
LearnedSQLGen: Constraint-aware SQL Generation using
Reinforcement Learning

Lixi Zhang
Department of Computer Science, Tsinghua University

zhanglx19@mails.tsinghua.edu.cn

Chengliang Chai
Department of Computer Science, Tsinghua University

ccl@tsinghua.edu.cn

Xuanhe Zhou
Department of Computer Science, Tsinghua University

zhouxuan19@mails.tsinghua.edu.cn

Guoliang Li
Department of Computer Science, Tsinghua University

liguoliang@tsinghua.edu.cn

ABSTRACT
Many database optimization problems, e.g., slow SQL diagnosis,
database testing, optimizer tuning, require a large volume of SQL
queries. Due to privacy issues, it is hard to obtain real SQL queries,
and thus SQL generation is a very important task in database opti-
mization. Existing SQL generation methods either randomly gener-
ate SQL queries or rely on human-crafted SQL templates to generate
SQL queries, but they cannot meet various user speci�c require-
ments, e.g., slow SQL queries, SQL queries with large result sizes. To
address this problem, this paper studies the problem of constraint-
aware SQL generation, which, given a constraint (e.g., cardinality
within [1k,2k]), generates SQL queries satisfying the constraint.
This problem is rather challenging, because it is rather hard to
capture the relationship from query constraint (e.g., cardinality
and cost) to SQL queries and thus it is hard to guide a generation
method to explore the SQL generation direction towards meeting
the constraint. To address this challenge, we propose a reinforce-
ment learning (RL) based framework LearnedSQLGen, for gener-
ating queries satisfying the constraint. LearnedSQLGen adopts an
exploration-exploitation strategy that exploits the generation direc-
tion following the query constraint, which is learned from query
execution feedback. We judiciously design the reward function
in RL to guide the generation process accurately. We also inte-
grate a �nite-state machine in our model to generate valid SQL
queries. Experimental results on three benchmarks showed that
LearnedSQLGen signi�cantly outperformed the baselines in terms
of both accuracy (30% better) and e�ciency (10-35×).

1 INTRODUCTION
Many database optimization problems require a large volume
of SQL queries, e.g., slow SQL diagnosis [14, 37], database test-
ing [39, 41, 53], optimizer tuning [9, 12, 15, 56, 57], learned cardinal-
ity estimator [16, 27]. For example, tomake database optimizermore
robust, it is important to feed the optimizer with a huge number of
SQL queries. For another example, to train a high-quality learned

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’22, June 12–17, 2022, Philadelphia, PA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183743

cardinality estimator, it also requires to generate a large number
of SQL queries [16]. However, it is rather hard to obtain a large
number of real SQL queries due to privacy issues, and thus SQL
generation is a very important task in database optimization [12].

Although there are some SQL generation tools, e.g., SQL-
smith [39] and RAGs [41], they have several limitations. First, they
randomly generate SQL queries and the generated queries may
be useless, e.g., empty result. Second, they cannot generate SQL
queries that meet user requirements. For example, if we �nd that
an optimizer should be enhanced for optimizing the SQL queries
with small cardinality (e.g., cardinality within [1,10]), we need to
generate SQL queries satisfying this constraint.

To address this limitation, this paper studies the problem of
constraint-aware SQL generation, which, given a constraint (e.g.,
cardinality within a range, query cost within a range), generates
SQL queries satisfying this constraint. A straightforward method,
which �rst randomly generates SQL queries with existing tools [39],
and then validates whether each generated SQL query satis�es the
constraint, is rather expensive, because each generated query has
very low probability satisfying the constraint. Although there are
some works [10, 31] that attempt to generate SQL queries satisfying
a constraint, they have several limitations. First, they require data-
base experts to craft some high-quality SQL query templates (SQL
structures without predicate values). Obviously, it is expensive to
craft templates for many constraints, and it is hard to craft templates
for new databases that the expert is not familiar with. Second, there
are many di�erent constraints (e.g., slow SQL queries for various
scenarios), and using the crafted templates (1) may not �nd queries
satisfying the constraints and (2) may miss important SQL queries.
Because the experts may miss some important templates, and thus
the corresponding SQL queries will be missed.

There are three main challenges in constraint-aware SQL query
generation. (C1) SQL queries may have diverse cardinality/cost,
and it is challenging to capture the relationship from a constraint
to SQL queries. (C2) There are many di�erent constraints required
by users in di�erent scenarios, and it is challenging to adapt to
di�erent constraints. (C3) The generated SQL queries must be valid
(syntactically and semantically correct), and we need to guarantee
the query validity. To address these challenges, we propose a sys-
tem, LearnedSQLGen, which utilizes reinforcement learning (RL)
to generate queries with target constraints. RL is a typical machine
learning paradigm that an agent learns from the query-execution
feedback by trial-and-error interactions with the environment (data-
base system), which adopts an exploration-exploitation strategy.

https://doi.org/10.1145/3183713.3183743

LearnedSQLGen generates queries by trying di�erent actions (i .e .,
tokens like reserved words, metadata, operands in a query), and the
database system (i .e ., environment) can return the feedback by exe-
cuting the generated query. Based on the feedback, LearnedSQLGen
can exploit the optimal generation direction that leads to the tar-
get constraint (addressing C1). Moreover, we utilize a meta-critic
network that makes our framework generalizable to other SQL gen-
eration tasks with di�erent constraints e�ectively (addressing C2).
Furthermore, we use a �nite-state machine to restrict the action
space so that each generated query is valid (addressing C3).

To summarize, we make the following contributions.
(1) We propose a reinforcement learning based framework to gen-
erate queries with target constraints. To the best of our knowledge,
this work is the �rst attempt that uses a learning-based method to
address the constraint-aware SQL generation problem, satisfying
cost or cardinality constraints (see Section 3).
(2) We judiciously design reward functions in RL to guide the gen-
eration process accurately. For each type of constraint (point or
range), we design reward functions, and then we use the actor-critic
network to achieve robust training in RL (see Section 4).
(3) We adopt a �nite-state machine that incorporates SQL gram-
mar and semantic rules to guarantee query validity, which can be
extended to support various types of queries, like nested queries,
insert/update/delete queries, etc. (see Section 5).
(4) We design a meta-critic strategy that �rst pre-trains a model
for di�erent constraints and then uses the pre-trained model to
support online query generation requirements (see Section 6).
(5) We have conducted experiments on three datasets, and the
results showed that our method signi�cantly improved the accuracy
and e�ciency by 30% and 10-35× respectively (see Section 7).

2 PRELIMINARY
2.1 Problem Formulation
Given a database, a user wants to generate a set of SQL queries that
satisfy a constraint. An intuitive question is how to formulate the
constraint. Two widely-used metrics for SQL queries are cardinality
and cost. The former quanti�es the number of results for a SQL
query, and the latter quanti�es the cost of executing the SQL query.
So we use cardinality or cost to formulate the constraint and de�ne
the constraint-aware SQL generation problem as below.

Definition 1 (SQL�ery Generation). Consider a database
D = {R1,R2, ...,Rd} with d relations, where each relation has multi-
ple attributes. Given a cardinality/cost constraint C (a point or range
constraint) and the number N of generated queries provided by the
user, the query generation problem is to generate a set Q of SQL
queries, such that ∀Q ∈ Q, Q satis�es the constraint C and |Q| = N .

Example 1. As shown in Figure 1, database D has two relations. A
user provides a range constraint Cardinality in [1K, 2K] with
respect to the cardinality, which means that the cardinalities of the
generated queries should be between 1K and 2K. Also, a user can input
a point constraint Cost = 10, which represents that the user expects
the costs of generated queries are close to 10 as much as possible.

Complexity Analysis. Our problem is NP-hard, which can be
proved using the same proof provided in [10](Theorem 4.1). The
reduction is from the subset-sum problem (we are givenm numbers
s1, ..., sm , and the goal is to choose a subset of numbers with total

sum being exactly s). For each given number si in the subset sum
instance, we create a relation R with si tuples with exact the same
attribute values. The observation is that if any such tuple is selected
by a query, all si tuples should be selected. Hence, generating an
SQL whose output cardinality is exactly s is equivalent to �nding a
subset of numbers with total sum being s . Note that although R is
exponential sized, the authors in [10] show that R can be encoded
by a join of several poly-sized relations.
Remark. (1) In most scenarios, only the database tables associated
with schemes are available before SQL query generation. Hence,
our framework focuses on the case that there are no available SQL
queries. (2) As our framework can well support both the cardinality
and cost constraint, we do not distinguish them for ease of repre-
sentation. (3) We can also allow users to specify the latency as a
constraint, but it is sensitive to the hardware environment, so we
use cost instead (like optimizers also use cost). (4) Since SQL gener-
ation is an NP-hard problem [10], it is rather hard to guarantee that
any query or template will not be missed. Thus our method may
also miss SQL queries, but our method is capable of discovering
more satis�ed SQL queries through an exploration-exploitation
strategy, as discussed and evaluated in the following sections.

2.2 Related Work
SQL query generation. Existing query generation methods can
be broadly divided into two categories.

(1) Query-driven method. It relies on a large number of given
SQL queries to train a model, and then uses the model to generate
similar SQL queries. Liu et al. [26] proposed a GAN-based model
to randomly synthesize new SQL queries from historical queries.
Hence it cannot be directly applied to our problem for two reasons.
First, it requires many prepared training SQLs, which are expensive
to acquire in real scenarios. Second, they purely generate random
SQLs, and cannot meet the user-speci�ed constraints.

