
Separation Is for Better Reunion:
Data Lake Storage at Huawei

Xin Tang, Chengliang Chai§, Dawei Zhao, Haohai Ma, Yong Zheng, Zhenyong Fan,
Xin Wu, Jiaquan Zhang, Rui Zhang, Duanshun Li, Yi He, Keji Huang, Guangbin Meng, Yidong Wang,

Yuefeng Zhou, Tao Tao†, Lirong Jianγ , Jiwu Shu‡, Yuping Wang§, Ye Yuan§, Guoren Wang§, Guoliang Li‡
Beijing Institute of Technology§, Huawei, China Mobile Communications†, Hashdataγ , Tsinghua University‡

Abstract—Huawei collaborates with some Chinese large busi-
ness companies to store and process exabytes of nationwide
operational data in data lake storage to provide business
insights. Specifically, our customers will ask to store and
process massive log message data to support their real-time
and decision-making applications. Thus, we need computation
and storage components in the analytic platform to process and
store these data cost-efficiently.

To meet these user requirements, we have designed a storage
system in data lake, StreamLake, which introduces a novel
design to serve log message streaming and batch data processing
in distributed storage, with high scalability, efficiency, reliability
and low cost. Specifically, we introduce a stream (storage) object
as a storage abstraction for message streaming data to achieve
the storage-disaggregated architecture with high scalability and
reliability. Moreover, we utilize the erasure coding and tiered
storage to save the storage cost, and furthermore, the stream
object can be automatically converted to a table object such that
cost-effective stream and batch data processing can be achieved.
For tabular data, we implement the lakehouse functionality to
support ACID via the table object, with a metadata acceleration
to improve the efficiency of data access between the compute
and storage engines. Also, we design a LakeBrain optimizer at
the storage side to optimize the query performance and resource
utilization under the storage-disaggregated architecture. Finally,
we have also deployed StreamLake in China Mobile, the
world’s largest mobile network operator to serve over 20PB
production data, and the results demonstrate improvements of
30% to 4× in terms of query performance and over 37% in
terms of cost saving.

I. INTRODUCTION

As the Internet of Things and 5G technologies become
prevalent, massive amounts of data are being collected,
stored, and analyzed. The traditional architecture of data
infrastructure has been challenged by cloud-native designs,
where compute and storage resources are pooled to serve
massive structured and unstructured data in an elastic and
cost-efficient manner. Analytical systems such as data ware-
houses and big data platforms have also evolved from siloed
constructions to compute-and-storage disaggregated architec-
tures. For example, data lake storage (e.g., AWS S3 [1],
Huawei OceanStor Pacific [2]), with its 10× better price,
availability, and persistence compared to traditional storage
formats, has been popular for storing massive various data,
so as to support large-scale data analysis.

§Chengliang Chai and §Yuping Wang are the corresponding authors. Work
done when Xin Tang, Zhenyong Fan and Xin Wu were in Huawei.

However, as large enterprises further digitalize their busi-
ness, the data to be stored and analyzed explode. Over
the past several years, we have collaborated closely with
over 200 enterprise customers from 16 different industries to
better understand their big data processing requirements. Our
analysis of key statistics has revealed the following insights:
Petabytes of data. Nearly half of our customers (49%) have
processed data ranging from one terabyte to 10 petabytes
(PB). A significant percentage of customers (29%) handle
more than 10 PB, while 8% manage more than 100 PB of
data.
Log data. A large majority (81%) of our customers primarily
work with log message data.
Stream and batch processing. Both stream and batch pro-
cessing play a critical role in the big data processing.
69% of customers actively use batch processing, and 65%
use stream processing. Nearly 40% care about both. Also,
when processing data through data pipelines, in many cases,
customers have to continuously update the datasets.
Data retention. In practice, 43% of customers are required
to store data for 1-5 years. 22% store 5-10 years and 27%
store at least 10 years, according to regulations and practices
in different industries.

