Learned Cardinality Estimation for Similarity Queries

Ji Sun Guoliang Li Nan Tang

Tsinghua University Tsinghua University QCRI, HBKU

Beijing, China Beijing, China Doha, Qatar
sun-jl6@mails.tsinghua.edu.cn liguoliang@tsinghua.edu.cn ntang@hbku.edu.qa

ABSTRACT

In this paper, we study the problem of using deep neural networks
(DNNGs) for estimating the cardinality of similarity queries. Intu-
itively, DNNs can capture the distribution of data points, and learn
to predict the number of data points that are similar to one data
point (a similarity search) or a set of data points (a similarity join).
However, DNNs are data hungry; directly training a DNN often
results in poor performance. We propose two strategies to improve
the accuracy and reduce the size of training data: query segmenta-
tion and data segmentation. Query segmentation divides a query
into query segments, trains a neural network for each query seg-
ment, and combines their outputs with subsequent DNNs to get
the query embedding. Data segmentation groups similar data into
data segments, train a local-model for each data segment, and learn
a global-model to decide which local-models should be used for
a given query. The estimates from selected local-models will be
summed up as the final estimate. We also extend our model to
support similarity joins, which trains a DNN to directly estimate
the cumulative sum of objects that are similar to a set of queries.
Experiments show that our methods can efficiently (i.e., with small
training data) learn to estimate the cardinality of similarity search-
es/joins, and yield effective estimates (i.e., close to real cardinalities).

ACM Reference Format:

Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation
for Similarity Queries. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD °21), June 18-27, 2021, Virtual Event , China.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3452790

1 INTRODUCTION

Similarity search, which aims at finding objects that are similar to
given object(s), is a fundamental problem in computer science and
is crucial to many applications, such as text search, image search,
product recommendation, database optimizations [26, 29, 30, 46],
network traffic [12, 47], and so forth.

Similarity-aware Cardinality Estimation. Let D be a collection
of data objects, e.g., images, text, and tuples. We study two problems.

*Guoliang Li is the corresponding author. This paper was supported by NSF of China
(61925205, 61632016), BNRist, Huawei, and TAL education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 18-27, 2021, Virtual Event , China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452790

Similarity search is to provide an estimation cam D) for the
number of objects in D whose distances to a query q are not greater
than a distance threshold 7.

Similarity join takes a set Q of search objects as input, and pro-
vides an estimation card/(éz D) for the total number of pairs (g, p)
whose distance between q € Q and p € D is not greater than .

Learned Cardinality Estimation. Essentially, cardinality estima-
tion for similarity queries is a regression problem: Given a similarity
search (a query object g and a threshold 7 over a dataset D), the
problem is to estimate the cardinality of this input.

A straightforward solution is to train a DNN to learn a function
F(xg,x7,xp), as shown in Figure 1(A), where x4 is the feature
vector of query g, x; is a one-dimensional vector of threshold 7, and
xp is a k-dimensional vector that each dimension is the similarity
between g and one sample in D (k samples in total).

Recently, DL-based method has been studied to estimate the
cardinality for similarity search [53]. They utilize VAE (Variational
Autoencoders) [27] to learn the cardinality of similarity search, and
learn embeddings for different thresholds separately for enhancing
accuracy and guaranteeing monotonicity. However, they produce
relative large errors with few shots of training samples (e.g., hun-
dreds or thousands), with two main reasons: (1) they learn query
feature embeddings by fully connected neural networks, which is
hard to capture the data distribution of high-dimensional dataset,
and (2) they cannot fully utilize the points clustering information
(which can be obtained by unsupervised clustering) in the model.

Challenges. DL is building a system by assembling parameterized
modules to perform a task by optimizing the parameters using a
gradient-based method. As will be shown later by empirical results
in Section 6, the simple approach in Figure 1(A) gives poor esti-
mates, mainly because using one big module is hard to well capture
the distribution of distances between data and an arbitrary query.
Naturally, the main challenges for estimating the cardinality for
similarity queries are to design small modules, where each small
module captures a part of knowledge for the given task, and by
assembling these small modules it can better serve the task with
higher accuracy and less training data.

Our Methodology. We design small modules from two aspects,
smaller queries and smaller data.

[Query segmentation.] This is to divide a query ¢’s feature vector
xq into smaller query segments {xgl), R xﬁl’”)} (Figure 1(B)), and
train a module E; to produce an embedding zq of xq. Note that,
different from treating Xq as one feature vector, the neural network
(NN) in the first layer of E; treats each query segment x((;) as input
separately (see Section 3.1 for more details).

[Data segmentation.] This is to group similar data together as

https://doi.org/10.1145/3448016.3452790
https://doi.org/10.1145/3448016.3452790

. Feature vectors or embeddings

D A deep neural network

@ Vector concatenation

,,,,,,, T

D DU

® X

-~

estimated

(B) Query §egmentation

—a-B e

af™ N
| w8 O =
Y oo ".—.'.
L N DM ey o

) cardinality; | ©) Da.Ea.' gegmentation (for each data segment D, we train a DNN as above)

estimated
cardinality

estimated cardinality
on data segment DU

Figure 1: Solution Overview

non-overlapping data segments (Dl .. D"y and train n local-
models, with the i-th local-model for DLl Each local-model has
three DNNSs, EEI], Egl] and Egl] for learning embeddings of Xq, Xz
E;]
nality on Dl relative to query g and threshold 7 (i.e., g“] =
F[i](zq Dz @ z%])), as shown in Figure 1(C).

The overall estimated cardinality 7 is the summation of local
estimates from all local-models, i.e., § = ZyzlyA[i].

and x},' respectively, and one DNN (F li]) to estimate the cardi-

Contributions. We summarize our contributions below.

(1) Problem Statement. We define the problem of cardinality estima-
tion for similarity queries. (Section 2)

(2) Learned Estimation for Similarity Search. We describe our design
of an end-to-end DNN model for estimating the cardinality for
similarity search. We further present two enhancements, based on
query segmentation and data segmentation. (Section 3)

(3) Learned Estimation for Similarity Join. We extend the above
framework to support similarity join (i.e., a set of queries). The
main challenge is to effectively decide which queries should be
routed to which local-models to be evaluated. (Section 4)

(4) Implementation Details. We provide the details for the used DNNs,
and algorithms for selecting hyperparameters. (Section 5)

(5) Experiments. We conduct extensive experiments to show the
effectiveness and efficiency of our approach. (Section 6)

2 PRELIMINARIES

Dataset. A dataset D consists of a set of data objects, with each
data object p a d-dimensional vector x,.

Let |xp| denote the length of x,, e.g., |xp| = d.

Objects (e.g., images, text, tuples) are often transformed to feature
vectors or embeddings [10] for using deep learning (DL) techniques.

Queries. The feature vector of a query g is denoted by x4. A query
set Q is a collection of query objects with the same dimensions.

Note that, the data/query objects for one dataset have the same
d-dimension. While, data/query objects for different datasets may
have different number of dimensions.

Distance Functions. The key to similarity search is the distance
function dis(xp, x4) between two objects p and g. The smaller the
distance is, the more similar they are.

Naturally, distance functions are application-dependent. For ex-
ample, L,-Norm [15] is typically used for datasets where values
in all dimensions are equally important. Angular distance [15] is
widely used for datasets with sparse vectors containing lots of zero
values, and Hamming distance [15] is normally used for datasets
that compare each dimension with binary result.

Error Metrics for Cardinality Estimation. The most commonly
used errors for regression problems are Mean Absolute Percentage
Error (MAPE) [40] and Q-error [28, 39], which are defined as:

MAPE(card, card) = | S2rd —card,
card

Q-error(c/aii, card) = M
min(card, card)
where card is the estimated cardinality and card is the real cardi-
nality. Note that, in practice, using MAPE as loss function makes
the model prone to underestimate the cardinality. Q-error can over-
come this drawback, but it may reduce the percentage of error when
the error is close to 1. (If min(c/a—t:i, card) = 0, we set it with a small
value, e.g., 0.1.) In summary, when MAPE exceeds 1, Q-error works
better; otherwise, MAPE works better. Therefore, we consider both
metrics when training DL models.

Given a dataset D, a distance function dis(), and a distance thresh-
old 7, we study two cardinality estimation problems.

Problem 1: Cardinality estimation for similarity search (i.e., a
query q). Let card(q, 7, D) be the number of data objects in D
whose distances to q are no greater than r, i.e., card(q,7,D) =
Zpepdis(xq, xp) < 7. The problem is to provide an estimate
card(q, 7, D).

Problem 2: Cardinality estimation for similarity join (i.e., a query
set Q). Let card(Q, 7, D) be the number of all pairs of objects (g, p)
where g € Q, p € D and dis(xg, xp) < 7. The problem is to provide
an estimate card(Q, 7, D).

Because dataset D is always clear from the context, we will write

c;d—(q;) and cm) when it is clear.
There are three desired properties for cardinality estimation:
accuracy, efficiency and monotonicity.

(1) Accuracy measures the “goodness” of the estimated number,
comparing with its real number.

(2) Efficiency is naturally desired for cardinality estimators.