(2) Query generation without given queries. Generally speaking,
this category can further be classi�ed into two categories. (i) Ran-
dom methods [39, 41]. Slutz et al [41] proposed to generate SQL
queries by randomly walking on a parse tree and executing them on
multiple database instances so as to compare their results for consis-
tency detection (di�erential testing). SQLsmith [39] is a typical ran-
dom query generation tool, which generates complex SQL queries
but they may produce empty results. Bati [8] proposed a genetic
algorithm that randomly synthesizes queries (e.g., addition/removal
of predicates) so as to trigger rarely covered code paths (e.g., spill
to disk when a join does not �t in the memory). However, they ig-
nore the important constraints for database testing (e.g., cardinality
ranges), and thus have low e�ciency in generating desired queries
with constraints. (ii) Template-based methods [10, 31]. They rely on
some given SQL templates and change the values in the predicates
of the templates to generate queries satisfying the given constraints.
Bruno et al [10] proposed to generate desired queries by tweaking
the predicate values in the given query template (e.g., the x in R.a <
x). To satisfy the cardinality constraint, they utilize a hill-climbing
algorithm that selects predicate values to minimize the distance
from the target constraint. Besides, Chaitanya et al [31] proposed a
space-pruning technique to reduce the searching space on the SQL
templates. Speci�cally, they iteratively sample some values of the
predicates and restrict the search space based on the top-k selected

2

areas with shortest distance from the cardinality. Template-based
methods have higher e�ciency than random methods. However,
(i) the generation performance heavily depends on the quality of
templates, which need to be manually designed by experts; (ii) Al-
though some high-quality templates can be provided by experts, it
is hard for these templates to cover various constraints thoroughly.
Reinforcement learning is an ML paradigm that an agent learns
from the feedback from the environment through trial-and-error
interactions. RL is often utilized in sequence generation, which
veri�es that RL naturally �ts our problem because a query can be
seen as a sequence of tokens. For example, applications like ma-
chine translation [19, 35, 48], text generation [7, 36], and dialogue
system [24, 40] can be solved by RL. However, their problems are
very di�erent from us, and thus the solutions cannot be applied.
Learning Models for Databases. Recently machine learning has
gained great development and received widespread attention in the
database community [5, 20–23, 29, 45, 49, 52, 54, 55, 58]. Database re-
searchers have used it in many topics like entity matching [11, 33],
approximate query processing (AQP) [28, 38]. For database sys-
tems, there are learning-based works like reinforcement learning
for knob tuning [6, 22, 52], reinforcement learning for query opti-
mizer [30, 30, 50], hybrid algorithms for materialized view selec-
tion [4, 51], and deep learning for learned data layouts [13, 18, 34].
These works focus on optimizing database components. Note that
many query-based methods (e.g., cardinality estimation, index/view
advisor) [22, 30, 30, 50, 51, 58] rely on numerous queries to train
learning models. Here we try to solve the query generation problem
with reinforcement learning.

3 SYSTEM FRAMEWORK
We propose LearnedSQLGen, a query generation framework using
an RL model. In this section, we �rst summarize the challenges
and overall solution of LearnedSQLGen (Section 3.1), and then in-
troduce the training and inference step respectively at a high level
in Section 3.2 and 3.3. Note that in this section, we introduce the
overall framework that generates queries using the RL model for
one given constraint, and will discuss how to generalize the model
to multiple di�erent constraints in Section 6.

3.1 Overview of LearnedSQLGen
Although there are many cost-estimation approaches to evaluate
the cardinality and cost of queries, they cannot directly generate
queries that satisfy a constraint, because they have to enumerate
many queries to check whether the queries satisfy the constraint
and obviously this solution is rather expensive, as most of the
generated queries cannot satisfy the constraint.
Basic Idea of LearnedSQLGen.We propose to use a reinforcement
learning (RL) framework to address the constraint-aware SQL gen-
eration problem. RL is an ML paradigm that an agent learns from
the feedback through trial-and-error interactions. Hence, there is a
natural connection between RL and our problem. More concretely,
considering the current state (i.e., current generated query), the
agent predicts the next optimal action (i.e., the next token), which
hopefully can lead to the highest reward, i.e., satisfying the con-
straint. Thus, the RL mechanism seamlessly �ts the generation
process of SQL queries with constraints, and thereby it can be de�-
nitely used to solve our problem. Furthermore, the reason why RL

can well solve our problem is that the exploitation of RL guarantees
the accuracy of generated queries (i .e ., meeting the constraints),
and the exploration allows us to generate more queries with large
diversity rather than generating highly similar ones towards ex-
isting directions. To summarize, our RL-based method adopts an
exploration-exploitation strategy, to learn a policy by utilizing ex-
ecution feedback (e.g., whether a generated SQL satis�es the con-
straint), in order to guide the query generation process towards
meeting the constraint.

There are three challengesw .r .t . our problem.
(1) Generate valid SQL queries by guaranteeing syntactic and

semantic correctness. We de�ne a �nite-state machine (FSM) that
incorporates prede�ned grammar patterns and semantic restric-
tions to guarantee the correctness of queries. We will brie�y discuss
this in Section 3.2 and introduce the details in Section 5.

(2) Guide the generation direction to meet the constraints by
computing the expectation of SQL queries. We carefully design the
reward in the RL framework to guide the generation. For example,
generating a query satisfying the constraint will be assigned a
high reward, which is the “exploitation” strategy that makes the
generation close to our expectation (see Section 4 for details).

(3) Generate multiple di�erent queries satisfying the constraint.
Obviously, the user de�nitely wants diverse queries rather than
almost the same ones. To this end, we use the policy-based RL
framework that chooses the actions probabilistically, which can
explore more query spaces that possibly meet the query constraint,
i .e ., the “exploration” strategy (see Section 4 for details).

In a nutshell, leveraging the FSM and the exploration-
exploitation RL framework, LearnedSQLGen can generate valid and
diverse queries that meet user’s constraints. As below, we will
summarize the overall work�ow of LearnedSQLGen.
LearnedSQLGen workflow. The LearnedSQLGen framework is
shown in Figure 1. It �rst trains an RL model based on the database
D and cardinality/cost constraint C. The model takes as input a
query (including subquery), i .e ., state, and computes the optimal
token (e.g., reserved words, table/attribute name, predicate value)
to be added to the query, i .e ., action. Then given the model and
D, in the inference step, we can generate queries that satisfy the
constraint using the model. Next, we will overview the above steps.

3.2 Training
We model the query generation problem as a sequential decision
making process which can be potentially solved by the RL model.
We de�ne the basic traits of RL in our system for training as follows.
State is represented as a sequence of tokens of the current gener-
ated SQL query. Basically, there are two kinds of queries during
generation. (1) Complete generated queries. If a query encounters an
EOF token, it is a complete generated query that will not be further
extended. Then it will be sent to the environment for execution,
and the feedback will be used as the reward to guide the training
process. Note that our FSM guarantees that the query is valid and
executable. (2) Partial queries. If a query has not met the EOF, it is a
partial query that should be further extended by tokens. Note that
some partial queries are also executable. In our framework, both
partial executable queries and complete queries will be executed
for training. All above queries should be encoded as a state.

3

EnvironmentAgent

LSTM LSTM

From

Softmax

Score ID

LSTM

Select

LSTM

state s Q: From Score Select ID
Action Space

Course

Score Where

Agg

Name

From

EOF

…

Student

Q’ : From Score Select ID Where ExecutableҘ Yes

No

Q = Q’

Run Q’ DB Engine

reward r

0DVN

action

LSTM LSTM LSTMLSTM

V(s)

Where

reward r = 0Compute
TD-errorCritic

User Input

Data
Mary2
Jack
Name

1
ID
Student (T2)

English1
Math

Course
1
ID

Score (T1)
Score
95��
100

Card� Constraint: [1K, 2K]

Actor

update

Q : From

95
100

and
or

EOF

Q: From Score Select
ID Where score �

Q: From Score Select
ID Where score ����Agent action

EOFҘstate

policy

A satisfied query

Environment

(a) Training process of LearnedSQLGen

(b) Inference process of LearnedSQLGen (c) An example of generating a query for inference

Agent Agent Agent Env.

Score
Student

action
Score

action
95

action
EOF

Agent

Q : From Score

Student
Select

action
Select

Env. Env. Env.
…

No
1

2

3

4

5

Yes

Group
By

Select

Agg

Where EOFFrom
“select”

“#”

“a
gg

”

“where”

“groupby”

“#”
Automata

…

Figure 1: The LearnedSQLGen Architecture.

Action is the next token to select, which is classi�ed into 5 types:
i). Reserved words in SQL grammar (e .д., Select, Where); ii).Meta
data of the schema (e .д.,T1,T2); iii). Cell values sampled from each
table in the database (e .д., 95.5, 100); iv). The operator (e .д., >, =);
v). EOF, denotes the query is completely generated. Hence, given
the database D, the action space is �xed (denoted by A), but not all
actions in the space can be selected considering the query validity,
which is controlled in the environment (see Section 4).
Environment plays two roles in LearnedSQLGen. On the one hand,
based on the current generated query, it uses FSM to prune the
action space for query validity. On the other hand, after each action
is applied, a query is generated. If it is executable, the environment
will return the estimated cardinality, based on which a reward is
generated to guide the training process (see Section 5).
Reward is returned by the environment, which is used to update
the policy network, so as to guide the generation process towards
satisfying the constraint. A high reward denotes that the generated
query satis�es the constraint C, and vice versa. But during the
generation process of each query, if a partial query is not executable,
the reward is returned as 0.
Agent considers the current generated SQL (i.e., current state),
and chooses an action based on the learned policy πθ . In
LearnedSQLGen, our agent leverages the actor-critic method [25],
which consists of an actor network and a critic network. The former
is utilized to choose the action based on πθ , and the latter is used
to update the policy based on the reward (see Section 4).

Next, we show the overall training process in Figure 1(a), con-
sidering the interaction between the above components.
Overall training process. Initially, as shown in Algorithm 1, the
training process takes as input the constraint C, and database D,
based on which the entire action spaceA is �xed. Then the training
step starts. Note that we do not need training queries in advance,
and instead, we simultaneously generate training queries and train
the model. That is, we propose to generate queries using the RL
model, and leverage these queries associated with their estimated

cardinality as the training data to improve the model. Then after
training, a number of satis�ed queries are generated.

Speci�cally, each training query is generated from scratch
(Line 2) in a token-by-token manner, and here we illustrate our
training process from a partial query, i .e ., Q = “”. Then Q is repre-
sented to a state sk=(‘From’, ‘Score’, ‘Select’, ‘ID’) (Line 4), where
k is just used to identify di�erent states. Next, the agent (i .e ., the
actor network) takes as input s , and computes the probability of
each action, i .e ., πθ (a |s) = p(a |s, θ), a ∈ A. Hopefully, the higher
the probability is, the larger long-term reward of the corresponding
action is expected to acquire if the action (i .e ., the next token) is
selected, which means that the �nally generated query is more
likely to satisfy the constraint.