To satisfy the above users’ requirements, we aim to design
a data lake storage system to support stream and batch
data processing with high efficiency, persistence, scalability
and low total cost of ownership (TCO). To this end, the
system has several significant aspects to be considered. (1)
As users always face petabytes of log streaming data, it
is challenging to store the data persistently at low cost,
while keeping high elasticity and processing efficiency. For
example, as streaming data needs real-time processing, some
typical system like Kafka uses local file system as the storage,
which lacks of elasticity because the computation and storage
are tightly coupled. Also, in practice, users may conduct
stream or batch processing for different applications over the
same data, thus storing two copies for different processes
is costly. (2) In a complex data analysis pipeline, there are
likely to be multiple copies of data to support different
tasks. If these copies are updated individually, data could be
inconsistent. Hence, it is significant to support atomic writes
to achieve high-quality data. (3) In data lake storage, it is
challenging to perform optimization (like the optimizer in



databases) because the computing engine is always decoupled
with the storage. Hence, it is critical to consider how to
incorporate an optimizer in the storage engine to optimize
system performance.

To address these issues, we deploy our StreamLake
storage system with its novel design to serve enterprise-level
stream and batch data processing.

First, in terms of streaming storage, we implement the
compute-and-storage disaggregated architecture to achieve
high scalability and reliability. To be specific, we introduce
the stream object to read/write the streaming messages, based
on which our streaming service becomes elastic, i.e., the
number of instances for processing the messages can be
efficiently adjusted without data migration. The object has
buffers to support real-time stream processing, and load-
balanced storage and redundant persistence are also achieved.
Stream object is a novel design that directly stores messages
as stream in the underlying storage system rather than storing
via files like Kafka. In this way, we can better leverage
the characteristics of stream data to well store, compress,
transfer, serve and backup the data. Besides, to better reduce
the storage cost, StreamLake is built on the tiering storage
Huawei OceanStor, which can automatically migrate data
between SSD and HDD. To better achieve cost-effective
stream and batch processing, the stream object can be au-
tomatically converted to table object, and vice versa. In this
way, data can be maintained for just one copy rather than
stored for two copies separately, and thus the storage cost
is reduced. Existing systems like the widely-used Kafka [3]
use the local file system to persist data, which is less elastic
than disaggregated storage. Pravega [4] and Pulsar [5] adopt
the disaggregated architecture, but still store messages in
files, while we have a native stream object that can achieve
highly efficient and reliable storage. In addition, we can
automatically manage cold data based on our built-in tiering
storage (or conduct table-stream conversion to save the cost),
they have to migrate the data to other cost-friendly storage
systems like HDFS [6] or S3 [1].

Second, in terms of supporting updates, the Lakehouse
system [7]–[9] can eliminate multiple copies by achieving
concurrent read and write in an ACID manner over one
copy. We also implement the lakehouse functionality in
StreamLake to support ACID via the table object. Par-
ticularly, we design a metadata acceleration that combines
small I/O accesses, so as to improve the efficiency of compute
engines visiting data in the remote disaggregated storage.

Third, we build an intelligent data lake optimizer
LakeBrain at the storage-side that focuses on optimiz-
ing the data layout in the storage, so as to improve the
resource utilization as well as query performance. Many
recent works [10]–[13] have focused on using machine
learning techniques to optimize database systems, including
the knob tuner, query optimizer, etc. For the data lake
with disaggregated storage, we think that it is a promising
direction to design an optimizer and we conduct the following
two attempts. We design a reinforcement learning based

automatic compaction module to decide whether to compact
small files considering the system state at a certain system
status, so as to improve the block utilization while keeping
the system running smoothly. We also build a predicate-aware
partitioning model that is used to judiciously distribute data
to storage blocks to reduce the number of tuples to be visited,
so as to improve the query efficiency.