(3) Monotonicity with threshold guarantee ensures that for any search

Variable Notation Description
Xg* a query vector xf;) the i-th query segment
D: a dataset Dl the i-th data segment
Obatch: a training batch Ql:{);zch the i-th training sample
Q: a set of queries Qo the i-th query object

Table 1: Notations using Superscripts

Algorithm 1: Training the Basic DL Model

Input: Qtrain: a set of triples (g, 7, card), and dataset D
Output: Return the trained model
1 for number of training iterations do

2 for N < number of batches do

3 Obatchs Dsample «— get-minibatch (Qtrain, N, D);

4 card < model.forward_propagate (Qbatch> Dsample);
ec:;i —card max(eC’aTd,card))

5 loss — |3+ A - —

min(eca’d,card) ’
6 model.backward_propagate (loss);

7 return model;

object, the estimate for a bigger threshold is no less than the esti-
mate for a smaller threshold.
Moreover, we summarize notations using superscripts in Table 1.

3 LEARNED CARDINALITY ESTIMATION
FOR SIMILARITY SEARCH

3.1 A Basic DL Model for Similarity Search

Feature Vectors. The basic way of using a DNN is to convert the
input (g, 7, D) to their feature vectors (x4, X7, xp) and concatenate
them to one feature vector as the input x (i.e., x = x4 ® x; ® xp)
of a DNN F, as shown in Figure 1(A).

The query feature vector x4 has d-dimensions, where d is ap-
plication dependent. For example, if q is a greyscale image (i.e., 1
channel) with 28 = 28 pixels, then Xgqisa 2828 =784 dimensional
vector; if g is tuple with d numeric attributes, then q itself is a vector
xq; if q is categorical value, then x4 could be its 1-hot encoding
where d is the number of distinct categories. Of course, x4 could
be distributed representations (for example, g is a word and x4 its
word embedding).

The distance feature vector x; is just a one-dimensional vector
for the distance threshold 7.

The data feature vector xp has k-dimensions, where each di-
mension is the distance between a data sample to query g, and we
use k data samples instead of the entire dataset D.

By concatenating them together, the input x4 ® x; ® xp in
Figure 1(A) is a (d + 1 + k)-dimensional vector.

Learning Embeddings for Feature Vectors. Instead of directly
concatenating feature vectors x4 ® x; ® xp as described above,
we propose to use three neural networks (NNs), E1, Ez and Es,
to learn the embeddings of x4, x; and xp, which will result in
their corresponding embeddings 2g, 27 and zp, i.e., zq = Eq (xq),
zr = Ea(x;) and zp = E3(xp), as shown in Figure 2. The three
embeddings are then concatenated as one vector z4 ®z; @ zp to the

network F, which will be trained to estimate § that is car?(;]_,r\, D).

Loss Function. As our model aims at solving a regression prob-
lem, the loss function should make the output (i.e., the estimated

cardinality) close to the true cardinality. There are two challenges:
(1) The cardinalities vary from zero to millions, thus it’s hard to fit
them all. (2) Either MAPE or Q-error has its limitations. If we use
MAPE as loss, the model is prone to underestimate cardinalities; if
we use Q-error as loss, it will ignore errors when it is small.

For challenge (1), we regress the logarithm instead of the true
cardinality. For challenge (2), we adopt a hybrid loss function which
combines MAPE and Q-error. The loss function is formulated as:

max(e@'d, card)

min(e@d, card)
where card is the estimated cardinality, card is the true cardinality,
and A is a tunable weight (i.e., a hyperparameter).

JO) = | — 2

Model Training (Algorithm 1). Each training item contains
a query g, its corresponding threshold 7, and its true cardinal-
ity card. For each epoch (lines 1-6), and each batch (lines 2-6),
it first gets a mini-batch and k data samples (line 3), performs
forward-propagation to compute the estimate (line 4), calculates the
loss (line 5), and then runs backward-propagation using gradient-
descent to update the model parameters (line 6).

3.2 Query Segmentation

As will be shown in Section 6, directly applying a DNN on the
entire query feature vector Xq often produces poor estimates, espe-
cially when the query and data objects have high dimensions. One
promising direction is to divide x4 into multiple lower dimensional
vectors, and learn the embedding zq of Xq from these lower dimen-
sional vectors, with the intuition that it is easier to estimate the
distances between lower than higher dimensional vectors.

The key question is: Whether the distance between two high di-
mensional vectors can be computed from their divided low dimensional
vectors? Next let’s illustrate with an example.

ExXAMPLE 1. Let u be a vector with segments u and u(z), where
u = u® eu® |u = d and [uV| = u?| = d/2. Let V =
{v1,v2,v3,v4} be a set of four vectors, with each v; € V with dimen-
sion |v;| = |u|, and is divided into two vectors |v£.1)| = |v§2)| =d/2
(i = [1,4]). The L1-norm distances between u and v; ranges from 0.1
to 0.6, as shown in Figure 4.

We can first learn a function f() using a DNN to output which
segments have distance 0.1. For example, f(u(l), 0.1) = 0101 indicates

that the distance between uV and vgl) or 054) is 0.1. Afterwards,
we can merge the distribution (which is a binary indicator in this
example) of the two query segments by conducting a learned function
g() (which is abitand operation here), and we can generate the density
at each distance threshold for the final distribution. For example, we
have g(u,0.3) = f(u(l), 0.1)&f(u(2), 0.2) + f(u(l), O.2)&f(u(2), 0.1)

because if L1-norm distance of u and ’Ugl) is 0.1 and distance of u®

and vgz) is 0.2, then distance of u and vy is 0.1 + 0.2 = 0.3.

Example 1 shows that we can estimate on query segments, and
then combine them to get the overall estimate, for discrete distances.

Learning Continuous Distribution Functions. Next we discuss
how to support a continuous distance threshold 7.

511) and

Consider a query vector x4, which is segmented to x,

xgz). Let f() be the distance-aware data distribution function of

B
D .'.—’ estimated

cardinality

Figure 2: Improving Fig. 1(A) by Learning Embeddings

Distance Distribute

el 0.2 1000 0.2 0000 0.0
03 0010 0.3 1001 0.5
04 0100 0.5
P01 1000 0.5 0000 0.0
08 0001 0.6 0010 0.25

0.3 0110 ‘

function f{) function g()
Figure 4: From Query Segment Density Distributions to

Query Density Distribution for Discrete Distances

segments and g() be the function for merging the segments distri-

(1) (2

butions. If x; * and x,; are independent, then we have: g(xq, 7) =
/OT operation(f(xl(ll), T—1), f(xgz), t))dt.

The reason we learn the query segment distribution by f() and
merge f() by another function ¢g() is that segments are not inde-
pendent, simply multiply the density of each segment would loss a
lot of information (e.g., fOT density(x,(;), T—1)- density(x,(lz), t)dt).

Hence, we need to learn two functions, f() for segment-level
distribution and ¢() for combining the distributions from different
segments. Both f() and g() are DNNs (or multi-layer NNs) because
DNN s can learn functions by fitting training data and offer fast
evaluation. The output is a latent vector zg4, the embedding of x4.

Query Segmentation. The feature vector x4 of a query g can be

divided into n equal-length segments as {x(l) 512) e ,xg")}. The

size of each segment x(D i |x l)| = |'H'|, where d is the length of x.

Given the query segments {x(l) ‘(22) ey x‘(In)} of x4, we unfold
the module E; in Figure 2, as shown in Figure 3. In Figure 2, Eq

takes x4 as input and produces a latent vector zg; in Figure 3, it

takes query segments {xl(ll) , x(z) . xl(ln)} as input and produces a

(possibly different) latent Vector zq.

More specifically, it has [layers, e;—e;. The first layer e; learns
the density distribution of each segment xf;) (i-e., the function f() in
Figure 4) and the layers ez—e; learn to merge segments recursively
(i-e., the function g() in Figure 4).

Note that, [is a hyperparameter. All e;’s in the same layer are
identical, i.e., they share the same weight matrix W, bias matrix B,
and activation function (e.g., ReLU).

@b 8

HI . F.

Figure 3: Query Segmentation (Revise E; in Figure 2)

Supporting Other Distance Functions. Most distance functions
used for similarity search on feature vectors can be computed from
their corresponding distances on query segments. Next, we will
discuss some basic distance functions, including Euclidean distance
(L2 distance), Manhattan distance (L1 distance), Cosine distance,
Angular distance and Hamming distance, between vectors u and v.

L, Distance. The L,, distance can be written as:

d
disp,, (u,v) = "7 Z(HU] - o[jpm
j=1

n Ju(®].i
_m
SO
=1 j=lu®)(i-1)
Therefore, the L, distance can be rewritten as the summation
of L, distances on query segments.

(uljl-oljh™ = "dZ(disLm(u(i), oyym
i=1

Cosine Distance. The cosine distance is the cosine of the angle be-
tween two vectors, and it is closely related to Euclidean distance.
Assume the input vectors have been normalized, then the normal-

ized cosine distance can be computed as:
u-ov
lul - |v]
u? + v -2uv disg,(u, v)
- 2 - 2
Therefore, If |u| = 1 and |v| = 1, the cosine distance equals
to euclidean distance, and can be expressed as the summation of

euclidean distances of query segments.

discos(u, v) = 1 =lul-lvl-u-v

Angular Distance. Angular distance is the angle of the cosine dis-
tance, and can be expressed as the summation of cosine distances

of segments:)

X arccos discos(u, v)
dlsangular(us V)= —————
T

The angular distance is more usable than cosine distance because

its value is always between 0 and 1.