As the action space is large, and most actions in A will lead
to an invalid query, so an FSM in the environment helps to prune
the action space and guarantee the validity (Line 5). For instance,
given Q, the FSM masks the actions like From, Student, Name, etc.
Hence, the policy samples from the rest unmasked ones based on
the probabilities. Suppose that Where is selected, so we update Q
to “ From Score Select ID Where” (Line 8). Next, since it is not
executable, a reward 0 is returned to the critic network of the agent
(Line 11). Otherwise, a non-zero reward that re�ects how the query
satis�es the constraint will be returned. The reward is computed
by comparing the estimated cardinality (computed by the cost esti-
mator of databases) of the query with the constraint (Line 10). Note
that we do not use the real cardinality for the e�ciency issue. Then
the critic network estimates the long-term reward of the current
state (denoted byV (s)), which is together with the returned reward
to compute the temporal-di�erence error (TD-error), and updates
the two networks for optimized action selection (Line 12).
3.3 Inference
Although the training process can already generate some satis�ed
queries, if the user requires many more SQL queries, we can directly
use the trained model to generate satis�ed queries without updating
the network, i .e ., the inference step. Also, the inference step allows
the users to call the trained model to generate queries satisfying

4

Algorithm 1: LearnedSQLGen Training
Input: Database D, constraint C, a user-designed FSM.
Output: A trained RL modelM .
for each episode during training do1

Set a query Q =“”; k = 1 ;2

while the action a , EOF do3

State sk = LSTM(Q);4

Mask some actions in A based on Q and FSM;5

Action ak is sampled based on p(a |s, θ), a ∈ A;6

// p(a |s, θ) is output by the modelM .7

Add ak to Q ;8

if Q is executable then9

Reward r is the computed based on C and the10

estimated Card./Cost of Q in database;
else r = 0;11

Use the reward to update the network;12

k = k + 1 ;13

returnM ;14

the constraint C at any time, without retraining the model. In other
words, the inference is the forward pass of the actor network. The
details is illustrated as below.

The overall inference process is as shown in Figure 1(b) and
the algorithm of generating queries is shown in Algorithm 2. Each
query is generated from scratch token-by-token. Initially, we start
from an empty query, which is also regarded as a partial query
(Line 1). Given a partial query, it is �rst represented as a new state
(step 1○, Line 3). Then the agent takes as input the state, uses the
learned policy to compute a probability for each action in A (step
2○, Line 5). Meanwhile, considering the current query, the FSM
in the environment masks a number of actions to guarantee the
validity (step 3○, Line 4). Then, the next action, i .e ., the next token,
is selected by the policy and FSM, and added to the partial query
(step 4○, Line 7). The above steps iterate until an action with the
EOF is selected (step 5○), and then a query is generated and output
(Line 8). If the user wants to generate N queries, we repeat this
process for N times.

Example 2. We suppose that From clause is a basic and indispens-
able constitution part of SQL, LearnedSQLGen starts to generate SQL
from it, i .e ., the �rst action (This can be de�ned by the FSM, where
From can be the start point). Then the agent picks tokens one by one
according to well-learned policy πθ . For example, in Figure 1(c), for
the second action, the current state s = (‘From’). Then based on the
FSM, the second action can be selected from {‘Students’,‘Score’
}, which can guarantee a valid query, and the agent selects ‘Score’.
For another instance, for the 8-th action, current state is (‘From’,
‘Score’, ‘Select’, ‘ID’, ‘Where’, ‘Grade’, ‘<’), and the
next token can be selected among cell values sampled from column
score(e .д., 95, 100) while others are masked by the FSM. According
to π , the agent picks the token ‘95’ with a high probability. Next, the
EOF is selected as the action, and thus the query is completed.

Note that the inference step can only generate queries satisfying
the constraint C. In this case, if a user speci�es another di�erent
constraint, the previous trained model cannot directly work. Hence,

Algorithm 2: LearnedSQLGen Inference
Input: Database D and constraint C.
Output: A satis�ed query Q .
Q = “”;1

while the action a , EOF do2

State sk = LSTM(Q);3

Mask some actions in A based on Q and FSM;4

Action ak is sampled based on p(a |s, θ), a ∈ A;5

// p(a |s, θ) is output by the modelM .6

Add ak to Q ;7

return Q ;8

in Section 6, we propose a meta-critic network that leverages the
historical training experience to make our method generalize to
other constraints e�ciently.

4 RL IN LEARNEDSQLGEN
Our policy in the agent is implemented by the reinforcement learn-
ing model. We �rst introduce the model design for the query gen-
eration problem, i .e ., the state representation (Section 4.1), reward
design (Section 4.2) and the actor-critic networks (Section 4.3).

4.1 State Representation
To utilize the RL model, we need to represent the state, which is

the input of model. In our problem, as discussed in Section 3.2, each
state corresponds to a query (probably an intermediate one), which
consists of a sequence of tokens (i .e ., actions). Therefore, we should
represent the tokens (actions) �rst. Although there exist many types
of tokens, we can represent them to support complicated queries.
Especially for predicates w.r.t. a large number of distinct cell values,
it is hard to represent them.

Next, we see how to address the above issues.
Token (action) representation. For ease of training and inference,
we map di�erent types of tokens to the same encoding space. First,
we introduce the 5 token types.

• Reserved words in the SQL grammar. To be speci�c, we
support {Select, From, Where, Groupby, Having, Order BY,
MAX/MIN, Sum, AVG, Count, Exist, In, and, or, not}

• Meta data of the schema including the table and attribute
names.

• Cell values in the data.
• The operators. We support {>, =, <, ≥, ≤}.
• EOF, indicates that a query is generated completely.

All the tokens above constitute the entire action space A. Over-
all, we map each of the above tokens to a one-hot encoding, e .д.,
E(Select) → 00000, E(From) → 00001, ..., E(Score) → 01000 etc.
Then the the second challenge arises, i .e ., encoding all the cell val-
ues (the third type) is sometimes impractical due to the large action
space. To this end, we tackle the cell values as follows.

Generally, there are three common types of data (cell values) in
database: numerical, categorical and string that we can support.

For categorical data, like the attribute Gender, we just treat the
values the same as the other types because the number of distinct
values of categorical data is always not large, i .e ., E(Male) → 00100,
E(Female) → 00010.

5

However, numerical data may have a large number of distinct val-
ues. Hence, to reduce the action space, for each numerical attribute,
we randomly sample k values from the attribute before training and
encode them to a one-hot vector. Then once we generate a value of
this attribute, a value among the sampled k values will be selected
by the agent.

For string data, we can sample k strings and use them the same
as the numerical data, and support {=, >, <} for string data.
State (query) representation. The state is naturally represented
as a sequence of token (query) representations. To be speci�c, we
use st to denote a state, where the subscribe t means that there are
t tokens in the sequence, i .e ., the query Qt . For example, the query
Q4 = “From Score Select ID” corresponds to the state s4={E(From),
E(Score), E(Select), E(ID)}.

4.2 Reward Design
We present the reward design based on the constraint types (i .e .,
point and range) of the user’s input. The essence of the reward is
to re�ect the di�erence between the feedback from the database
and given constraint. Intuitively, the smaller the di�erence is, the
higher reward should be given to the agent, and vice versa.
Point constraint is in the form of C : Card = c or Cost = c ,
where c denotes the user requirement. Given a generated queryQt ,
et = 1(0) denotes that the query is (not) executable and ĉt denotes
the estimated result ofQt under database D. we use δt =min(ĉc ,

c
ĉ)

as the reward. If c or ĉ is zero, we set δt as 0.

rt =

{
δt et = 1
0 et = 0

Example 3. Suppose a point constraint, Card = 10, 000, and the
agent generates an executable query with estimated cardinality ĉt =
100. Hence a low reward 0.01 is returned to decrease the probability of
selecting queries like it again. For another query with the estimated
cardinality ĉt = 11, 000, we give a high reward 0.9 to encourage the
agent to explore along this direction.

Remark. Although we are ultimately interested in the
performance(i .e ., cardinality or cost) of a completely gener-
ated SQL (i .e ., aT =‘EOF’), simply awarding the end reward after
the ‘EOF’ while giving zero as intermediate reward results in a
sparse training signal for the agent. Therefore, we also give the
computed reward if partial queries can be executed. Besides, for all
types of queries, we will compute an estimated long-term reward
for each of them, which is done by the critic network (see Section
4.3 in detail). Note that the long-term reward is not like r that is
directly derived from the environment.
Range constraint is in the form of C : Card = [c .l, c .r] or Cost =
[c .l, c .r], which requests that the cardinalities/costs are in [c .l, c .r].
et has the same meaning with the point constraint. Di�erent from
that, if ĉt ∈ [c .l, c .r], we assign a positive reward 1. Otherwise,
we consider whether ĉt is near to the range, so as to assign a
proper reward. To be speci�c, we use δ lt = min(ĉ

c .l ,
c .l
ĉ), δ rt =

min(ĉ
c .r ,

c .r
ĉ) to denote how close is ĉ to the left and right bound

of the range respectively. Hence, max(δ lt , δ
r
t) can be utilized to

measure how close is ĉ to the range. For ease of representation,

we introduce a notation nt = 1 to denote ĉt ∈ [c .l, c .r]. Naturally,
nt = 0 means that ĉt < c .l or ĉt > c .r .

rt =


1 et = 1 & nt = 1

max(δ lt , δ
r
t) et = 1 & nt = 0
0 et = 0

Example 4. Suppose a range constraint Card = [1K, 2K], the
agent generates a satis�ed query with estimated cardinality ĉt = 1.5K ,
and thus the returned reward is 1. For another query with ĉt = 10k ,
which is higher than the upper bound of the range, we return the
corresponding relatively small reward 0.2.

4.3 LearnedSQLGen via Actor-Critic
Given the state representation, the policy in the agent takes as input
the state, and infers the optimal action that should be taken in the
next step, which is the core part of the RL model. However, the
typical policy network cannot achieve good performance because
our cumulative rewards are likely to result in high variance among
the returned rewards. Hence, we utilize the actor-critic method
to alleviate this issue. Moreover, to avoid generating many same
queries, we use a entropy regularization technique to adjust the
objective function for generating di�erent queries.

Typical policy-based reinforcement learning method (like the
REINFORCE algorithm [46]) always relies on optimizing the pa-
rameterized policy with respect to the expected long-term reward.
To be speci�c, the objective of the policy network is to maximize
J (θ) de�ned as below,

J (θ) = Eπθ [R(τ)] =
∑
τ

p(τ |θ)R(τ1:T) (1)

where τ = (s1,a1, .., sT ,aT) denotes a trajectory leading to a fully
generated query, i .e ., aT = EOF. R(τ1:T) =

∑T
t=1 rt . Intuitively, to

maximize J (θ), given a high reward R(τ), we aim to learn a policy
to increase the probability of selecting the trajectory τ , i .e ., p(τ |θ).
Given the objective function, the REINFORCE algorithm uses the
gradient ascent to update the parameters θ in the direction of the
gradient,

∇J (θ) = Eπθ (
T∑
t=0

∇θ loдπθ (at |st)R(τt :T)) (2)

Motivation of actor-critic networks. As discussed above, the RE-
INFORCE introduces in high variability in cumulative reward values
(R(τ) =

∑T
t=0 rt) because these trajectories during training can de-

viate from each other at great degrees, which leads to instability
and slow convergence [44]. One way to address this issue is to
subtract the cumulative reward by a baseline, which intuitively
makes smaller gradients, and thus smaller and more stable updates.
Therefore, the actor-critic network strategy is proposed [25]. The
actor network learns the policy distribution to select an action. And
for adjusting the cumulative reward, the critic network is to esti-
mate the baseline, which can be regarded as the expected long-term
reward under certain state.