Overall, our StreamLake has the following characteris-
tics.
High storage scalability. Leveraging the stream object and
table object, StreamLake adopts the compute-and-storage
disaggregated architecture that allows for elastically adjust-
ing computing and storage resources according to dynamic
workloads for both stream and batch data. In this way, our
system can scale gracefully to store petabytes of new data.
High processing efficiency. The stream object in
StreamLake provides efficient read/write APIs to
support real-time stream processing. Also, our stream object
provides load-balanced stream storage, which can also
help improve the efficiency. Besides, query computation
pushdown is applied to reduce the data transfer between the
storage and query engine. Furthermore, the LakeBrain
optimizer improves the query performance by optimizing
the data layout.
High reliability. StreamLake is built on top of the Huawei
OceanStor Pacific [2], which has built-in data reliability and
security to provide full protection to the data.
Low TCO. Overall, StreamLake can save the users’ cost
a lot by leveraging our novel designs as well as the ability
of our Huawei OceanStor storage. The cost mostly includes
the cost of storage and computing servers. On the one hand,
we use erasure coding [2] as the data redundancy strategy,
which stores fewer copies of data than other systems such as
HDFS (improving the disk utilization rate from 33% to 91%),
and we also use built-in tiering storage and compression
techniques to save storage cost. Besides, we can just store one
copy to serve both stream and batch data processing, which
further saves the cost. On the other hand, the LakeBrain
optimizer and pushdown also save the compute resource by
improving the query efficiency. Moreover, the disaggragated
architecture makes the users require their compute or storage
resources as needed.
Use case. We deployed StreamLake in China Mobile
data lakes with production data, resulting in significant
optimization of resource utilization and performance. China
Mobile manages one of the largest data analytic platforms in
China. Over 4.8 petabytes per day of fresh data flow from
business branches and edge devices scattered across over 30
provinces to several centralized data centers. As shown in
Figure 1(a), the fresh data first lands on a collection and
exchange platform where data exchanges across data centers.
Then it is loaded into the analytic platform. Data warehouses
and big data engines run billions of jobs over the data to
provide location services, network logging analysis and many
other applications to serve users. As the platform grew to
the exabyte scale, resource utilization became increasingly



skewed, with average CPU, memory, and storage utilization
at 26%, 41%, and 66% respectively. Previously, China Mobile
handled these jobs between independent Kafka and HDFS
servers, which could be expensive and error-prone.

To overcome this, we deployed StreamLake in a
China Mobile data center with 20 petabytes of produc-
tion data, replacing the existing analytic architecture with
a disaggregated-storage architecture powered by Huawei
OceanStor Pacific with StreamLake framework. Fig-
ure 1(b) shows some general evaluation results of our de-
ployment. With StreamLake, compared with the Kafka
and HDFS solution, our customers can run the same number
of analytical jobs with 39% fewer servers, due to the high
utilization of server resources in StreamLake, and leading
to 37% cost savings (TCO). Here TCO refers to the number
of servers to support the jobs. Also, a number of queries
can achieve performance improvement from 30% to 4×.
Moreover, minimum data migration is required to scale the
system, and thus maintenance cost is thus greatly reduced.
More detailed evaluation is shown in Section VII.

II. RELATED WORK

Data lake storage system. Dell EMC [14] and Ne-
tApp [15] support HDFS protocol via connectors to NFS
or SAS/iSCSI/FC implementation on top of block/LUN
devices [16], [17]. While these storage products provide
enterprise-level scalability and high reliability to customers,
their supports to analytic efficiency primarily rely on the an-
alytical engine partners [18]. AWS [19], Azure [20], Google
Cloud [21] and Alibaba Cloud [22] provide a rich portfolio of
storage services to build a data lake in the cloud. These cloud
storage services are loosely connected to support messaging
and batch processing while StreamLake tightly integrates
message streaming, lakehouse and persistent storage in a
single system which is more efficient and cost-effective.
Message Streaming. Kafka, Pulsar and Pravega [3]–[5] are
popular open-source streaming platforms in industry. Unlike
StreamLake, which builds its messaging service with
stream object and PLogs, and integrates its stream storage
with a lakehouse framework, these solutions are file-based
and require manual connections to compute engines and
external storage, such as HDFS [6] or S3 [1] for downstream
processing or cost-friendly archiving. This increases both the
complexity and cost of data pipeline management.
Lakehouse. Iceberg, Hudi and Delta Lake [7]–[9] are top
lakehouse data management frameworks which store data in
popular file formats for analytics [23]. StreamLake builds
the lakehouse framework on top of the table object storage
and PLogs [2]. This integration enables us to fully leverage
Huawei Storage’s enterprise-class features [2] to provide high
scalability and reliability. In addition, metadata acceleration
and dynamic data layout optimizations facilitate concurrent
lakehouse operations with improved speed and reliability.
Automatic database tuning. Recently, AI is widely-used
inside the database system to improve the performance [10]–
[13], [24]–[30], [30]–[34]. For instance, OtterTune [10] is a