Hamming Distance. The hamming distance is calculated by the

number of unmatched tokens in corresponding position of two
vectors (or strings) which can be formulated as:
d
disham (4, 0) =), equal(uljl, o[j])

Jj=1

:z';z

=] (i-1)

equal(ulj], o[j]) =), dispam(u'”, v?)
i=1

Here, u[j] denotes the j-th element of vector u. Hence, Hamming
distance can also be expressed as the summation of distance of
query segments.

Moreover, Jaccard distance on finite sets can be transformed
to an equivalent Hamming distance on binary sets. Consider a

Local-model(s)
estimated
cardinality on D

SE RLRES

estimated cardinality
on data segment DU

the i-th local mo ected, if Il >= ¢

L]
9 ’. Probability of segment) lil

Global-model Fhat contains objects similar to ¢

Figure 5: The Global-local Model for Similarity Search
universe set {a,b,c,d}. Let u = {a,b,c} and v = {a,b,d}. The
Jaccard distance is 721 = 0.5. u, v can also be represented as x;, =
{1,1,1,0} and x;, = {1,1,0, 1}, the Hamming distance is also 0.5.

3.3 Data Segmentation

Data Segmentation. We want to divide D into a set of n segments
as {Dm, . ,D[”]}, such that data objects within a segment are
similar and across segments are dissimilar. We use a simple and
efficient segmentation method which uses Principal Component
Analysis (PCA) to reduce the dimensionality first and then divide
data by using batch K-means [16]. Note that, we have compared
Locality Sensitive Hashing [20, 35, 58], DBSCAN, and K-means;
K-means with PCA shows the best on both accuracy and efficiency.

Model Structure. After data segmentation, we will train a local-
model for each data segment Dl as shown in Figure 1(C). More
1] that transforms a query vector

1
to its embedding (i.e., z4 = EEI](xq)), a module Egl] that transforms

the threshold to its embedding (i.e., z; = Egl](xf)), a module Egl]
that transforms k-dimensional distance vector from k samples in
Dl to its embedding (ie., zg] = Egi](Xg])), and a module Flil
that computes the cardinality estimate on data segment Dl (ie.,
g[i] = F[i](zq Dz @ z%])).

Note that, the module E; could either be the simple model that
takes x4 as input (i.e., Figure 2), or the modified module that takes
query segments as input (i.e., Figure 3). We will discuss algorithms
for selecting hyperparameters in Section 5.2.

specifically, it contains a module E

A Global-local Framework for Selecting Local-Models. Data
segmentation improves the accuracy of the model. However, using
all local-models for estimation is costly. Intuitively, only a small
number of data segments are needed for a given low selectivity
query. Hence, we propose a global-local framework that trains a
global-model to decide which local-models should be used, in order
to improve the efficiency.

The local-model for a data segment Dl is similar to what we
have described in Figure 1(C). The minor difference is that we re-
move the sample distance vector xp in Figure 1(C) and use x¢ in

Figure 5 instead. Here, the distance vector xc represents the dis-
tances between the query vector x4 to all centroids data segments,
so |xc| = n where n is the total number of data segments. The
reason to remove the sample distance vector xp is because the
distance distribution in each data segment can be easily learned by
the other layers faster, under the global-local framework.

The global-model G is, given a query x4 and a threshold 7, to
decide which data segments may contain data objects that are
similar to xg-In other words, the global-model is to select local-
models that may produce non-zero estimates.

Next we provide more details about how the global-local frame-
work works in Figure 5. The modules E4, E5 and E¢ will learn the
embeddings zg, z; and z¢ of query vector x4, distance threshold
vector x; and distance vector to the centroids of all data segments
xc, respectively. The global-model G is trained to produce high
probabilities for the data segments that may contain data objects
similar to x4. That is, E¢(z¢, 27, 2c) = {Im, .. ,I[”]}, where each
il (i € [1, n]) is the probability in (0, 1), indicating the likelihood
Dl contains objects similar to x4. For a local-model j, it IVl > o
(e.g., o = 0.5), then the local-model for DUI will be used.

The loss function for global-model should have the features be-
low: (1) It is differentiable. (2) The optimal solution can make the
precision and recall of segment selection optimal. (3) It is aware of
cardinality of each segment and avoid too many missing segments.

First, we hope that the global-model outputs the probability for
each segment being selected, which can be denoted as I UMl for
the j-th query in a training mini-batch and the i-th data segment.
While the probability of data segment Dl not being selected is
1-IV If the real label RUI = 1 (i.e., it contains similar objects),
we should maximize log I U }[i]; otherwise, R U3 = 0, we should
maximize log(1 — TUEDY,

Second, in order to guarantee not to miss segments with large
cardinalities, we need to add an extra penalty. The approach is to
give each data segment a normalized weight e based on the
cardinality of data segment i with query j. Higher cardinality has
higher weight. Hence, the model would prefer not missing large
cardinalities for maximizing the likelihood.

The model can be formulated as follows:

(it cardM — min; card U]

max; card Ui min; card Uil

n Bg
1 U3 RO g1 + UM,

L(0) =
n X Bg =13
(1 = RUMI) 1og(1 — [UILD)
1 O
- _ {7}l {3l {3}l
JO) == = ;;R log(@TVUMI(1 4 UMy,

(1 = RUMI) 1og(1 — [UH1D)

where n is the number of data segments, Bg is the number of queries
in a training batch, card UMl s the true cardinality of query j on
data segment i, RUMil indicates whether data segment i is selected
by query j and it’s either 0 or 1, I UMil s the estimated probability
between 0 and 1. Min-max normalization is applied to the cardi-
nality for adopting different queries, min; card U/}l is the minimal

Algorithm 2: Global Discriminative Model Training

Input: Qtyain is the training set, labels R indicates data segments
selected by each query.
Output: Return the converged model
1 for number of training iterations do
2 for N < number of batches do
3 Qbatcha Dsample - gEt-minibatCh (Qtrain, N, D);
4 I < model.forward_propagate (Qbatch> Dsample)s
5 loss «— Rlog(I)(1 + €) + (1 — R)log(1 — I);
6 model.backward_propagate (loss);

7 return model;

Local-model (s)
Local model 1 (1100): QN Q2
Local model 2 (0101): Q{2 Q{4
Local model 3 (0101): Q¢ Q{4
Local model 4 (1010): Q{0 Q®)

estimated

o -G 6
o - @D

o -G 6 e
o -6 6 =0 e
- o 11"

= ;

T

suM

estimated cardinality on DI

- M~ Transpose MT
é 1>0.5 [DII[DRI[DBI DI [150.5 [0 [0@[0® 0@
S ow 001 DITT 0
4 : S 0@ T [110 DA o [1 o1
o ool DR o | 1o 1
c oW 11110 Dl 1l ol1 o

Binary vector indicates which Dllis selected by QW

Figure 6: The Global-local Model for Similarity Join
cardinality of query j on all data segments, and max; card 3
is the maximal cardinality of query j on all data segments. £(0)
is the likelihood given true labels. J(6) is the loss function, and
minimizing 7 () is equivalent to maximizing £(6).

Model Training (Algorithm 2). The global-local model training
has two phases. Phase 1 trains a local regression model for each
data segment, which is similar to Algorithm 1 and is thus omitted
here. Phase 2 is to train a global discriminative model on all the
data segments, which is given in Algorithm 2. It first loops over
the number of epochs (lines 1-6). For the inner loop (lines 2-6), it
first gets the mini-batch (line 3), performs forward-propagation
to compute the estimate (line 4), computes the loss comparing
output probability and the label (line 5), and then runs backward-
propagation to update the model parameters (line 6).

4 SUPPORTING SIMILARITY JOINS

Similar to Figure 5, we also employ a global-local framework for
similarity join, as shown in Figure 6. The key difference for similar-
ity join is, each local-model computes one embedding zg for all the
queries that will be evaluated on this local-model, not for a single
query zg. The queries that will be evaluated on which local-models
are decided by the global-mode, as discussed below.

Note that we will also use Figure 6 as a running example,

for which we assume the query set Q contains four queries
{0, 02, 0B 0} and the dataset D is divided into four data
segments {D“J, plzl pl3l pl4l }.
Global-Model. Given a set Q of query objects with each associated
with a threshold 7 over a dataset D, the global-model G first predicts
a binary indicating vector for each query g € Q, indicating those
data segments that may contain objects similar to g relative to 7.

That is, the global-model G will output a 2-dimensional indicating
matrix M. For example, the 1st row (1, 0,0, 1) of M in Figure 6 means
that DIl and D[] may contain data objects that are similar to Q<1>,
The meaning of the other rows in M is similar.

Mask-based Routing. Next, we transpose M as M, then each
row in MT acts as a mask, indicating which queries will be routed
to which data segments. The mask is to remove queries with zero
cardinality, so as to improve both efficiency and effectiveness.

Local-Model. For each local model, the masked queries will be
removed. For example, the first row (1, 1,0, 0) in MT indicates that
queries Q<1> and Q<2> will be estimated on local model 1 relative
to D[l], and similar for the other rows.