Next, we �rst introduce the forward pass of the actor and critic
networks respectively, and then illustrate how to update the net-
works based on the reward and baseline.
The actor network. Since the Long Short-Term Mem-
ory(LSTM) [17] is a typical structure to model a sequence,
the actor network takes as input the state representation, followed

6

Algorithm 3: Actor-Critic Training for Query Generation
Input: Database D and constraint C
Output: actor-critic networks parameterized by θ , ϕ
Initialize parameter vectors θ , ϕ;1

while not to the max iterations do2

Sample a batch of trajectories following the policy πθ3

for each trajectory do4

Compute ∇J (θ),∇Lϕ /* using Eq. 4 */5

θ = θ + α∇J (θ)6

ϕ = ϕ + β∇Lϕ7

by an LSTM and Softmax layer, and outputs the policy distribution,
i .e ., πθ (st) = Softmax(LSTM(st)). Then the probability of each
action πθ (a |st) can be derived, and the agent samples based on the
probability distribution.
The critic network estimates the value function, including the
state-value (the V value) and action-value (the Q value). To be spe-
ci�c, the critic network uses a separate LSTM network parameterized
by ϕ, and outputs the V value, i .e ., Vϕ (st), which is the estimation
of long-term reward from the state st using the policy π . Also, theQ
value can be naturally computed byQϕ (st ,at) = rt +Vϕ (st+1) [44].
It denotes the estimation of long-term reward that the action at is
taken from the state st using the policy π .
Training (updating) the actor-critic networks. Recap that in
the REINFORCE, the high variance of cumulative rewards in Eq. 2
leads to unstable and ine�cient training. To address this, we use
the V value as a baseline to be subtracted by the rewards for reduc-
ing the variance which is produced by the critic network and it is
proved that this does not introduce any bias [44].

To be speci�c, we use A(st ,at) = Q(st ,at) − V (st) to replace
Rt in Eq. 2, because Rt is an estimate of Q(st ,at) and V (st) is the
baseline. Hence, the gradient becomes,

∇J (θ) = Eπθ (
T∑
t=0

∇θ loдπθ (at |st)A(st ,at)) (3)

where A(st ,at) can be estimated by rt +Vϕ (st+1) −Vϕ (st), named
by temporal-di�erence (TD) error. From another perspective, since
the baseline, i .e ., the V value, is the expected long-term reward
of a state, the TD error re�ects the advantages/disadvantages of
di�erent actions from the state.

Then we discuss how to update the critic network. To estimate
the V value accurately, the di�erence between rt + Vϕ (st+1) and
Vϕ (st) should be as small as possible. Hence, we can �nd that the
TD error can also be used to update the critic. To be speci�c, the
loss function should be written as Lϕ = (rt +Vϕ (st+1) −Vϕ (st))

2.
Entropy regularization. We can further improve the diversity of
generated queries through adding a regularization term (H(πθ (·|st)
) to the loss function[32, 47]. It denotes the entropy of the probability
distribution of actions given a state. The higher the entropy, with a
higher probability that the agent can sample diverse actions rather
than keeping to select the most likely one. Speci�cally, we can
rewrite Eq. 3 as,

∇J (θ) ≈
T∑
t=0

[∇θ loдπθ (at |st)A(st ,at) + λ∇θH(πθ (·|st))] (4)

where λ controls the strength of the entropy regularization term.

Overall training algorithm Algorithm 3 summarizes the above
proposed process. LearnedSQLGen �rst initializes the parameters
(Line 1). In each iteration (Line 2-7), LearnedSQLGen generates a
batch of queries using the learned policy (Line 3). Then it computes
the gradient for each trajectories (Line 4) to update the parameter
(Line 6-7). Finally, it outputs a well-trained actor-critic network.

5 FSM IN THE ENVIRONMENT
We introduce the designed �nite-state machine (FSM) in the en-
vironment, which is utilized to mask some possible actions, and
thereby the validity of queries is guaranteed. The FSM is built from
the typical SQL grammar and can be extended �exibly by the users,
so as to generate various types of queries.

Definition 2. (Finite-state machine in LearnedSQLGen). Given a
databaseDwithd relations, an FSM in LearnedSQLGen can be de�ned
as a directed acyclic graph (DAG) GD, which is utilized to describe the
generation scope of each token on a query, and guarantee the validity.
In GD, each node (edge) is represented as an FSM-state (FSM-action).
Speci�cally, each intermediate query during the generation process
corresponds to an FSM-state, and each possible token to be added to
an intermediate query corresponds to an FSM-action.

To distinguish the FSM-state (action) from the state (action) in
RL (Section 4), we use the node (edge) to denote FSM-state (action)
for ease of representation. Next, we illustrate how to build the FSM.
SQL grammar to FSM. Actually, our FSM (Figure 2) can be easily
built and extended from the SQL grammar, which are categorized
into several cases for ease of representation.
[Case 1: SPJ Query.] This case describes the commonly-used
Select-Project-Join query. The FSM in Figure 1 is a summariza-
tion of the one in Figure 2, where each node in Figure 1 corresponds
to a more detailed SQL structure described by the grammar.

For example, after the From, we consider two categories: (1) query
from a table, and (2) query from multiple tables with join. More
concretely, the From clause is related to the blue nodes of Figure 2,
where n1 → n2 → n5 (query from the single table Score) and
n1 → n3 → n7 (query from Student) are built based on the �rst
category. The second category, i .e ., n1 → (n2 or n3) → n6 refers
to joining the two tables. Note that the corresponding join keys
will be automatically added. Then, we come to the Select clause,
which is associated with the green nodesn5,n6 andn7. The contents
are speci�ed by the selectTerm+ in the grammar, including the
columns to be projected de�ned in Case ∗, e .д., T1.ID.
[Case 2: Nested Query.] As shown in Table ??, we support nested
queries by adding QUERY in the Where or From clause. Then, ideally,
subqueries can be generated recursively. Consequently, in the FSM,
we add another branch starting with Select→ n14 → From→ · · · .
[Case 3: Aggregation Query.] We also support aggregation queries
by adding the Groupby and Having clauses, which are also inte-
grated into the FSM.
[Case 4&5&6: Insert/Update/Delete Query.] Our FSM can support
di�erent query types including insert, update and delete.
Syntactic and Semantic Checking. Our method can support syn-
tactic and semantic correctness checking by integrating rules into
FSM. First, syntactic correctness checking veri�es that reserved
words, object names (table/column), operators, delimiters, and so

7

select

Start

insert update delete

#

where

agg

T1. ID

T1. Course

select

selectStudent (T2)

select

</>/!=/···
1

2

#

and

sum

T1. score

avg
join

Score (T1)

Student (T2)

from ···

···

···

···

···

···

···

agg

where

group
by

···

···

···
EOF

EOF

···n2

n3

n4

n5

n6

n7

n8 T1. ID

T1. score

Score (T1)
join

n1

T1

T2

into

into

select

values

···

···

···

where
T1

T2 set

set
···

···

···

T1

T2

from
from

where

···

···

select from
n9

n11n10
n13

n12

n14
nest

Figure 2: An Example of the FSM in LearnedSQLGen.
on are placed correctly in an SQL query. This guarantees to gen-
erate valid SQL queries. Second, semantic correctness checking
veri�es that references to database objects and variables are valid
and the datatypes are correct. For example, nonexistent column-
s/tables cannot be used; only numerical attributes can be included
in average/sum/max/min aggregation operations; columns with
di�erent datatypes cannot be joined, e.g., ID and Name.
Meaningful Checking. It is rather hard to support meaningful
checking because it relies on domain knowledge. Our current ver-
sion supports rule-based meaningful checking. For example, if a
user de�nes a rule “two columns can join, only if they have Primary-
key-Foreign-key relations or user-speci�ed join relations”, then two
columns satisfying this rule can be joined. We leave supporting
more general meaningful checking as a future work.
Dynamic FSM construction. The FSM may be large. To address
this, in fact, we can build it as the query generation process goes
on the �y. For example, as shown in Figure 2, after reaching n1, if
the agent selects Score rather than Student, n2 is produced and
n3 does not need to appear, and thus many branches can be pruned.
Hence, given an intermediate query, we generate the edges based
on the SQL grammar and some semantic rules. After the agent
selects an edge, we produce a new node while pruning the rest
edges. We repeat the above step until the EOF is selected.

Example 5. Given D with two relations (Score and Student in
Figure 1), we can build an FSM as shown in Fig 2, which guides the
generation of a query. To be speci�c, it starts from a Start node,
corresponding to a vacant query. Then the From edge is necessary in
a query, leading to the node n1. Then there are two ways to go, i .e .,
either selecting Score or Student, leading to n2 or n3. The selection
is done by the agent in the RL framework (see Figure 1). Finally, when
we reach the EOF node, a query is fully generated.

Supported and Unsupported SQL Syntax. Our current version
supports the following SQL syntax: Insert/Delete/Update/Select,
Selection, Projection, Join, Aggregation, Group by, Having, Nested
Queries. Like is not yet supported. A possible way to support Like
is incorporating the keyword “Like” into the FSM and sampling
substrings from the values of a column as “values”, and we leave
the details of this as a future work.

6 PRE-TRAINING FOR DIFFERENT
CONSTRAINTS

In the previous sections, given a user-speci�ed constraint, we can
train a model to generate queries satisfying the constraint. How-
ever, if a users want to generate queries with another constraint,
a brute-force method is to retrain a new model so as to obtain an
accurate generation result. Hence, it is prohibitively expensive to
train a number of models from scratch when there are queries to
be generated with various constraints, which is a common phe-
nomenon in reality. To address this goal, a natural solution is to
�ne-tune trained model corresponding to a distinct range or point
constraint, but there exist in�nite number of ranges or points in
the cardinality/cost domain, and thus we cannot train and store so
many models.