Tenant	1 Tenant	2 Tenant	3 Tenant	NŏApps

App.	
Layer

Process	
Layer

Account	Detail
Realtime	Inquiry

Location
Service

Network	Log	
Analysis

ŏ

DW	Compute	Engines Big	Data	Engines

StreamLake

Data	Collection	&	Exchange	Platform
Collect	
Layer

(a) (b)

Fig. 1. China Mobile Use Case.

classic ML-based framework, recommending knob configu-
ration using the Gaussian process. Moreover, RL has been
adopted in CDBTune [11] to iteratively explore the optimal
configuration. Sun et.al [35] is the first approach that tries
to maximize data skipping for partitioning using pushdown
predicates with a bottom-up approach. QD-tree [28] pro-
posed a greedy algorithm and a reinforcement learning based
algorithm to further optimize the partitioning strategy, but
they need to quantify partition cardinalities by sampling or
scanning, which is not accurate and efficient enough.

III. ARCHITECTURE

In order to meet the demands of enterprise customers for
next-generation big data solutions, StreamLake aims at
optimizing the processing efficiency and resource utilization
of massive log messages in big data pipelines. At a high
level, StreamLake is composed of three layers: storage,
data service, and data access, as depicted in Figure 2, which
is the expansion of the StreamLake module in Figure 1.

This architecture comprises two tiers of routes (as detailed
in the rest of this section, section IV and Section IV.A–Write
stream messages): a) one at the data service layer to distribute
processing capabilities across nodes and b) another at the
store layer to balance storage space and facilitate rapid data
duplication and reconstruction. This symmetric architecture,
combined with Huawei proprietary technologies, ensures the
system’s ability to deliver high performance, fault-tolerance
and high scalability.
Store layer is responsible for data persistence, which consists
of SSD and HDD data storage pools, a high-speed data
exchange and interworking bus as well as multiple types of
storage semantic abstractions (including block, file, stream,
table, etc.).

(1) The data storage pools comprised of SSD and HDD of-
fer reliable management of stored data. The physical storage
space on the disks in the storage cluster is divided into slices,
which are then organized as logical units across disks in
various servers to ensure data redundancy and load balancing.
The storage pools also implement storage space features such
as garbage collection, data reconstruction, snapshot, clone,
write-once-read-many mechanism, thin provision, etc.

(2) The data exchange and interworking bus [2] offers
high-speed data transfer and interworking of different storage
abstractions.Its advanced features include support for Remote



Persistence
Storage	Pools

SSD

HDD

Data	Exchange	&	Interworking	Bus

Block File … Stream	object Table	object

Elastic	Serverless	Function	Engine

Tiering Replica. … StreamLake
Services

LakeBrain
Optimization

Access	Layer

Data
Service
Layer

Storage
Layer

Fig. 2. StreamLake Storage Architecture.

Direct Memory Access (RDMA), which bypasses the CPU
and L1 cache to accelerate data transfer speeds. Additionally,
the bus leverages intelligent stripe aggregation, I/O priority
scheduling, etc., to optimize data transfer and processing.
All nodes are interconnected by the data bus to enable
high Input/Output Operations per Second (IOPS), large band-
width and low latency data exchanges. Furthermore, the bus
supports the interworking of different storage abstractions,
allowing for the sharing and access of a single data piece
by different interfaces, which eliminates the need for data
migration and significantly saves storage space.

(3) The storage abstractions such as block and file imple-
ment access interfaces to the underlying storage in different
semantics. We introduce two new abstractions, stream object
and table object, to manage messaging streams and tabular
data efficiently. Their implementation will be discussed in
Section IV.
Data service layer provides a rich set of features to en-
able efficient data management at the enterprise scale. For
instance, the tiering service offers static and dynamic data
migration and eviction between the SSD and HDD storage
pools based on tiering policies, which saves a lot of storage
costs. The replication service provides periodical replications
to remote sites for backup and recovery.