Query Set Embedding. We also need to modify the local-model
such that the output module runs only once for a query set. To this
end, we add a Sum Pooling layer between the output module and
the query embedding module, which will combine multiple query
embeddings into one embedding. This method has three advantages:
(1) It is fast and small because there is no extra parameters being
added. (2) It can easily generalize both the size and distribution of
the join query set by sum pooling layer. (3) Experiments show that
the modified model can be easily transferred from original model
by training on a few samples and by only 2-3 iterations.

The estimated cardinality of the query set Q, relative to threshold
7 and dataset D, is the sum all estimation from all local-models,
shown at the bottom of Figure 6.

5 IMPLEMENTATION DETAILS
5.1 Details of DNN Models (Figure 7)

Query Embedding Network (E1, E4). Given a query feature vec-
tor x4 and its segments xél), e, x((]m), we adopt convolutional neu-
ral network (CNN) to learn distribution function of segments f()
and combining function ¢(). Each convolutional layer contains one
kernel filter and a pooling layer (omitted on the graph) that act like
a distance density function adaptive to all the inputs segments. The
first layer is to learn the function f() of the distance aware distribu-
tions of query segments. The following layers learn the distribution
progressively, with the last layer outputting the distribution for the
entire query, i.e., the learned function g().

Threshold Embedding Network (Ez, E5). The threshold 7 needs
to be transformed to an embedding vector, for which we use a mul-
tilayer perceptron (MLP) with one hidden layer. In particular, for
guaranteeing the monotonicity, we need to enforce all the weights
in the threshold embedding to be positive to make the latent em-
bedding monotonic with the threshold.

Distance Embedding Network (Es, E¢). We need to have a fea-
ture vector xp (resp. xc) for E3 (resp. Eg), to calculate the distances
between k data points and the query. The difference is, for E3, these
k data points are data samples [28, 45]; for Eg, these k data points
are the centroids of all data segments.

For E¢, we use centroids because data objects in the same data
segment are relatively concentrated. If a query is “similar” to the
centroid (i.e., the mean center of the segment) of some data segment,
then it is likely that the query will be also similar to other objects

(Segmented) Query Embedding: E,, E, Threshold Embedding: £, E;, Distance Embedding: £, E
f0 ‘
~

H Filter Kernel g() ; Neuron

x K—»<%\
. H7

8~ N

e @

Global Model for Local Model Selection: G

| sene
T

> Neas X0

Figure 7: Cardinality Estimation for Similarity Search using CNN and Query Embedding Segmentatlon

in the same data segment. Otherwise, this query is less likely to be
similar to objects in that segment. Using distances to centroids could
increase the generality of the model, because we could compute
the distance upper bound between a query and a data object in a
data segment. This can be done by using triangle inequality on the
distance of the query to the centroid, and this segment’s radius.

In both cases, we use a MLP with two hidden layers. The reason
to use two hidden layers, instead of one hidden layer, is to trade-off
between size and efficiency. For each layer, we use ReLU [41] as
the activation function.

Cardinality Estimation Output Network (F). So far, query em-
bedding, distances embedding, and threshold embedding have been
calculated and we use another dense layer and a linear layer (i.e., no
ReLU activation) to transform them into the estimated cardinality.

Global Model for Local Model Selection Network (G). It is to
output the probability of each data segment that contains objects
similar to a given query. The added learnable threshold before the
Sigmoid activator makes the output probability monotonic with
the original threshold. The reason why we output the probability
before discriminating it as 0 or 1 is that discriminative operation is
non-derivable.

Global Discriminative Module. The probability from the Output
module has considered both the query and the threshold. Hence, this
module aims to discretize the probability of each data segment to 0
or 1 simply by a const value (e.g., 0.5), where probability above the
value means 1, and otherwise 0. This module is only for measuring
the model and select data segments but is not involved in model
training, hence is not shown in Figure 7.

5.2 Selecting Hyperparameters for Query
Embedding Network of Local Models
Hyperparameters of CNN have an impact on performance of local

regression model significantly, but different datasets and hundreds
of data segments make hyperparameters selection very hard.

Algorithm 3: Greedy Hyperparameters Tuning

Input: Qirajn is the training set, card is the true cardinality of each
query on current local model.

Output: Return the configured model

Strain < RandomSample(Qtrain, card, 1000);

Svalidate <— RandomSample(Qrain, card, 200);

O,,11=GetConfigs();

©;nir=RandomSample(®,j;, 3);

N

model « 0, error < oo;

[- S TN

0, error’ « SelectBestFrom(0;,;;, model, Strain, Svalidate);

’
s error—error
7 while £-2I=E0E0E > 0,02 do

8 error « error’,error” « error’,error’ « oo;
’ "
: error —error
error —error -,
9 while et > 0.02 do
10 error’ « error’”;
11 0, error” « Update(6, model, Strain, Svalidates €rror’);

12 model « Append(6, model);
13 0, error’ « SelectBestFrom(0;,;;, model, Strain, Svalidate);

14 return model;

In this section, we propose an efficient automatic hyperparam-
eter tuning method for query embedding module in local models,
because it is the most complicated part. We first show all the tunable
hyperparameters. We then give a definition of the hyperparameter
optimization. Afterwards, we will present a greedy optimization
algorithm and reduce the search space for improving performance.

Hyperparameters. We select some key hyperparameters for tun-
ing, including number of channels (6,.1,), kernel size (k.), kernel
stride (0s¢ri), padding size (6,44), Pooling size (O) and Pool-
ing function (6op). We denote configuration of each layer in query
embedding module as a tuple and each layer contains 6 tunable
hyperparameters, it can be formulated as the following:

0= {ech, Okers Ostri, epads 9pker9 901)}
Okers Ostris Opads Opkers Och € N*
0op € {MAX, AVG, SUM}

where N'* is the positive integer set.

id| Method |Embed|Auto-tuningFramework| Opt [Data Segment Dataset [Dimension| #Data |[#Training [#Testing| Metric (T4
1 QES CNN No Local Select No BMS 512 515,597 8,000 2,000 | Jaccard | 0.50

2 Local+ CNN Yes Local Select Yes GloVe300 300 1,917,494/ 8,000 2,000 | Angular | 0.60

3 GL-MLP MLP No Global-Local|Select Yes ImageNET 64 1,431,167 8,000 2,000 [Hamming| 0.90

4 GL-CNN CNN No Global-Local|Select Yes Aminer 2,943 1,712,433 4,000 1,000 Edit 0.05

5 GL+ CNN Yes Global-Local |Select Yes YouTube 1,770 346,194 2,400 600 |Euclidean| 0.15

6 CardNet VAE No Local Select No DBLP 5,373 1,000,000, 2,400 600 Edit 0.20

7| Sampling - No = Select No Table 3: Datasets

8 |[Kernel-based| - No - Select No

9 MLP MLP No ol Soles No Algorithms for similarity search (Table 2).

10| SimSelect s = = Select = [Our methods (rows 1-5).] (1) QES uses CNNs for query segmentation
11] CNNJoin CNN No Local Join No (Section 5.1). (2) Local+ adopts data segmentation but removing
12| GLJoin MLP No Global-Local| Join Yes the global model (i.e., only local models) in Figure 1, and it em-
13] GLJoin+ CNN Yes Global-Local| Join Yes ploys automatic hyperparameter selection for each local model

Table 2: Tested Algorithms

Problem Formulation. Given a local data segment D;, the op-
timization objective is to minimize the validation error of esti-
mated cardinalities, and can be formulated as: © = argming J (©),
where J(0©) is the loss function defined in Section 5.1 on valida-
tion queries, however, the hyperparameters (structure of query
embedding module) are variables in this Section.

Greedy Solution. In order to avoid too many times model train-
ing for trial, we propose a greedy solution for each data segment,
as given in Algorithm 3. We first obtain a subset of training and
validating data by random sampling (lines 1-2), and all the trials are
conducted on this subset. We then randomly select 3 configurations
from the range of hyperparameters (lines 3-4) for cold start (the
range is shown in next part). We continuously select the optimal
hyperparameters for a new layer and put it on the model until the
error does not decrease any more (lines 6-13). In each layer, we
start from the best one of the 3 configurations, and update (line 11)
all 6 hyperparameters mentioned above in turn until convergence.
Finally, we return the optimal hyperparameter configuration of
query embedding module (line 14).

5.3 Supporting Data Updates

GL+ model supports incremental learning for updates because GL+
is highly modular. More specifically, each data point of the dataset
belongs to only one cluster. If several data points is inserted/deleted
in an operation, we first distribute these data points to the nearest
clusters according to the distances with centroids, and then update
query labels in clusters and incrementally train local models and
the global model.

6 EXPERIMENTS

Datasets. The statistics of all used datasets are shown in Table 3,
similar to a related work [53]. BMS [5] contains product entries.
ImageNET [7] contains one-hot vectors of images preprocessed by
HashNet [11]. GloVe300 [2] contains 300-dimension distributed rep-
resentations of words. YouTube [6] contains raw face images from
YouTube videos. Aminer [4] and DBLP [1] contain binary vectors
transformed from publication titles by using the method proposed
n [53]. Metrics in Table 3 show the raw distance metric of datasets,
and the Jaccard and Edit distance have been transformed to Ham-
ming distance by the methods proposed in [3, 53].