Hence, inspired by the meta-critic network [43], we propose
to just train a single model on a relatively large cardinality/cost
domain. Then given a task with a new constraint, we can e�ciently
generalize the model to support the new constraint. Next, we intro-
duce the motivation of the meta-critic network, and show how to
conduct the training and inference steps of the network.
Motivation of the meta-critic network: meta-critic is a meta-
learning method with good generalization ability, which is studied
based on the actor-critic network as discussed in Section 4. Specif-
ically, recap that the actor-critic network jointly trains a pair of
networks where the actor learns to provide the solution, and the
critic learns how to e�ectively supervise the actor. Di�erent with
conventional actor-critic model, the key idea is to learn a meta-
critic: a state-value function(i .e ., V) neural network that learns to
criticize any actor trying to solve any speci�ed task. Intuitively,
with multiple actors trains with one shared meta-critic, it learns the
transferable knowledge among these actors and tasks that allow
actors to be trained e�ciently and e�ectively on a new problem.
Bridging the meta-critic network to our problem: To improve
the generalization ability of our method, we will apply the meta-
critic network to our problem. Note that the meta-critic network
takes as input di�erent but related tasks. In our problem, although
the number of possible range/point constraints is in�nite, but we
can assume a cardinality/cost domain, say [0, 10K], for the queries
to be generated, given the database D. Then we can divide the do-
main uniformly into K subranges, each of which corresponds to a
constraint, i .e ., a task, and thereby we have multiple tasks. We use
the notation C to denote the set of constraints. Suppose K = 5, and
the C = {[0, 2K], [2K, 4K], [4K, 6K], [6K, 8K], [8K, 10K]}.

8

Card. Constraint:
[0K, 2K]

Actor 1

Card. Constraint:
[2K, 4K]

Actor 2

Env. 2Env. 1

Card. Constraint:
[2k, 2.5K]

Actor i

Env. i

a r

Meta-Value
Network

Constraint
Encoder

…

Card. Constraint:
[8K, 10K]

Actor 5

Env. 5

Historical Tasks

zt:Constraint
Embedding

…
(s,a,r) t

(s,a,r) t-k

Policy-
Gradient

V(s)

s

New Task
Meta-Critic

Figure 3: The LearnedSQLGen Architecture.
Next, we can train with these tasks (actors) together to obtain a
meta-critic network. When it comes to a new task with a constraint
(within the domain [0, 10K]), we can leverage the knowledge
obtained from the previous K tasks to better train the new task.

Next, we show the concrete mechanisms of the training and in-
ference steps mainly for range constraints. For the point constraint,
the method is similar and we will discuss it at the end of this section.
Meta-critic training: In this part, given the database D and the
constraint set C (produced from the domain), we focus on how to
train a meta-critic network and reveal its intrinsic characteristic
that can help to generalize to a new task e�ciently and e�ectively.
To this end, in the actor-critic framework, it is signi�cant for the
critic network to estimate the long-term reward, i .e ., theV value ac-
curately, which guides the actor to generate proper queries. Hence,
the goal of the meta-critic network is to make the new task estimate
an accurate V value in few trials e�ciently.

To achieve this, the meta-critic network incorporates multiple ac-
tors, each of which corresponds to a constraint (task) in C. Another
key factor is that it adds a constraint encoder, which potentially
embeds the information w.r.t. di�erent tasks. Hence, the meta-critic
network has captured the relationship between di�erent tasks and
their corresponding V values, given some generated queries. Once
a new task arrives, the meta-critic can capture the feature of the
new task through the constraint encoder, and leverage the learned
knowledge of previous tasks that have close relationships with
the new one to generalize quickly. Moreover, the meta-critic keeps
learning to criticize actors from new tasks, it accumulates transfer-
able knowledge and never gets ‘out of date’.

As shown in Figure 3, initially given the domain [0, 10K], we
divide it to 5 tasks (actors) with 5 successive range constraints.
Then the training process begins. First, these actors one-by-one
generate SQL queries served as the training data. For each task, the
query generation way is the same as discussed in Section 3.3. For
example, the �rst task in Figure 3 aims to generate queries with
cardinality in [0, 2K]. Second, for the actor-critic network in the
previous section, the generated query is sent to the environment
for execution, and the returned reward is utilized to update both
networks. Di�erent from that, the meta-critic framework adds a
constraint encoder, which embeds the current state (i .e ., the query),
selected action (i .e ., the token) and the returned reward by the
environment, denoted by a triple (st , at , rt). Then the outputs of
the constraint encoder, denoted by zt , can potentially describe the
task, because the task directly determines the reward, given the
query and selected token. Third, the meta-value network takes as
input (st ,at , zt), and estimates the long-term reward, i .e ., the V
value. Di�erent from the critic network in basic actor-critic model,
the meta-value network estimates the long-term reward based on
both the generated queries and constraints, which considers the
historical training experience of di�erent constraints.

Next formally, with the estimatedV value, the actor is trained by
∇J (θ) = Eπθ (

∑T
t=0 ∇θ loдπθ (at |st)A(st ,at , zt)), where the critic

can give relatively accurate estimation of A(st ,at , zt) (based on
the V value) and e�ciently guide the actor to �nd proper queries.
Similar to Section 4, we then update both the meta-value network
and constraint encoder based on the loss function, Lϕ = (rt +

Vϕ (st+1, zt) −Vϕ (st , zt))
2, which approximates the distance from

the actual long-term reward under the new constraint.
Meta-critic generalization: As discussed before, given a new
task, if the meta-value network can estimate theV value accurately
and e�ciently, the actor can quickly adjust its policy to generate
queries satisfy the new constraint. Recap that the meta-value net-
work in the meta-critic framework can capture the feature of di�er-
ent tasks (incorporated by the constraint encoder), the queries(i .e .,
state) and output the V value. Hence, for a new task, leveraging
the learned meta-critic framework, one can identify the new task’s
feature and use the previously learned knowledge to quickly esti-
mate an accurate V value, which leads to e�cient actor training.
For example, given a new task of generating SQL queries satisfying
a constraint [1k, 2.5k], we can mostly leverage the learned knowl-
edge from pre-trained similar tasks, i .e ., the constraints [0k, 2k]
and [2k, 4k], to quickly train the new task. Furthermore, after the
new task is trained, the knowledge of the task is also incorporated
into the meta-critic network, and thus the network will become
more and more powerful.
Remark for the point constraint. We can sample some points
in the domain to pre-train the meta-critic network. For example, we
can sample a set of cardinality points C = {101, 102, 103, 104, 105}
with di�erent magnitude and train a meta-critic network. Then,
given a new task of Card = 2K, the meta-critic e�ciently learn the
task potentially leveraging the knowledge of the previous tasks.

7 EXPERIMENTS
We have conducted extensive experiments to show the superiority
of our proposed LearnedSQLGen framework.

7.1 Experiment Setting
Datasets.Weused three benchmark datasets which are widely used
in our database community. (1) TPC-H [2] is a popular benchmark
that contains 8 relational tables (We produce the data with size of 33
GB in total). Given these tables, LearnedSQLGen can generate SQL
queries that can be executed over them. (2) JOB [1] is another widely-
used benchmark (uses a real-world dataset IMDB) that consists of
21 tables (with size of 14 GB in total). (3) XueTang [3] is a real-world
OLTP benchmark of the online education, which contains 14 tables
(with size of 24 GB in total).
Baselines. We compared with two baselines in the paper.
(1) SQLSmith [39] randomly generated SQLs based on a parse tree,
from which we picked the queries satis�ed the constraints.
(2) Template [10] generated satis�ed SQL queries by greedily tweak-
ing the predicate values in the given SQL templates. The query
templates are constructed from the provided templates of the three
benchmarks by reassembling the predicates (e.g., adding or remov-
ing a predicate).
Hyper-parameter Se�ings. The actor network consists of an input
layer, followed by a 2-layer LSTM network and an output layer.

9

Note that the number of layers is chosen by balancing e�ciency
and accuracy. A more complex model is likely to achieve better
results but may sacri�ce e�ciency, and thus we can take it as a
hyper-parameter tuning problem. In practice, we �nd that 2-layer is
most appropriate. The dimension of the input/output layer is equal
to the size of the action space of each dataset. Here, we have the
dimension 1962 (TPC-H), 3940 (JOB) and 4280 (XueTang) respectively.
We set the sampled numbers of values in each numerical attribute
as 100, i .e ., k = 100. The 2-layer LSTM networks have 20 cell units
respectively and the second one is connected to the output layer.
The structure of the critic network is similar to the actor, but the
only di�erence is that the output layer dimension is 1 for outputting
the V value. Dropout [42] is used to avoid over-�tting in both the
actor and critic networks and it is set to 0.3. We set λ = 0.01 to
prevent the actor from generating a lot of same queries. In the
training process, the learning rate is 0.001 for the actor and 0.003
for the critic network.
Target Constraints. We evaluated two types of target con-
straints. (1) Cost denotes the execution expense of an SQL and
(2) Cardinality denotes the size of the result of an SQL. We di-
rectly used the estimated cardinality/cost by the database estimator
to compute the reward. Furthermore, we respectively tested the
two types of constraints in forms of points and ranges.
Evaluation Metrics. We evaluated LearnedSQLGen using two
metrics, i .e ., generation accuracy and generation time.
(1) Generation accuracy (acc) represents the ratio of the number of
satis�ed queries (denoted by ns) to the total number of generated
queries (denoted by n). Then acc = ns

n . A higher accuracy re�ects
that the method is more powerful in generating satis�ed SQLs. For
the point constraint, it is hard for the cardinality/cost c to be a value
exactly, so a small error bound τ is set, which means that if the
cardinality/cost of a generated query is within [c − τ , c + τ], we
regard it as a satis�ed query. To be speci�c, we set τ as 0.1∗c , which
is reasonable because a 10% deviation from c is acceptable. Hence,
ns denotes the number of such queries. For the range constraint,
ns just denotes the number of queries in the range.
(2) Generation time represents the time of generating a �xed num-
ber (e .д., 1K) of satis�ed SQLs including the training and infer-
ence phases. A lower generation time indicates that the generation
method is more e�cient.
Environment. All experiments were implemented in Python, per-
formed on a Ubuntu Server with an Intel (R) Xeon (R) Silver 4110
2.10GHz CPU having 32 cores, a Nvidia Geforce 2080ti GPU, and
128GB DDR4 main memory without SSD.

7.2 Overall Evaluation
In this subsection, we compared the accuracy and e�ciency of
LearnedSQLGen with the random-based method (SQLSmith) and
template-based heuristic method (Template).