Particularly, to further enhance the capabilities of the
layer, we have extended it to include specialized services
and optimizations for log message processing operations,
which include the StreamLake services (Section V) to
support real-time streaming and lakehouse functionality, and
LakeBrain (Section VI) to improve the resource utilization
and query efficiency. The elastic serverless function engine
can be regarded as a lightweight computation platform to
serve the above components.
Data access layer implements storage access protocols to
handle user requests. It supports a block service via standard
iSCSI access, NAS services via NFS and SMB protocols,
as well as an object service via S3 protocol, etc. The new
StreamLake services utilize the OceanStor distributed Parallel
Client (DPC) which is a universal protocol-agnostic client
providing shorter but superfast IO path. The Access Layer

1		int32_t	CreateServerStreamObject(									
2				IN		CREATE_OPTIONS_S		*option,		
3				OUT	object_id_t		*objectId);
4		int32_t	DestroyServerStreamObject(		
5				IN		object_id_t		*objectId);
6		int32_t	AppendServerStreamObject(
7				IN		object_id_t		*objectId,
8				IN		IO_CONTENT_S		*io,
9				OUT	uint64_t		*offset);
10		int32_t	ReadServerStreamObject(									
11				IN		object_id_t	*objectId,		
12				IN		uint64_t	offset,
13				IN		EAD_CTRL_S	*readCtrl,		
14				INOUT		IO_CONTENT_S	*io);

Fig. 3. Stream Object Operations.

also plays a crucial role in managing authentication and
access control lists, which ensure that only valid user requests
are translated into internal requests for further processing, so
as to achieve the security and integrity.

IV. STREAM AND TABLE STORAGE OBJECT

In this section, we introduce the stream object and table ob-
ject, purpose-built storage abstractions designed for efficient
storage and access of stream and table data in the storage
layer.

A. Stream Object

The stream object is a storage abstraction in the store
layer that efficiently supports key-value message streaming
at scale. It stores a partition of key-value pairs for message
streams, organized as a collection of data slices. Each slice
contains up to 256 records as depicted in Figure 4. Incoming
message records are appended to a specific slice in a stream
object based on its topic, key, and offset.
Stream objects operations. The stream object operates
similarly to the block and file storage abstractions, pro-
viding read and write functionality for stream storage.
Figure 3 outlines key operations supported by the stream
object, including creating and destroying a stream object
with functions CreateServerStreamObject (line 1-
3) and DestroyServerStreamObject (line 4-5) re-
spectively. The ∗option field (line 2) sets storage con-
figurations, such as data redundancy methods (replicate or
erasure code) and I/O quotas, so as to ensure enterprise-
level reliability and performance. The assigned objectId
(line 3) serves as a unique identifier to operate the stream
object. The AppendServerStreamObject function ap-
pends incoming records to the stream object and re-
turns the starting offset of the appended records. The
ReadServerStreamObject function reads the stream
object starting from a specified offset, with control conditions
such as the length of the read specified in the readCtrl
field. Since the message service is designed to support real-
time streaming, it is set to respond to all subsequent messages
unless specified limits by the user. IO_CONTENT_S (line 8
and 14) is a data structure that provides non-blocking I/O by
using buffers to enhance the performance of both writing and
reading operations.



Write stream messages. We discuss how to write messages
into StreamLake and endure enterprise-level load-balanced
and redundant persistence for the stream objects, which
is achieved based on SSD and HDD storage pools. As
shown in Figure 4, the messages are first assigned to stream
object slices based on topics, keys, and offsets (Figure 4-
a,b,c). Then, a distributed hash table is leveraged to ensure
even data distribution for load-balance storage (Figure 4-d).
Specifically, data slices will be distributed evenly to 4096
logical shards, each of which has the storage space managed
by persistence logs (PLog, Figure 4-e). Each PLog unit is a
collection of persistence services in OceanStor [2] that con-
trols a fixed amount of storage space on multiple disks and
provides 128 MB of addresses per shard. When a message
is received, the PLog unit replicates it to multiple disks for
redundancy (Figure 4-f). We use key-value databases to serve
as indexes for PLogs for fast record lookup.