(Section 5.2). (3) GL-MLP uses data segmentation but without us-
ing query segmentation, i.e., using MLP for query embedding. (4)
GL-CNN uses both query segmentation and data segmentation. (5)
GL+ improves GL-CNN by using the hyperparameter tuning algo-
rithm in Section 5.2. In addition, methods 2-4 use a penalty in
global loss to avoid missing data segments with large cardinalities.

[Competitors (rows 6-10).] (6) CardNet is the state-of-the-art method
proposed in a SIGMOD 2020 paper [53]%. (7) Sampling is a
sampling-based method. We test on 1% random samples, 10% ran-
dom samples and samples with the same size with GL+ model. For
a query, we calculate the results on the samples and estimate the
cardinality by the sample ratios. (8) Kernel-based method models
distance density distribution for each sample by Gaussian function,
and estimates cardinality of a query as sum of cumulative den-
sity of all samples. (9) DL-based MLP uses fully connected NNs for
query/distance/threshold embeddings. (10) SimSelect is a state-of-
the-art exact threshold-based similarity search methods [44], which
can return the exact results with an efficient index.

Algorithms for similarity join. Beside Sampling-based ap-
proaches, SimSelect, and CardNet, we also compare different vari-
ants of our proposal, as discussed below.

(11) CNNJoin uses a sum pooling for combining all segmented query
embeddings, but does not use data segmentation. (12) GLJoin does
not perform query segmentation, but adopts data segmentation. (13)
GLJoin+ uses both query and data segmentation. It also uses the
same tuned hyperparameters as used by GL+. We also use estimation
methods of similarity search as baselines for join estimates.

Query Selection. We randomly select a set of points in dataset
as similarity search queries Q, and divide it into Q;,4in(80%) and
Qtest(20%). For each q in Qtrqin, we uniformly generate 10 thresh-
olds from range [0, Tmqx] by selectivities just as paper [53] does
(where 7,4x is the maximal threshold we support for a realistic
similarity search query). In order to show the generalizability of our
methods, for each g in Qyes;, we generate 10 thresholds from range
[0, Trnax] according to geometrical distribution of selectivities (more
queries with lower selectivity). Typically, both training and testing
queries have selectivities less than 1% of size of dataset (in line with
conventions of many similarity search researches [34, 44, 58]). For
each training join set, we first select the size N from range [1, 100),
and then select N queries from Qy,in. We also evenly select 10
thresholds from the threshold range. For testing, we generate three

#Code was obtained from the authors.

mm Sampling(1%)
Hm Sampling(equal) . MLP
10!

Sampling(10%) B CardNet GL-MLP Local+
s QES GL-CNN GL+

MAPE
=
2

BMS Glove300 ImageNet Aminer Youtube DBLP
Datasets

Figure 8: MAPE of Different Methods

types of join sets according to the ranges of set size which are
[50, 100), [100, 150), and [150, 200), respectively. For each testing
join set, we randomly select 10 thresholds from the threshold range.

Implementation. Our experiments are conducted on 40 cores
of Intel(R) Xeon(R) CPU E5-2630v4@2.20GHz, and 128 Gigabytes
memory. The DL models are trained in PyTorch 1.0.1, and then
we copy parameters of model to a C++ implementation for testing.
Baselines (e.g., Sampling) are implemented in C++ and use parallel
computing to optimize the efficiency.

Default settings. All methods add the penalty to loss functions,
and we will compare with not using penalty in Exp-6. The default
number of training queries is given in Table 3, and we will vary the
training sizes in Exp-7. The default numbers of data segments for
these datasets are 100, and we will vary these numbers in Exp-8.

6.1 Evaluation for Similarity Search

Table 4 shows the results of different methods on all testing datasets.
The best results are highlighted in bold font. The Mean is the av-
erage error, Median is the median error, and 90th/95th/99th is the
error larger than 90%/95%/99% of all errors.

Exp-1. [Non-DL (Sampling (1%) and Kernel-based) vs. DL (MLP).]
Model in MLP method is very small, and thus we compare it with
baselines based on small samples. Table 4 tells us that: (i) For mean
Q-errors, MLP outperforms traditional methods on most datasets,
because Sampling suffers from 0-tuple problem and Kernel-based
cannot fit the distance distribution well. (ii) On some datasets
(e.g.,Aminer), Sampling (1%) and Kernel-based outperform MLP
with median and max Q-error because sampling-based methods can
accurately estimate queries with higher cardinalities(e.g., 10,000).
(iii) MLP often produces largest max Q-errors because the general-
ity of MLP for very high-dimensional data is worse (e.g., DBLP is
5373-dimension and YouTube is 1770-dimension).

Exp-2. [Sampling (10% and equal) vs. GL+.] Because the accuracy
of sample-based methods increases with the sample size increases,
we extend the sample size to the size of GL+ model and 10%, and
compare the accuracy of Sampling and GL+. For Q-error, Table 4
shows that GL+ can outperform Sampling (equal) by one order of
magnitude, and is comparable with Sampling (10%).

Exp-3. [No Query Segmentation (MLP and CardNet) vs. Query Seg-
mentation (QES).] Table 4 shows that QES outperforms MLP by nearly
40% on mean error of BMS, more than 50% on mean and median
error of GloVe300 and ImageNet, nearly 40% on Q-errors of Aminer

BMS(Penalty)
0.1257 GloVe300(Penalty)
2 0.1001 ImageNet(Penalty)
g Aminer(Penalty)
m0.0757 Youtube(Penalty)
= DBLP(Penalty)
§ 0.050 BMS
= 4025 GloVe300
ImageNet
0.0001 Aminer
Youtube
Epochs _m- DBLP

Figure 9: Missing Rate of Global Model

Q-Error

500 1000 2000 4000 8000 500 1000 2000 4000 8000
Training Size Training Size
(a) BMS (b) ImageNet
Figure 10: Errors with Training Size

and 30% on YouTube. QES also outperforms CardNet on mean error
of all datasets. Figure 8 compares them using error metric MAPE,
which shows that QES also outperforms MLP and CardNet on all the
datasets, because CNN can catch distance density distribution of
segments better, and brings better generality.

Exp-4. [No Data Segmentation (QES and CardNet) vs. Data Segmen-
tation (GL-MLP and GL-CNN).] Table 4 shows that segment data and
train a local model for each segment bring significantly accuracy
enhancement on all datasets. For Q-errors, GL-CNN outperforms
QES, MLP and CardNet, and it produces only 1.83 mean error and
1.27 median error on Aminer which is more than 3 times better
than QES. In addition, Figure 8 evaluates using MAPE, which shows
consistent results with the observation from Table 4.

Exp-5. [Same Configuration (QES, GL-MLP, GL-CNN) vs. Automatic
Local Hyperparameter Tuning (GL+).] Table 4 is for Q-errors and
Figure 8 is for MAPE. They tell us that GL+ has the best accuracy
on all metrics for all datasets. For Q-errors, GL+ reduces the mean
error on GloVe300, ImageNet, Aminer and DBLP below 1.6. On BMS,
GL+ improves mean accuracy by about 30% comparing to GL-CNN.
For MAPE, GL+ reduces the error to 0.17 on DBLP, which is very
accurate, because local hyperparameter tuning can make the query
embedding module adaptive to each local distribution.

Exp-6. [No Penalty vs. With Penalty.] Note that, all methods use
penalty in loss function by default. This group of experiment is
to study what if we remove penalty for these methods, shown
in Figure 9. It tells us that adding a penalty to loss function of
global model training can reduce the cardinality missing by global.
In particular, the cardinality missing is reduced by around 100%
on BMS, 90% on GloVe300, and nearly 4 times on DBLP, because
loss function with penalty can avoid missing data segments with
large cardinalities. Moreover, the judiciously designed loss function
makes the global index model very accurate, and thus the accuracy
of GL+ is similar to that of Local+ according to Table 4 and Figure 8.