7.2.1 Accuracy of generated queries. We �rst evaluated the accu-
racy for cardinality constraint and then the cost.
Varying the Cardinality. As shown in Figure 4, we generated
1K queries on three datasets, and tested the accuracy of di�erent
point and range cardinality constraints and the results showed
that LearnedSQLGen outperformed the baselines. For example, in
the x-axis of Figure 4(a), Cardinality = 102 denotes that we

aim to generate queries with cardinality as close to 102 as possi-
ble, i .e ., queries with cardinality between 90 and 110 are satis�ed
ones. On TPC-H, LearnedSQLGen achieved an accuracy of 54.33%,
while SQLSmith and Template had 0.02% and 18.98% respectively.
Thus, LearnedSQLGen outperformed SQLSmith because SQLSmith
generated queries randomly without considering the constraints,
but LearnedSQLGen incorporated the constraints and the execu-
tion feedback from the database into reward computation in the
design of our reinforcement learning model. Hence, we can cap-
ture the relationship between the SQL query and its cardinality/-
cost, and thus the generation direction is guided by the model. In
Figure 4(a), SQLSmith gained the highest accuracy (i .e ., 0.53%) at
Cardinality = 106 mainly because, on this dataset, the cardinal-
ity of random generated queries is close to 106 than other point
constraints, but it is still much lower than that of LearnedSQLGen.
LearnedSQLGen outperformed Template because the templates in
Template were not guaranteed to be high-quality (i .e ., can be
adjusted to meet the given constraint), and thus some of them
cannot produce the satis�ed queries. As shown in Figures 4(c,e),
LearnedSQLGen still outperformed the two baselines. For exam-
ple, in Figure 4(c), when the cardinality was Cardinality = 104,
LearnedSQLGen achieved an accuracy of 59.30%, while SQLSmith
and Template were 0.05% and 24.94% respectively.

We also tested the accuracy for di�erent range constraints. For
example, as shown in Figure 4(b), Cardinality ∈ [1K, 2K] de-
notes that we aim to generate satis�ed queries with cardinality
within this range. On TPC-H, LearnedSQLGen still outperformed
the baselines for similar reasons. LearnedSQLGen achieved an ac-
curacy of 54.12%, while SQLSmith and Template had 0.064% and
17.16% respectively. We can see that as the range gets wider, the
accuracy of all the three methods is generally higher. For exam-
ple, for LearnedSQLGen, compared with Cardinality ∈ [1K, 2K]
(54.12%), the accuracy is 66.23% when Cardinality ∈ [1K, 8K].
This is because there will be naturally more queries satisfying a
wider range constraint.
Varying the Cost. Our LearnedSQLGen framework can also sup-
port the cost constraint, as shown in Figure 5. Due to the similar
reasons, LearnedSQLGen still outperforms the baselines. For exam-
ple, for the point constraint on XueTang dataset, when Cost = 106,
LearnedSQLGen achieves an accuracy of 53.66%, which is much bet-
ter than that of SQLSmith (0.24%) and Template (18.11%). For the
range constraint on JOB dataset, Cost ∈ [1K, 8K], LearnedSQLGen
achieves an accuracy of 51.37%, while SQLSmith and Template are
2.17% and 20.15% respectively.

7.2.2 E�iciency of the query generation. We tested the e�ciency
of LearnedSQLGen to generate satis�ed queries.
Varying the Cardinality. In Figure 6, we evaluated the e�ciency
of di�erent cardinality constraints on three datasets. Overall, we
can see that our method outperformed all the baselines. For ex-
ample, as shown in Figure 6(a), on TPC-H dataset, if we want to
generate queries close to 108, LearnedSQLGen only consumed 0.63
hours, but SQLSmith and Template had to spend 11 hours and
2.72 hours respectively. The reason is that SQLSmith just randomly
generated queries, and thus it took a longer time to generate 1K
satis�ed queries. Template took a longer time because some tem-
plates cannot produce satis�ed queries by just exploring operands

10

102 104 106 108

Cardinality

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(a) TPC-H (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(b) TPC-H (Range)

102 104 106 108

Cardinality

10 2

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(c) JOB (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

100

101

102

Ac
cu

ra
cy

 (
%

)

(d) JOB (Range)

102 104 106 108

Cardinality

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(e) XueTang (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

100

101

102

Ac
cu

ra
cy

 (
%

)

(e) XueTang (Range)

SQLSmith Template LearnedSQLGen

Figure 4: Accuracy Evaluation of Cardinality Constraint (N=1000).

102 104 106 108

Cost

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(a) TPC-H (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cost

100

101

102

Ac
cu

ra
cy

 (
%

)

(b) TPC-H (Range)

102 104 106 108

Cost

10 2

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(c) JOB (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cost

100

101

102

Ac
cu

ra
cy

 (
%

)

(d) JOB (Range)

102 104 106 108

Cost

10 2

10 1

100

101

102

Ac
cu

ra
cy

 (
%

)

(e) XueTang (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cost

100

101

102

Ac
cu

ra
cy

 (
%

)

(f) XueTang (Range)

SQLSmith Template LearnedSQLGen

Figure 5: Accuracy Evaluation of Cost Constraint (N=1000).

102 104 106 108

Cardinality

100

101

102

Ti
m

e
(h

)

(a) TPC-H (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

100

101

102

Ti
m

e
(h

)

(b) TPC-H (Range)

102 104 106 108

Cardinality

100

101

102

Ti
m

e
(h

)

(c) JOB (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

100

101

102

Ti
m

e
(h

)

(d) JOB (Range)

102 104 106 108

Cardinality

100

101

102

Ti
m

e
(h

)

(e) XueTang (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

100

101

102

Ti
m

e
(h

)

(f) XueTang (Range)

SQLSmith Template LearnedSQLGen

Figure 6: E�ciency Evaluation of Cardinality Constraint (N=1000).

102 104 106 108

Cost
10 1

100

101

102

Ti
m

e
(h

)

(a) TPC-H (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cost

100

101

102

Ti
m

e
(h

)

(b) TPC-H (Range)

102 104 106 108

Cost
10 1

100

101

102

Ti
m

e
(h

)

(c) JOB (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cost

100

101

102

Ti
m

e
(h

)

(d) JOB (Range)

102 104 106 108

Cost

101

102

Ti
m

e
(h

)

(e) XueTang (Point)

1k-2k 1k-4k 1k-6k 1k-8k
Cost

100

101

102

Ti
m

e
(h

)

(f) XueTang (Range)

SQLSmith Template LearnedSQLGen

Figure 7: E�ciency Evaluation of Cost Constraint (N=1000).

in predicates but keeping template structures �xed. This wasted
a lot of time on the given templates, so it performed even worse
than SQLSmith. For example, when Template aimed to generate
queries satisfying the constraint Cardinality = 108 on TPC-H,
Template took as input a template Select * From Customer
Where Customer.c_custkey < x but it can never reach 108 by
adjust parameter x because the total number of rows in the table
Customer is less than 108. From this perspective, LearnedSQLGen
is more e�ective as it explores both the query structures (i .e ., tem-
plates) and the parameters. For range constraints, we have sim-
ilar observations. For example, as shown in Figure 6(d), on JOB
dataset, if we want to generate queries with cardinality within
Cardinality ∈ [1K, 6K] , LearnedSQLGen only consumed 0.21
hours, while SQLSmith and Template had to spend 1.71 hours and
4.643 hours respectively.
Varying Cost.We also tested the e�ciency of di�erent methods
with respect to the cost constraint. As shown in Figure 7. We can
observe that LearnedSQLGen outperformed the baselines. For ex-
ample, for the point constraint on TPC-H dataset, when Cost = 102,
LearnedSQLGen spent 0.8 hours, which is much more e�cient
than that of SQLSmith (3.33 hours) and Template (1.78 hours).
For the range constraint Cost ∈ [1K, 2K] on XueTang dataset,
LearnedSQLGen took 0.96 hours, while SQLSmith and Template
consumed 1.1 hours and 5.18 hours respectively.

Varying the number of satis�ed queries.We varied the number
of satis�ed queries to be generated, i .e ., 10, 100, 1000 respectively.
As shown in Figures 8-9, we can observe that, for generating dif-
ferent numbers of satis�ed queries (represented on the X-axis),
LearnedSQLGen can be faster than baselines on three dataset. For
example, for the cardinality constraint Cardinality ∈ [1K, 2K]
on JOB, shown in Figure 8(b), we aim to generate 100 queries,
LearnedSQLGen spent 0.166 hours while SQLSmith and Template
took 0.25 hours and 0.9 hours respectively. For the cost constraint
Cost ∈ [1K, 2K] on XueTang, shown in Figure 9(c), when generate
1k satis�ed queries, LearnedSQLGen took 0.9 hours while SQLSmith
and Template consumed 1.1 and 9.5 hours respectively.

7.3 Evaluation of the actor-critic network
We evaluated the e�ciency of the actor-critic (AC) algorithm in
LearnedSQLGen by comparing with the simple reinforcement learn-
ing algorithm (REINFORCE) mentioned in Section 4.3 on solving
constraint-aware query generation problem. We had three observa-
tions. First, we can observe that, by leveraging the actor-critic net-
work, we can perform better than using the REINFORCE algorithm
on accuracy. Speci�cally, as shown in Figure 10(a), on JOB dataset,
given the constraint Cardinality ∈ [1K, 4K], LearnedSQLGen
achieved an accuracy of 65.43%, which is 9.2% higher than that of
REINFORCE. The reason is that our method can reduce the variance

11

10 100 1000
Query Number

10 1

100

101

102

Ti
m

e
(h

)

(a) TPC-H

10 100 1000
Query Number

10 1

100

101

102

Ti
m

e
(h

)

(b) JOB

10 100 1000
Query Number

10 1

100

101

102

Ti
m

e
(h

)

(c) XueTang

SQLSmith Template LearnedSQLGen

Figure 8: E�ciency Evaluation by Generating Di�erent Numbers
of Satis�ed Queries (Cardinality in [1k, 2k]).

10 100 1000
Query Number

10 1

100

101

102

Ti
m

e
(h

)

(a) TPC-H

10 100 1000
Query Number

10 1

100

101

102

Ti
m

e
(h

)

(b) JOB

10 100 1000
Query Number

10 1

100

101

102

Ti
m

e
(h

)

(c) XueTang

SQLSmith Template LearnedSQLGen

Figure 9: E�ciency Evaluation by Generating Di�erent Numbers
of Satis�ed Queries (Cost in [1k, 2k]).

