs to balance the workloads.

KNN-based Similarity Join. Similar to KNN-based similarity search,
we need to estimate the minimum threshold first. In each partition,
we use binary search again to find the minimum threshold such
that there are more than K candidate pairs, then we aggregate them
to get the least K distances as the estimated threshold 7,i,. Next,
we run the threshold-based similarity join with the threshold 7,,ip
to get the K trajectory pairs with the least distances.

4 DEMONSTRATIONS

We demonstrate three use cases of DITA, 1) trajectory similarity
search queries, 2) trajectory similarity join queries, and 3) trajec-
tory range queries. We integrate our system with Spark SQL and
Zeppelin, and use MapBox? to visualize the results. We use the
Beijing dataset, which was collected from the GPS device on taxis
in Beijing®. Table 1 shows some statistics of this dataset.

Similarity-based Trajectory Recommendation. Trajectory rec-
ommendation is useful in analyzing large volumes of trajectories
and find potentially interesting ones. Given a trajectory T, one
possible way is to employ the similarity-based trajectory search
to find trajectories similar to T as candidates for recommendation.
Regarding similarity functions, DITA supports the mostly widely
adopted ones such as DTW, Fréchet, EDR and LCSS, to fit different
analytical scenarios and purposes. For example, if we want to find
similar trajectories of a bus route around Tsinghua University, we
can simply issue a threshold-based similarity search SQL query

Zhttps://www.mapbox.com/
Shttp://more.datatang.com/en

%spark.sql

= SPARK JOBS FINISHED [>

SELECT * FROM trajl WHERE DTW(Ctrajl.traj, TRAJECTORY(POINT(40.009047,116.312500),POINT(40.007585,116.312779),POIN|(4¥.004550,110.5L4730),FULNI(40
.002687,116.308981) ,POINT(40.000092,116.309110),POINT(39.996950,116.309045) ,POINT(39.993843,116.309389),POINT(39.990605,116.309839),POINT(39
-990720,116.313916) ,POINT(39.990999,116.318573),POINT(39.991180,116.322285),POINT(39.991147,116.325675))) <= 0.01

[:::) bl & M 2 = Q@ & <~ settings~

[. 300074

Wanguan cultural

e a

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox
-

Figure 3: Similarity-based Trajectory Recommendation

val joinedDF = dfl.trajectorySimilarityWithKNNJoin(df2, dfi("traj"), df2("traj"),
TrajectorySimilarityFunction.DTW, 1000)

joinedDF.count()

z.show(joinedDF)

B om G M 2 E @ & v seftings~

Figure 4: Trajectory Clustering

using DTW as the similarity function (at the top of Figure 3) and
DITA would compute the results and visualize them on the map.
As shown in Figure 3, these similar trajectories follow roughly the
same path with only minor differences, and detailed statistics will
be displayed when the user hovers the pointer over the trajectories.

Trajectory Clustering. Trajectory clustering aims to group a set
of objects into classes of similar ones, which can be achieved by em-
ploying trajectory similarity joins. DITA implements both threshold-
based and KNN-based similarity joins. For example, given two sets
of trajectories in Beijing (i.e., dfI and df2 in Figure 4, which are
two equal-sized halves of trajectories in Beijing), we may use
DataFrame API to find the top 1,000 similar trajectory pairs. Similar
trajectory pairs are drawn using similar colors. From Figure 4, we
can observe that most similar trajectories locate in the south-east
part or the center part of Beijing. This can be used in subway station
planning and road planing.

Range-based Trajectory Query. The range-based trajectory query
is able to find the trajectories that pass a given spatial range within

a specified time range. It is especially useful in traffic flow analysis,

congestion reasoning, route planning, etc. As shown in Figure 5,

we use a SQL query to find trajectories in a specific spatio-temporal

range, i.e., within the Southern Second Ring of Beijing in one week

of Year 2017 (1483286400 and 1483891199 are the Unix timestamps).

As a result, the envelop of the returned trajectories forms a rectan-

gle, which is our query rectangle at the top of Figure 5.

SELECT * FROM traj3 WHERE traj3.traj IN MBRRANGE(POINT(39.83,116.35, 1483286400),
POINT(39.94,116.43, 1483891199))

B o ¢ M 2] Q & v settings v

+ Beijing

Figure 5: Range-based Trajectory Query

Acknowledgement. Guoliang Li was supported by the 973 Pro-
gram of China (2015CB358700), NSF of China (61632016, 61472198,
61521002, 61661166012), and TAL education. Zhifeng Bao was sup-
ported by ARC (DP170102726, DP180102050), NSF of China (61728204,
91646204), and Google Faculty Award. Guoliang Li is the corre-
sponding author.

REFERENCES

[1] Apache zeppelin. http://zeppelin.apache.org/.

[2] H. Alt and M. Godau. Computing the fréchet distance between two polygonal
curves. Int. J. Comput. Geometry Appl., 5:75-91, 1995.

[3] P.Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient trajectory
joins using symbolic representations. In Mobile Data Management, pages 86—93,
2005.

[4] P.Bakalov, M. Hadjieleftheriou, and V. J. Tsotras. Time relaxed spatiotemporal
trajectory joins. In GIS, pages 182-191, 2005.

[5] L.Chen and R. T. Ng. On the marriage of Ip-norms and edit distance. In VLDB,
pages 792-803, 2004.

[6] L.Chen, M. T. Ozsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In SIGMOD, pages 491-502, 2005.

[7] H.Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of large sets
of moving object trajectories. In TIME, pages 79-87, 2008.

[8] E.Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory
search. In ICDE, pages 816-825, 2007.

[9] C.S.Myers and L. R. Rabiner. A comparative study of several dynamic time-
warping algorithms for connected-word recognition. Bell System Technical Jour-
nal, 60:1389-1409, 1981.

[10] Z.Shang, G.Li, and Z. Bao. Dita: Distributed in-memory trajectory analytics. In
SIGMOD, 2018.

[11] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional
trajectories. In ICDE, pages 673-684, 2002.

[12] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time
sequences under time warping. In ICDE, pages 201-208, 1998.

http://zeppelin.apache.org/

	Abstract
	1 Introduction
	2 Overview
	2.1 Definitions
	2.2 Supported Query Operations
	2.3 System Architecture of DITA

	3 Implementation of the DITA System
	3.1 Indexing
	3.2 Search Query Implementations
	3.3 Join Query Implementations

	4 Demonstrations
	References