Dataset Method Mean | Median | 90th | 95th | 99th | Max | | Dataset Method Mean | Median | 90th | 95th | 99th | Max
GL+ 2.34 1.09 2.47(4.32|19.7 | 111 GL+ 1.54 1.07 2.05 (298| 7.79 | 152
Local+ 2.37 1.05 2.51 | 4.36| 18.4 | 98.3 Local+ 1.61 1.12 236 | 3.01 | 6.46 | 321
Sampling (10%) | 5.18 1.83 11.2 | 17.4 | 55.0 | 165 Sampling (10%) 2.41 1.72 3.90 | 5.26 | 14.2 | 31.0
BMS GL-CNN 3.50 2.42 8.21 | 10.6 | 15.7 | 291 Aminer GL-CNN 1.83 1.27 4.21 | 5.39 | 8.38 | 154
GL-MLP 441 3.02 9.78 | 12.8 | 19.7 | 439 GL-MLP 3.09 2.14 7.10 | 9.18 | 14.2 | 290
QES 7.27 5.05 16.5 | 21.6 | 32.2 | 644 QES 5.22 3.63 119 | 154 | 244 | 541
CardNet 12.4 5.16 31.3 | 48.8 1 99.1 | 335 CardNet 5.45 2.05 7.59 | 12.9 | 43.1 | 3526
MLP 11.2 8.03 36.8 | 47.7 | 71.0 | 700 MLP 8.39 5.80 19.4 | 25.1 | 38.6 | 780
Kernel-based 12.8 8.81 29.7 1 39.2 1 59.5| 135 Kernel-based 9.85 6.91 22.6 | 28.7 | 44.6 | 117
Sampling (equal) 12.3 7.0 31.0 | 41.0 | 74.0 | 111 Sampling (equal) 66.5 42.0 182 | 245 | 245 | 245
Sampling (1%) 19.6 13.0 55.0 | 66.9 | 74.0 | 200 Sampling (1%) 19.5 4.20 56.0 | 75.0 | 136 | 245
GL+ 1.45 1.11 3.39|5.84|19.2 | 210 GL+ 1.69 1.04 2.29|3.93 | 13.3 | 98.7
Local+ 1.51 1.29 3.44 | 6.05 | 18.8 | 241 Local+ 1.70 1.12 2.55|5.78 | 12.1 | 58.5
Sampling (10%) 1.67 1.20 1.86 | 2.36 | 20.0 | 35.0 Sampling (10%) 3.82 1.90 9.0 | 12.0 | 21.1 | 50.0
GL-CNN 2.11 1.46 4.79 1 6.39 | 9.60 | 166 GL-CNN 2.52 1.74 5.88 |1 7.59 | 11.2 | 241
Glove300 GL-MLP 220 | 153 504|662 | 102 208 || LouTube GL-MLP 412 | 288 |957 123|188 | 394
QES 3.57 2.46 8.37 | 10.7 | 16.1 | 341 QES 6.65 4.68 1531199 | 294 | 801
CardNet 4.78 2.20 8.71 | 14.0 | 40.2 | 1099 CardNet 13.2 5.47 29.4 | 54.8 | 126 | 205
MLP 7.29 5.07 16.7 | 21.8 | 33.2 | 753 MLP 9.82 5.13 34.5 | 45.0 | 67.3 | 1191
Kernel-based 15.1 10.6 35.2 | 454 | 67.8 | 148 Kernel-based 10.8 7.50 25.1 (323|495 | 102
Sampling (equal) | 27.9 4.74 84.0 | 113 | 204 | 274 Sampling (equal) | 14.9 9.0 37.0 | 50.0 | 50.0 | 50.0
Sampling (1%) | 25.7 | 3.88 |63.0| 113 | 152 | 274 Sampling (1%) | 154 | 9.0 |37.0]50.0 | 50.0 | 50.0
GL+ 1.31 1.04 2.0 | 2.23|4.36 | 45.0 GL+ 1.49 1.05 2.31|2.88|9.22 | 102
Local+ 1.35 1.14 2.11(3.13 [4.12 | 52.3 Local+ 1.52 1.16 2.55 | 3.62 | 7.13 | 156
Sampling (10%) 2.12 1.57 2.73 1343 | 15.0 | 26.0 Sampling (10%) 2.16 1.86 4.0 | 442 | 7.0 | 21.0
GL-CNN 1.62 1.12 3.73 | 4.89 | 7.55 | 71.5 GL-CNN 2.01 1.38 4.64 | 6.01|9.32 | 196
ImageNET GL-MLP 196 | 135 | 455|590 874 |14z || DPLP GL-MLP 320 | 223 |7.25|9.60 | 15.2 | 298
QES 2.45 1.71 5.67 | 7.41 | 11.1 | 222 QES 4.61 3.19 10.6 | 13.8 | 21.2 | 425
CardNet 3.07 2.0 6.02 | 8.48 | 16.4 | 89.4 CardNet 4.59 2.01 9.33 |1 20.1 | 51.3 | 474
MLP 5.43 3.78 12.4 | 16.0 | 24.9 | 442 MLP 4.77 3.12 14.2 | 26.4 | 38.9 | 1047
Kernel-based 11.6 8.15 26.7 | 34.7 | 52.4 | 155 Kernel-based 5.63 3.87 129 | 16.8 | 26.0 | 54.2
Sampling (equal) | 8.78 | 2.23 |26.0 | 35.0 | 85.0 | 114 Sampling (equal) | 342 | 105 | 128 | 128 | 234 | 234
Sampling (1%) 22.0 6.40 63.0 | 85.0 | 152 | 204 Sampling (1%) 9.15 4.0 21.0 | 38.0 | 70.0 | 70.0
Table 4: Test Errors for Similarity Search
Model BMS | GloVe300 | ImageNET | Aminer | YouTube | DBLP
71 —&— BMS -
—¥— Glove300 Sampling (1%) | 12.7 27.7 3.66 243 24.5 239
6 MLP 4.11 3.09 3.21 9.01 8.23 15.3
—— ImageNet
S 5 —&— Aminer QES 0.25 0.17 0.18 0.41 0.35 0.58
% . ‘ Youtube CardNet 38.8 35.3 16.2 54.5 52.8 55.1
CI) \\ _m— DBLP GL-MLP 111 106 101 176 171 203
3 GL-CNN 29.2 21.3 7.32 35.6 32.1 55.6
2 GL+ 28.3 22.1 7.51 34.2 30.7 50.1
GLJoin+ 30.1 21.5 9.04 35.9 31.8 59.1
1 d

1 50 100 150 200
#Data Segments
Figure 11: Mean Errors of Varying #-Data Segments

Exp-7. [Varying Training Sizes.] Figure 10 shows how Q-error
decreases with training size increasing of methods GL+, GL-MLP
and QES on BMS and ImageNet. We don’t show the results for other
datasets because they have similar results and the space is limited. It
tells us that increasing training size can increase the accuracy of all
three learning-based methods. The accuracy of QES increases dras-
tically when training size increases from 500 to 4000, the accuracy
GL-CNN increases drastically when training size increases from 500
to 3000, and GL+ increases drastically when training size increases
from 500 to 1000. Also, the smaller training size is, the more GL+
outperforms other two methods. The reason is that more training

Table 5: Model Size Comparison (MB)

queries can reveal more distribution details from more perspec-
tives, and segmentation-based method with CNN query embedding
increases the ability of catching proper distance distribution with
limited training queries.

Exp-8. [Varying #-Data Segmentations.] Figure 11 depicts how Q-
error decreases with data segments increasing of method GL+ on all
datasets. It shows that mean Q-errors reduce drastically when data
segments number increases from 1 to 100, and errors are reduced
by nearly 7 times on YouTube and 4 times on BMS. The main reason
is that local models can learn more details on smaller clusters.

Exp-9. [Estimation Time.] Table 6 shows the average time of esti-
mating cardinality for a similarity search query of different methods
on all datasets. It shows that traditional methods Sampling and

Model BMS | GloVe300 | ImageNET | Aminer | YouTube | DBLP
SimSelect 3.96 12.1 5.22 5.87 12.5 18.6
Kernel-based | 10.3 15.1 6.43 125 213 138
Sampling (10%) | 30.9 70.1 10.5 587 69.5 598
Sampling (equal)| 6.78 6.77 2.31 9.56 3.26 2.55
Sampling (1%) | 3.21 7.23 1.12 61.4 7.46 61.5
CardNet 0.36 0.18 0.13 0.68 0.62 0.73
Local+ 1.46 1.12 0.79 5.12 2.55 3.24
GL-MLP 0.51 0.65 0.28 3.43 2.35 3.69
GL-CNN 0.35 0.21 0.15 0.81 0.49 0.55
GL+ 0.33 0.22 0.13 0.80 0.53 0.57

MLP 0.14 0.11 0.046 0.18 0.15 0.27

QES 0.015| 0.012 0.007 0.042 0.021 0.032

Table 6: Avg. Latency for Similarity Search (milliseconds)

4

m 50-100
3 [100-150
150-200

mmm 50-100
s 100-150
150-200

Q-error
~

-

815 G [x B
M /°'/9305%96Net4m’"8r Uty OBLe

By) . ¥ D,
Z G/ovejagmagsmet%me, Outyp, 8P

Datasets

(b) MAPE

Datasets
(a) Q-errors

Figure 12: Join Errors with Query Set Size

mm Gljoin+ CardNet B Sampling(1%)
GL+ Sampling(equal) Sampling(10%)
10°
10
m
£10%
>
9
c
210
©
2
10!
10°
BMS GloVe300 ImageNet Aminer Youtube DBLP

Datasets

Figure 13: Avg. Latency for Similarity Join (query size = 200)
Kernel-based are much slower than our methods. For example, on
dataset GloVe300, our methods outperform traditional approaches
by nearly 1 order of magnitude. The reasons are three folds. (i) Our
model is very small, we can see from table 5 that GL+ model is even
smaller than 1% samples on datasets GloVe300, Aminer and DBLP. (ii)
Only a part of parameters participate the estimation for a query be-
cause of the global index for GL+ or the dropout for DNN. (iii) Neural
network is mainly composed of matrix multiplications, and can
utilize hardware efficiently. However, Sampling methods conduct
lots of online high-dimension distance computing. For traditional
methods, Sampling is faster because Kernel-based needs an extra
Gaussian process for each sample when estimating cardinality. It
also tells us that GL+ outperforms Local+ by 5 times on all datasets,
because for queries with low selectivities, only several local models
need to be evaluated with the help of the global selection model.
We can also see than GL+ is much faster than SimSelect.