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

(a) Generation Accuracy

REINFORCE
LearnedSQLGen

1k-2k 1k-4k 1k-6k 1k-8k
Cardinality

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(h

)

(b) Generation Efficiency

REINFORCE
LearnedSQLGen

0 50 100 150 200
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Av
er

ag
e

Re
w

ar
d

(c) Training Trace

REINFORCE
LearnedSQLGen

Figure 10: Comparison of RL Algorithms (TPC-H, N=1000).

11.5k-12.5k
13.5k-14.5k

15.5k-16.5k
17.5k-18.5k

Cardinality

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

(a) Generation Accuracy

Scrach
AC-extend
MetaCritic

11.5k-12.5k
13.5k-14.5k

15.5k-16.5k
17.5k-18.5k

Cardinality

0

1

2

3

4

5

Ti
m

e
(h

)

(b) Generation Efficiency

Scrach
AC-extend
MetaCritic

0 20 40 60 80 100
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Av
er

ag
e

Re
w

ar
d

(c) Training Trace

Scratch AC-extend MetaCritic

Figure 11: Comparison of Meta-critic (TPC-H, N=1000).

of the returned rewards and keeps policy gradient update steadily,
which, to some extent, prevents the network from converging to
the local optimum. Second, as shown in Figure 10(b), our method
is more e�cient than the REINFORCE algorithm. For example,
when Cardinality ∈ [1K, 4K], LearnedSQLGen spent 0.51 hours
to acquire 1K satis�ed queries while REINFORCE took 2.2 hours.
The reason is that LearnedSQLGen converged faster and was more
accurate than REINFORCE, such that it took less time to acquire
the same number of satis�ed queries. Third, in Figure 10(c), we
showed the training process of REINFORCE and LearnedSQLGen.
It illustrated that with the number of training epochs increasing,
the returned reward of LearnedSQLGen was much higher than that
of REINFORCE. This indicated that our method converged more
steadily and achieved a higher performance.

7.4 Meta-critic Network Evaluation
We evaluated our meta-critic network that can generalize our
model to di�erent constraints. We compared with three strate-
gies. (1) Given a new constraint, we trained LearnedSQLGen from
scratch (Scrach); (2) We used the pre-trained meta-critic net-
work to quickly generalize to the new constraint (MetaCritic).
(3) We directly encoded multiple constraints to the state with-
out using the meta-critic, AC-extend. Speci�cally, we tested the
point constraint for cardinality. On XueTang dataset, we set the
domain as [10K, 20K], which was divided into 10 parts, C =
{[10, 11K], [11K, 12K], ..., [19K, 20K]}, and then trained the
meta-critic network. Next, given new constraints within this do-
main, we leveraged previous learned knowledge to e�ciently train
the new tasks. We respectively tested the new constraints [11.5K,
12.5K], [13.5K, 14.5K], [15.5K, 16.5K], [17.5K, 18.5K], and the results
are shown in Figure 11. For the AC-extend baseline, we also set
the domain as [10K, 20K], divided it into 10 parts (i .e ., tasks) and
generated queries for each task. The only di�erence was that we
encoded the constraint (e.g., [10K, 11K]) into the state and then
trained the actor-critic network. Thus the agent captures the rela-
tionship between the constraint and reward under a certain state.

Overall, we made three observations. First, MetaCritic signif-
icantly reduced the query generation time, because MetaCritic

learned from historical training experience, provided relatively ac-
curate long-term reward, and e�ciently guided the agent to select
proper tokens to generate SQLs. Instead, Scrach needed to learn the
estimation of long-term reward from scratch, and thus took much
longer time. Compared with AC-extend, our meta-critic method
also encoded the constraints, but in a more �ne-grained way. More
concretely, we potentially speci�ed the constraints based on the
triple (state, action, reward) because the state and action can specify
a query (subquery), and its reward had a close relation with the
constraint. Then, using the triple as the constraint encoder cap-
tured more transferrable knowledge among di�erent tasks, and
thus leaded to good generalization ability. However, AC-extend
cannot generalize well because it is hard to capture the relation-
ships among tasks by purely encoding the tasks. Second, as shown
in Figure 11(a), all the three baselines can achieve high accuracy,
because they can �nally converge to a relatively optimal generation
policy. However, MetaCritic had a slightly higher accuracy than
Scrach and AC-extend because it considered both the historical
experience and the new constraint, which was captured automati-
cally by the triple (state, action, reward). But Scrach purely learned
from newly generated query samples and AC-extend captured the
constraint by simply feeding into the neural network. Third, as
shown in Figure 11(c), although these baselines had similar per-
formance at initial epochs, as the number of training epochs grew,
MetaCritic quickly generated satis�ed queries guided by more
accurate long-term rewards, while Scrach and AC-extend took
more time to estimate the long-term rewards.

7.5 Case Study of Generated Queries
We evaluate the diversity and complexity of the generated queries,
and report the query distributions from di�erent perspectives, in-
cluding predicate numbers, aggregation keywords, nested queries,
join queries, SQL types, and number of SQL tokens. In Figure 12(a),
the satis�ed queries are likely associated with multi-join tables.
We can see the ratio of queries with multi-join is over half of total
generated queries. In Figure 12(b) and (c), we can see that many
complicated structures, e .д., nested (47%) and aggregation (34.9%)
queries, can be generated. In Figure 12(d)-(e), we can generate di-
verse queries. For the low cardinality range in [1k, 8k], the satis�ed

12

12.2%

27.4%

31.3%

29.1%

0 JOIN
1 JOIN

2 JOIN
3 JOIN

(a) Join Tables

53.0%47.0%

Non-Nest Nest

(b) Nested Query

65.1%

34.9%

Non-AGG. AGG.

(c) Aggregates

27.8%

26.2%
24.2%

11.4%
10.5%

1 PRED.
2 PRED.

3 PRED.
4 PRED.

5 PRED.

(d) Query Predicates

34.6%

33.1%

11.9%

20.4%

SELECT
UPDATE

INSERT
DELETE

(e) Query Types

11 17 23 29 35 41 47 53 59 65
Number of Tokens in SQL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

(f) SQL Lengths
Figure 12: Evaluation of Generated Query Distribution. (a), (b), (c) and (f): Generating 1K Queries with Cost = 106 on TPC-H; (d)
and (e): Generating 1K Queries with Cardinality in [1k, 8k] on TPC-H.

10 20 30 40 50 60 70 80 90 100
NESTED SQL Numbers(TPC-H)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e(
h)

Cost=102

Cost=104

Cost=106

(a) Nested (Point)

10 20 30 40 50 60 70 80 90 100
NESTED SQL Numbers(TPC-H)

0

1

2

3

4

5

Ti
m

e(
h)

Cost=[1k, 2k]
Cost=[1k, 4k]
Cost=[1k, 6k]

(b) Nested (Range)

10 20 30 40 50 60 70 80 90 100
INSERT SQL Numbers(TPC-H)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e(
h)

Cost=102

Cost=104

Cost=106

(c) Insert (Point)

10 20 30 40 50 60 70 80 90 100
INSERT SQL Numbers(TPC-H)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e(
h)

Cost=[1k, 2k]
Cost=[1k, 4k]
Cost=[1k, 6k]

(d) Insert (Range)

10 20 30 40 50 60 70 80 90 100
DELETE SQL Numbers(TPC-H)

0
1
2
3
4
5
6
7
8

Ti
m

e(
h)

Cost=102

Cost=104

Cost=106

(e) Delete (Point)

10 20 30 40 50 60 70 80 90 100
DELETE SQL Numbers(TPC-H)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ti
m

e(
h)

Cost=[1k, 2k]
Cost=[1k, 4k]
Cost=[1k, 6k]

(f) Delete (Range)
Figure 13: E�ciency Evaluation of Generating Di�erent Numbers of Complicated Queries with Cost Constraint (TPC-H).

(a) TPC-H (Point) (b) TPC-H (Point)
Figure 14: Evaluation on Sample Sizes (TPC-H, N=1000).

queries usually contain multiple predicates (e .д.,, many “and”) to
reduce the cardinality. Hence, in Figure 12(d), we can see that there
are various number of predicates in the generated queries. Also,
because of the entropy regularization techniques and our extend-
able FSM, our method can support various query types as shown
in Figure 12(e). At last, Figure 12(f) shows the SQL length distri-
bution, where the x-axis denotes the number of tokens and the
y-axis denotes the frequency. We can observe that LearnedSQLGen
can generate various lengths of queries, which veri�es that we can
generate diverse and complicated queries.

7.6 Complicated Queries Generation
We have added experiments to evaluate the performance of gener-
ating complicated queries in Figure 13, where the x-axis denotes
the number of di�erent types of generated complex queries (includ-
ing nested, insert, delete queries), and the y-axis denotes the time
spent to generate these nested queries that satisfy the constraint
(speci�ed by the legend, e .д., Cost=102). From the results, we can
observe that LearnedSQLGen can generate various types of queries
by extending the FSM. Thus our method is applicable to generate
various of complicated SQL queries.

7.7 Evaluation on Sample Sizes
We evaluate the impact of di�erent sampled sizes of numerical
values in Figure 14. The x-axis is the sample ratio η which is the
ratio of the sample size to the total number of distinct values in
a column. We evaluate both the point and range constraints in
this experiment. For accuracy, we can see from Figure 14(a) that

with the sample size becoming larger, the accuracy becomes higher
because more actions can be chosen. Moreover, the accuracy keeps
stable after a number of data have been sampled, because a certain
number of samples can cover a very large search space and it is
enough to cover the queries satisfying the user-speci�ed constraints.
Therefore, our framework is not much sensitive to the sample size.
For e�ciency, we can observe that withη becoming larger, the spent
time decreases at the beginning and then increases. This is because
SQL generation time includes training time and inference time, and
increasing the sample size makes training slow (a larger search
space) but accelerates inference (higher SQL coverage). Thus at the
beginning, it slightly increases the training time but signi�cantly
decreases the inference time, and thus the total time is smaller; but
later, it signi�cantly increases the training time, and thus the total
time becomes larger.

8 CONCLUSION
In this paper, we have studied SQL queries generation by con-
sidering the target constraints including cardinality and cost. We
designed an RL framework to conduct query generation, where an
exploration-exploitation strategy was applied to exploit the optimal
generation direction and explore multiple possible directions. In
addition, we adopted an FSM to guarantee that we can generate
valid queries. Moreover, to improve generalization ability, we pro-
posed a meta-critic network that learned from historic and used
the model to directly generate queries for a new constraint. Experi-
mental results showed that our method signi�cantly outperformed
baselines in terms of both accuracy and e�ciency.