Exp-10. [Training and Query Construction Time.] Figure 14 shows
the training time and query construction time of learning-based
estimation methods on different datasets. We can see several facts.
First, the overhead of training query construction time is non-
negligible because the construction computes the distances between
all pairs of datasets and queries, and thus it’s necessary to constraint
the amount of training queries. Second, GL+ takes 2 times more

B MLP 3 QES 3 CardNet = GL-MLP [GL-CNN = GL+ B Gljoin+
20.
175
P1so
5
2
125
o
E100
F
2s
£
L 50
=
25 =
| [=1]
BMS Glove300

“ImageNet
Datasets

Figure 14: Training and Label Time

Aminer

—— Before Updates —— Update & Incremental

] 25 50 75 100 125 150 175 200
Updates

Figure 15: Incremental Training (GloVe300)

overhead for training than CardNet because GL+ has to train 50-100
light-weighted local models separately. This is a trade-off to pay
for offline training get better online evaluation accuracy. Offline
training is done once and we can support incremental training
for data updates. Third, GLJoin+ takes the longest training time
because a join query may contain hundreds of vectors. Last, MLP
and QES are very fast for training but they suffer from bad accuracy.

We didn’t include the data clustering time, because it takes less
than 1 minute, which is negligible compared with the training time.

Exp-11. [Data Updates.] We incrementally inserted 2K new records
on GloVe300 by 200 update operations each with 10 records. After
each update, we update the labels for 8K queries and incrementally
train the existing model, which takes 1-3 minutes, while a retraining
from scratch takes several hours. We compared the Q-error of
incremental training with error before updates. Figure 15 tells us
that incremental learning can constantly keep high accuracy of the
estimation model with hundreds of update operations.

6.2 Evaluation for Similarity Join

Exp-12. [Accuracy.] The comparison of cardinality estimation
methods for similarity join is shown in Table 7. It shows that meth-
ods with data segmentation still do a good job in accuracy. Com-
paring with Q-errors in Table 4, grouping query embeddings in
a join set together by sum pooling brings a better accuracy than
single estimates. The reason is that sum pooling can keep most
of the informations of single queries. It also tells us that model
with data and query segmentation is still the best. For example,
GLJoin+ outperforms small samples by 1-2 orders of magnitude on
BMS, GloVe300, YouTube and DBLP, and GLJoin+ also outperforms
CardNet by 2-8 times.

Figure 12 shows the Q-errors and MAPEs of methods GL+ for
different sizes of join query sets. We observe that on both Q-error
and MAPE, sum-pooling based join query embedding can generalize
to different join query sizes, the performance decay for grouping
100-200 queries is still moderate and reasonable. The reason is

Dataset Method Mean | Median | 90th | 95th | 99th | Max || Dataset Method Mean | Median | 90th | 95th | 99th | Max
GLJoin+ 1.87 1.31 [4.31|5.51|8.55| 174 GLJoin+ 1.42 1.08 3.26 | 4.16 | 6.26 | 121

BMS GL+ 2.01 1.36 459 [6.12 | 9.34 | 205 Aminer GL+ 1.70 1.18 395|510 | 794 | 171
Sampling (10%) | 3.99 2.18 8.46 | 13.5 | 23.1 | 37.0 Sampling (10%) | 2.06 1.90 2.90 | 3.35|4.57 | 5.12

GLJoin 2.51 1.72 5.78 | 7.56 | 11.5 | 265 GLJoin 2.02 1.40 4.66 | 594 | 9.25 | 193

CNNJoin 5.63 3.90 129 | 16.9 | 26.2 | 508 CNNJoin 6.58 4.67 15.2 | 19.6 | 30.5 | 788

CardNet 8.35 5.88 19.1 | 25.2 | 37.2 | 857 CardNet 5.16 3.55 11.7 | 15.2 | 24.3 | 766

Sampling (equal) | 19.3 2.50 15.2 | 40.9 | 302 | 451 Sampling (equal) | 124 7.77 371 | 501 | 909 1221

Sampling (1%) 144 3.86 451 | 800 | 1505 | 2701 Sampling (1%) 5.96 1.94 3.98 | 5.21 | 86.2 | 151

GLJoin+ 1.22 1.02 1.83 1 3.70 | 5.62 | 119 GLJoin+ 1.54 1.06 3.59 | 4.67 | 7.01 | 126

GloVe300 GL+ 1.36 1.03 2.14 | 4.08 | 6.23 | 131 || YouTube GL+ 1.61 1.12 3.73 | 4.87 | 7.39 | 122
Sampling (10%) | 1.18 1.13 1.38 | 1.46 | 1.69 | 2.06 Sampling (10%) | 1.82 1.32 1.95|2.46 | 16.0 | 31.0

GLJoin 1.86 1.30 4.28 | 5.48 | 8.22 | 170 GLJoin 2.23 1.54 5.19 | 6.71 | 10.3 | 216

CNNJoin 4.34 3.02 9.94 | 12.6 | 19.8 | 457 CNNJoin 6.54 4.47 1531 19.9 | 29.9 | 628

CardNet 4.22 2.92 9.81 | 12.5 | 19.0 | 348 CardNet 9.98 6.91 23.1129.9 | 44.7 | 943

Sampling (equal) | 20.6 1.39 96.0 | 171 | 231 | 416 Sampling (equal) | 15.6 2.38 41.0 | 56.0 | 101 | 136

Sampling (1%) | 22.4 | 156 |96.0 | 128 | 231 | 311 Sampling (1%) | 31.9 | 16.0 | 101 | 136 | 246 | 246

GLJoin+ 1.31 1.03 2.9113.79 | 6.02 | 134 GLJoin+ 1.31 1.06 2.95|3.96 | 6.13 | 123

ImageNET GL+ 1.32 1.02 3.03 | 398 | 591 | 117 DBLP GL+ 1.43 1.07 3.01 | 425 | 6.89 | 111
Sampling (10%) 1.67 1.64 2.06 | 2.21 | 2.40 | 3.09 Sampling (10%) 2.51 1.37 6.0 6.0 | 16.0 | 16.0

GLJoin 2.15 1.47 495 6.44 | 10.0 | 192 GLJoin 1.98 1.35 4.54 1592 | 9.14 | 268

CNNJoin 7.39 5.15 16.9 | 21.9 | 34.9 | 727 CNNJoin 4.54 3.12 10.5 | 13.6 | 20.7 | 389

CardNet 3.09 2.11 7.23 19.28 | 14.0 | 274 CardNet 5.14 3.62 11.7 | 15.2 | 24.1 | 502

Sampling (equal) | 5.57 1.73 3.04 | 5.67 | 96.2 | 126 Sampling (equal) | 221 56.0 636 | 1166 | 1166 | 1166

Sampling (1%) 7.38 1.73 290 | 71.0 | 96.2 | 171 Sampling (1%) 12.9 3.11 31.0 | 56.0 | 186 | 186

Table 7: Test Errors for Similarity Join (size € [50, 100))

that sum pooling can incorporate the number of queries in the
aggregated embedding.

Exp-13. [Batch Embedding vs. Single Embedding.] Figure 13 shows
the latency of average estimating cardinalities for a join set with
200 queries. We observe that batch evaluation in GLJoin+ is much
faster than evaluation for each query in GL+, and less layers in
query embedding layer and lower dimensionality of query makes
the superiority more obvious. Sampling (10%) is the slowest because
the sample size is too large. On DBLP, 10% means 100,000 samples,
and we should conduct 100, 000 X 200 distance computations for
each join query on 5,373 dimensions.

7 RELATED WORK

Learning-based Cardinality Estimation for Exact Queries.
Malik et al [36] first classify queries according to the query struc-
ture (join condition, attributes in predicates etc.), and then train a
model on the values of the predicates. [28] trains a multi-set con-
volutional network on queries. [42] proposes a vision of training
representation for the join tree with reinforcement learning. [21, 55]
propose deep likelihood models to capture the data distribution
of multiple attributes and estimates the cardinality of conjunctive
queries. [45] proposes an end-to-end learning-based cardinality
and cost estimator. [43] proposes a selectivity estimation method
by using uniform mixture model. However, these methods only
support exact range queries[13, 14, 24, 31-33, 51, 56, 57] and cannot
support distance-aware similarity queries because cardinalities of
similarity queries are related to both query vector and distance
threshold. Also, similarity queries do not follow the transitivity
property [59, 60].

Cardinality Estimation for Similarity Queries. [37] proposes
a kernel-based method to estimate the cardinality for a similarity

query, and they use Gaussian functions as the kernel function, and
take the sum of cumulated probability of all kernel functions on
samples as the cardinality. However, the kernel-based method still
relies on samples, and suffers from 0-tuple problem with sparse data
space. The methods [8, 9] first cluster all the existing queries and
find a representative query (a.k.a., a “query prototype” or prototype
for short) for adjacent queries. They then build threshold-based
linear model on each prototype. For an unknown query, they project
it to prototypes, collect cardinalities, and use weighted sum as the
estimated cardinality. They show good result on low-dimension
(< 10) datasets, but on high-dimension datasets, it’s hard to find
prototypes and learn cardinalities by using a simple linear model.