ACKNOWLEDGEMENT
This paper was supported by NSF of China (61925205, 61632016,
62102215), Huawei, TAL education, and Beijing National Re-
search Center for Information Science and Technology (BNRist).
Chengliang Chai is supported by China National Postdoctoral
Program for Innovative Talents (BX2021155), Postdoctoral Foun-
dation(2021M691784), and Zhejiang Lab’s International Fund for
Young Professionals.

13

REFERENCES
[1] Job benchmark. https://github.com/gregrahn/join-order-benchmark.
[2] Tpch benchmark. http://www.tpc.org.
[3] Xuetang dataset. https://www.xuetangx.com/.
[4] R. Ahmed, R. G. Bello, A. Witkowski, and P. Kumar. Automated generation of

materialized views in oracle. Proc. VLDB Endow., 13(12):3046–3058, 2020.
[5] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. Learning-based

query performance modeling and prediction. In ICDE, pages 390–401, 2012.
[6] D. V. Aken, D. Yang, S. Brillard, A. Fiorino, B. Zhang, C. Billian, and A. Pavlo. An

inquiry into machine learning-based automatic con�guration tuning services on
real-world database management systems. Proc. VLDB Endow., 14(7):1241–1253,
2021.

[7] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. C. Courville,
and Y. Bengio. An actor-critic algorithm for sequence prediction. In ICLR.
OpenReview.net, 2017.

[8] H. Bati, L. Giakoumakis, S. Herbert, and A. Surna. A genetic approach for
random testing of database systems. In VLDB, VLDB ’07, page 1243–1251. VLDB
Endowment, 2007.

[9] L. Battle, P. Eichmann, M. Angelini, T. Catarci, G. Santucci, Y. Zheng, C. Bin-
nig, J. Fekete, and D. Moritz. Database benchmarking for supporting real-time
interactive querying of large data. In SIGMOD, pages 1571–1587, 2020.

[10] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries with cardinality
constraints for dbms testing. volume 18, pages 1721–1725, 2006.

[11] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis.
End-to-end entity resolution for big data: A survey. CoRR, abs/1905.06397, 2019.

[12] B. Ding, S. Chaudhuri, J. Gehrke, and V. R. Narasayya. DSB: A decision support
benchmark for workload-driven and traditional database systems. Proc. VLDB
Endow., 14(13):3376–3388, 2021.

[13] J. Ding, U. F. Minhas, J. Yu, and et al. ALEX: an updatable adaptive learned index.
In SIGMOD, pages 969–984. ACM, 2020.

[14] P. Dintyala, A. Narechania, and J. Arulraj. Sqlcheck: Automated detection and
diagnosis of SQL anti-patterns. In SIGMOD, pages 2331–2345, 2020.

[15] A. Gruenheid, S. Deep, K. Nagaraj, H. Naito, J. F. Naughton, and S. Viglas. Diamet-
rics: Benchmarking query engines at scale. Proc. VLDB Endow., 13(12):3285–3298,
2020.

[16] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. W. Tan, K. Zeng, G. Cong, Y. Qin,
A. Pfadler, Z. Qian, J. Zhou, J. Li, and B. Cui. Cardinality estimation in dbms: A
comprehensive benchmark evaluation, 2022.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[18] S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J. Lennon, V. Jain,
H. Gupta, D. Li, and Z. Zhu. Design continuums and the path toward self-
designing key-value stores that know and learn. In CIDR, 2019.

[19] X. Kang, Y. Zhao, J. Zhang, and C. Zong. Dynamic context selection for document-
level neural machine translation via reinforcement learning. In B. Webber,
T. Cohn, Y. He, and Y. Liu, editors, EMNLP, pages 2242–2254. Association for
Computational Linguistics, 2020.

[20] G. Li, X. Zhou, and L. Cao. AI meets database: AI4DB and DB4AI. In SIGMOD,
pages 2859–2866, 2021.

[21] G. Li, X. Zhou, and L. Cao. Machine learning for databases. Proc. VLDB Endow.,
14(12):3190–3193, 2021.

[22] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database tuning system
with deep reinforcement learning. PVLDB, 12(12):2118–2130, 2019.

[23] J. Li, A. C. Konig, V. Narasayya, and S. Chaudhuri. Robust estimation of resource
consumption for sql queries using statistical techniques. PVLDB, 5(11):1555–1566,
2012.

[24] Z. Li, J. Kiseleva, and M. de Rijke. Rethinking supervised learning and rein-
forcement learning in task-oriented dialogue systems. In T. Cohn, Y. He, and
Y. Liu, editors, EMNLP, volume EMNLP 2020 of Findings of ACL, pages 3537–3546.
Association for Computational Linguistics, 2020.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. In Y. Bengio
and Y. LeCun, editors, ICLR, 2016.

[26] X. Liu, X. Kong, L. Liu, and K. Chiang. In ICDM, pages 1140–1145, 2018.
[27] L. Ma,W. Zhang, J. Jiao,W.Wang, M. Butrovich,W. S. Lim, P. Menon, and A. Pavlo.

MB2: decomposed behavior modeling for self-driving database management
systems. In SIGMOD, pages 1248–1261, 2021.

[28] Q. Ma, A. M. Shanghooshabad, M. Almasi, M. Kurmanji, and P. Trianta�llou.
Learned approximate query processing: Make it light, accurate and fast. In CIDR,
2021.

[29] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Learning
to steer query optimizers. CoRR, abs/2004.03814, 2020.

[30] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join order
enumeration. In R. Bordawekar and O. Shmueli, editors, aiDM@SIGMOD, pages
3:1–3:4. ACM, 2018.

[31] C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted queries for database
testing. In SIGMOD, 2008.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
M. F. Balcan and K. Q. Weinberger, editors, ICML, volume 48 of Proceedings of
Machine Learning Research, pages 1928–1937, New York, New York, USA, 20–22
Jun 2016. PMLR.

[33] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-
caute, and V. Raghavendra. Deep learning for entity matching: A design space
exploration. In G. Das, C. M. Jermaine, and P. A. Bernstein, editors, SIGMOD,
pages 19–34, 2018.

[34] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-dimensional
indexes. In SIGMOD, pages 985–1000, 2020.

[35] K. Nguyen, H. D. III, and J. L. Boyd-Graber. Reinforcement learning for bandit
neural machine translationwith simulated human feedback. InM. Palmer, R. Hwa,
and S. Riedel, editors, EMNLP, pages 1464–1474. Association for Computational
Linguistics, 2017.

[36] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with
recurrent neural networks. In Y. Bengio and Y. LeCun, editors, ICLR, 2016.

[37] Y. Remil, A. Bendimerad, R. Mathonat, P. Chaleat, and M. Kaytoue. What makes
my queries slow?: Subgroup discovery for SQL workload analysis. In ASE, pages
642–652, 2021.

[38] F. Savva, C. Anagnostopoulos, and P. Trianta�llou. ML-AQP: query-driven
approximate query processing based on machine learning. CoRR, abs/2003.06613,
2020.

[39] A. Seltenreich. Sqlsmith, 2020. https://github.com/anse1/sqlsmith.
[40] S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker. Reinforcement learning

for spoken dialogue systems. In S. A. Solla, T. K. Leen, and K. Müller, editors,
NIPS, pages 956–962. The MIT Press, 1999.

[41] D. Slutz. Massive stochastic testing of sql. In VLDB, 1998.
[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from over�tting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[43] F. Sung, L. Zhang, T. Xiang, T. M. Hospedales, and Y. Yang. Learning to learn:
Meta-critic networks for sample e�cient learning. CoRR, abs/1706.09529, 2017.

[44] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[45] J. Wang, C. Chai, J. Liu, and G. Li. FACE: A normalizing �ow based cardinality
estimator. Proc. VLDB Endow., 15(1):72–84, 2021.

[46] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.

[47] R. J. Williams and J. Peng. Function optimization using connectionist reinforce-
ment learning algorithms. Connection Science, 3(3):241–268, 1991.

[48] L. Wu, F. Tian, T. Qin, J. Lai, and T. Liu. A study of reinforcement learning for
neural machine translation. In E. Rilo�, D. Chiang, J. Hockenmaier, and J. Tsujii,
editors, EMNLP, pages 3612–3621. Association for Computational Linguistics,
2018.

[49] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Predicting
query execution time: Are optimizer cost models really unusable? In ICDE, pages
1081–1092, 2013.

[50] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with tree-lstm for join
order selection. In ICDE, pages 1297–1308. IEEE, 2020.

[51] H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with deep learning
and reinforcement learning. In ICDE, pages 1501–1512, 2020.

[52] J. Zhang, Y. Liu, K. Zhou, and G. Li. An end-to-end automatic cloud database
tuning system using deep reinforcement learning. In SIGMOD, pages 415–432,
2019.

[53] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu. SQUIRREL: testing
database management systems with language validity and coverage feedback. In
CCS, pages 955–970, 2020.

[54] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets arti�cial intelligence: A survey.
TKDE, 2020.

[55] X. Zhou, L. Jin, S. Ji, and et al. Dbmind: A self-driving platform in opengauss.
Proc. VLDB Endow., 14(12):2743–2746, 2021.

[56] X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system using monte
carlo tree search. PVLDB, 2022.

[57] X. Zhou, L. Liu, W. Li, and et al. Autoindex: An incremental index management
system for dynamic workloads. In ICDE, 2022.

[58] X. Zhou, J. Sun, G. Li, and J. Feng. Query performance prediction for concurrent
queries using graph embedding. Proc. VLDB Endow., 13(9):1416–1428, 2020.

14

https:// github.com/anse1/sqlsmith

	Abstract
	1 INTRODUCTION
	2 Preliminary
	2.1 Problem Formulation
	2.2 Related Work

	3 System Framework
	3.1 Overview of LearnedSQLGen
	3.2 Training
	3.3 Inference

	4 RL in LearnedSQLGen
	4.1 State Representation
	4.2 Reward Design
	4.3 LearnedSQLGen via Actor-Critic

	5 FSM in the Environment
	6 Pre-training for Different Constraints
	7 EXPERIMENTS
	7.1 Experiment Setting
	7.2 Overall Evaluation
	7.3 Evaluation of the actor-critic network
	7.4 Meta-critic Network Evaluation
	7.5 Case Study of Generated Queries
	7.6 Complicated Queries Generation
	7.7 Evaluation on Sample Sizes

	8 CONCLUSION
	References