Data Clustering. Unsupervised Hash-based methods transform
high dimensional data or non-metric data into a short hash code [19,
49], where data with the same hash code will be put into the same
bucket, and search nearest neighbors from several adjacent buckets.
Hash-based methods include Local Sensitive Hashing [17, 20, 25, 34,
35, 48, 50, 58], Learning to Hash [22, 52, 54] and quantization-based
methods [18, 23]. Traditional methods like K-means are often used
to cluster data in low dimensionality. While for high dimensional
data, K-means can be used for subspace of data [38], or dimension
reduced data via methods like PCA [16].

8 CONCLUSION

In this paper, we have studied the feasibility of applying deep learn-
ing based methods on cardinality estimation for similarity queries.
We have proposed two novel methods to improve the accuracy
and to reduce the number of training data for similarity search
query segmentation and data segmentation, and use a global-local
framework to support both similarity search and similarity join. We
have conducted extensive experiments to show that our proposed
methods can significantly outperform existing solutions.

REFERENCES

[10]
(1]

[12]
[13]

[14]

[19]

[20]

[21]

[22]

[24]
[25]
[26]

[27]

[32]

https://dblp2.uni-trier.de/.

https://nlp.stanford.edu/projects/glove/.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.hamming_loss.html.
https://www.aminer.cn/.

https://www.kdd.org/kdd-cup/view/kdd-cup-2000.

http://www.cs.tau.ac.il/ wolf/ytfaces/index.html.

http://www.image-net.org/.

C. Anagnostopoulos and P. Triantafillou. Learning set cardinality in distance
nearest neighbours. In 2015 IEEE International Conference on Data Mining, pages
691-696, 2015.

C. Anagnostopoulos and P. Triantafillou. Query-driven learning for predictive
analytics of data subspace cardinality. ACM Transactions on Knowledge Discovery
from Data (TKDD), 11:1 — 46, 2017.

Y. Bengio, A. C. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798-1828, 2013.
Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash by
continuation. In IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pages 5609-5618. IEEE Computer Society, 2017.
A. Chen, L. E. Li, and J. Cao. Tracking cardinality distributions in network traffic.
In INFOCOM, pages 819-827. IEEE, 2009.

D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method for exact
set similarity joins. Proc. VLDB Endow., 9(4):360-371, 2015.

D. Deng, Y. Tao, and G. Li. Overlap set similarity joins with theoretical guarantees.
In SIGMOD, pages 905-920, 2018.

M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidelberg,
2009.

C. H. Q. Ding and X. He. K-means clustering via principal component analysis.
In ICML, volume 69, 2004.

J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on
dynamic collision counting. In SIGMOD, pages 541-552, 2012.

T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate
nearest neighbor search. In CVPR, pages 2946-2953, 2013.

Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway. Deep learning for user
interest and response prediction in online display advertising. Data Science and
Engineering, 5(1):12-26, 2020.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518-529, 1999.

S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Deep
learning models for selectivity estimation of multi-attribute queries. In D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, SIGMOD, pages
1035-1050. ACM, 2020.

J. He, W. Liu, and S. Chang. Scalable similarity search with optimized kernel
hashing. In SIGKDD, pages 1129-1138, 2010.

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. TPAMI, 33(1):117-128, 2011.

Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experimental
evaluation. Proc. VLDB Endow., 7(8):625-636, 2014.

X. Jin and J. Han. Locality sensitive hashing based clustering. In Encyclopedia of
Machine Learning and Data Mining, pages 758-759. Springer, 2017.

T. Kim, W. Li, A. Behm, L. Cetindil, R. Vernica, V. R. Borkar, M. J. Carey, and C. Li.
Similarity query support in big data management systems. Inf. Syst., 88, 2020.
D. P. Kingma and M. Welling. An introduction to variational autoencoders.
Foundations and Trends in Machine Learning, 12(4):307-392, 2019.

A.Kipf, T.Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities:
Estimating correlated joins with deep learning. In CIDR, 2019.

H. Lee, R. T. Ng, and K. Shim. Power-law based estimation of set similarity join
size. Proc. VLDB Endow., 2(1):658-669, 2009.

H. Lee, R. T. Ng, and K. Shim. Similarity join size estimation using locality
sensitive hashing. Proc. VLDB Endow., 4(6):338-349, 2011.

G.Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A partition-based method for
similarity joins. Proc. VLDB Endow., 5(3):253-264, 2011.

G. Li, J. He, D. Deng, and J. Li. Efficient similarity join and search on multi-
attribute data. In SIGMOD, pages 1137-1151, 2015.

=
)

o
&

[59]

[60

G.Li, J. Huy, J. Feng, and K. Tan. Effective location identification from microblogs.
In ICDE, pages 880-891, 2014.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In VLDB, pages 950-961, 2007.
Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Intelligent probing for
locality sensitive hashing: Multi-probe LSH and beyond. PVLDB, 10(12):2021—
2024, 2017.

T. Malik, R. C. Burns, and N. V. Chawla. A black-box approach to query cardinality
estimation. In CIDR, pages 5667, 2007.

M. Mattig, T. Fober, C. Beilschmidt, and B. Seeger. Kernel-based cardinality
estimation on metric data. In EDBT, pages 349-360, 2018.

D. Mautz, W. Ye, C. Plant, and C. Béhm. Discovering non-redundant k-means

clusterings in optimal subspaces. In SIGKDD, pages 1973-1982, 2018.
G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by bounding the

impact of cardinality estimation errors. Proc. VLDB Endow., 2(1):982-993, 2009.
A.D. Myttenaere, B. Golden, B. L. Grand, and F. Rossi. Mean absolute percentage
error for regression models. Neurocomputing, 192:38-48, 2016.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, pages 807-814, 2010.

J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state representations
for query optimization with deep reinforcement learning. In DEEM@SIGMOD,
pages 4:1-4:4, 2018.

Y. Park, S. Zhong, and B. Mozafari. Quicksel: Quick selectivity learning with
mixture models. In D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q.
Ngo, editors, Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, pages 1017-1033. ACM, 2020.

J. Qin and C. Xiao. Pigeonring: A principle for faster thresholded similarity
search. PVLDB, 12(1):28-42, 2018.

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307-
319, 2019.

J. Sun, Z. Shang, G. Li, Z. Bao, and D. Deng. Balance-aware distributed string
similarity-based query processing system. PVLDB, 12(9):961-974, 2019.

J. Sun, Z. Shang, G. Li, D. Deng, and Z. Bao. Dima: A distributed in-memory
similarity-based query processing system. PVLDB, 10(12):1925-1928, 2017.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high dimensional
nearest neighbor search. In SIGMOD, pages 563-576, 2009.

S.Tian, S. Mo, L. Wang, and Z. Peng. Deep reinforcement learning-based approach
to tackle topic-aware influence maximization. Data Science and Engineering,
5(1):1-11, 2020.

H. Wang, J. Cao, L. Shu, and D. Rafiei. Locality sensitive hashing revisited: filling
the gap between theory and algorithm analysis. In CIKM, pages 1969-1978, 2013.
J. Wang, G. Li, and]. Feng. Can we beat the prefix filtering?: an adaptive frame-
work for similarity join and search. In SIGMOD, pages 85-96, 2012.

J. Wang, W. Liu, S. Kumar, and S. Chang. Learning to hash for indexing big data -
A survey. Proceedings of the IEEE, 104(1):34-57, 2016.

Y. Wang, C. Xiao,]. Qin, X. Cao, Y. Sun, W. Wang, and M. Onizuka. Monotonic
cardinality estimation of similarity selection: A deep learning approach. 2020.
Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, pages 1753-1760,
2008.

Z.Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-
stein, S. Krishnan, and I Stoica. Deep unsupervised cardinality estimation.
volume 13, pages 279-292. VLDB Endowment, 2019.

M. Yu, G. Li, D. Deng, and J. Feng. String similarity search and join: a survey.
Frontiers Comput. Sci., 10(3):399-417, 2016.

M. Yu, J. Wang, G. Li, Y. Zhang, D. Deng, and J. Feng. A unified framework for
string similarity search with edit-distance constraint. VLDB 7., 26(2):249-274,
2017.

Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu. Lazylsh: Approximate nearest
neighbor search for multiple distance functions with a single index. In SIGMOD,
pages 2023-2037, 2016.

X. Zhou, C. Chai, G. Li, and J. SUN. Database meets artificial intelligence: A
survey. IEEE Transactions on Knowledge and Data Engineering, pages 1-20, 2020.
X. Zhou, J. Sun, G. Li, and J. Feng. Query performance prediction for concurrent
queries using graph embedding. VLDB, 13(9):1416-1428, 2020.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Learned Cardinality Estimation for Similarity Search
	3.1 A Basic DL Model for Similarity Search
	3.2 Query Segmentation
	3.3 Data Segmentation

	4 Supporting Similarity Joins
	5 Implementation Details
	5.1 Details of DNN Models (Figure 7)
	5.2 Selecting Hyperparameters for Query Embedding Network of Local Models
	5.3 Supporting Data Updates

	6 Experiments
	6.1 Evaluation for Similarity Search
	6.2 Evaluation for Similarity Join

	7 Related Work
	8 Conclusion
	References