Topic	1 Topic	2 Topic	3 …

Object	1 Object	2 Object	3 …

Slice	1 Slice	2 Slice	3 …

Plog	1 Plog	2 … Plog	N

…

Shard	1 Shard	2 … Shard	4096

KV	DB

Disk	1 Disk	2 Disk	3 Disk	4

Key-value	Message
a�	Topic

b�	Message	Key

c�	Offset

d�	Logical	Hashing

e�	Address	Mapping

f�	Replicate

0 256 512

Fig. 4. Write Message to StreamLake.

B. Table Object

We also extend the storage object layer in StreamLake
to support operations over tables for more effective data
storage and management, like lakehouse systems [7]–[9]. The
table storage uses an open lakehouse format with putting
catalog in the KV store for faster metadata access. The table
abstraction is logically defined by a directory of data and
metadata files, as shown in Figure 5.
Data directory. Table objects are stored in Parquet files
of the data directory. In this example, data objects are
separated to different sub-directories by the location column.
Each sub-directory name represents its partition range. Data
objects in each Parquet file are organized as row-groups and
stored in a columnar format for efficient analysis. Footers in
the Parquet files contain statistics to support data skipping
within the file.
Metadata directory keeps track of the file paths of the
table, schema and transaction commits etc., which are or-
ganized into three levels: commit, snapshot, and catalog, in
Figure 5-(b, c, d).

Commits are Arvo files that contain file-level metadata and
statistics such as file paths, record counts, and value ranges
for the data objects. Each data insert, update, and delete
operation will generate a new commit file to record changes
of the data object files.
Snapshots are index files that index valid commit files for a
specified time period. These snapshots commit statistics such
as current files, row count and added/removed files/rows as
data operation logs. Along with commits, snapshots provide
snapshot-level isolation to support optimistic concurrency
control. Readers can access the data by reading from the
valid commit files, while changes made by a writer will not
be visible to readers until they are committed and recorded
in a snapshot. This allows multiple readers and one writer to
access the data simultaneously without locks.

Snapshots also monitor the expiration of all commits,
making them essential for supporting time travel, which
allows data to be viewed as it appeared at a specific time.
By keeping old commits and snapshots, table objects use a
timestamp to look up the corresponding snapshot and commit
to access historical data.
Catalog describes the table object, including the profile data
such as the table ID, directory paths, schema, snapshot
descriptions, modification timestamps, etc. The data and
metadata files are stored in the table directory, except for the
catalog stored in a distributed key-value engine optimized
for RDMA and Storage Class Memory (SCM) to ensure fast
metadata access. The data and metadata files are converted to
PLogs in the storage for redundant persistence as discussed
above.

table_streamlake

data	/	location=Beijing	/	0c3dc93028.parquet	
	/	ae0a864b3b.parquet	

location=Paris	/	a5bf45de8f.parquet	

	/	b2ba87634d.parquet	
metadata	/	c-34aa8f08b3.arvo

c-6b02c38d88.arvo
s-4c648abfb3.arvo
s-9f02c84d99.arvo
catalog-kvstore

`
`
`

(a)	Data	Objects

(b)	Commits

(c)	Snapshots

(d)	Catalog

Fig. 5. File Organization of StreamLake Table Objects.

V. STREAMLAKE DATA PROCESSING

In this Section, we present the data processing services in
the data layer. Driven by practical application scenarios dis-
cussed in Section I, these services provide a comprehensive,
enterprise-level data lake storage solution to efficiently store
and process log messages at scale. The StreamLake services
encompass a stream storage system for message streaming
(Section V-A) and lakehouse-format read/write capabilities
for efficient tabular data processing (Section V-B).

A. Message Streaming

We design a stream storage engine to facilitate message
streaming at large scale, which leverages stream objects
to ensure enterprise-level scalability via the disaggregated
storage architecture.



Overall architecture of streaming service. The high-level
design of the stream service is in Figure 6, which comprises
producers, consumers, stream workers, stream objects, and a
stream dispatcher. They work together to provide seamless
message streaming. The stream objects are located in the
store layer, while the stream workers and dispatchers are in
the data services layer of StreamLake.

Producer Consumer

Stream
Dispatcher

Producer Producer Consumer Consumer

Stream	Worker

Stream	Object Stream	Object Stream	Object

Stream Streamŏ

Stream	Object	Client

Stream	Worker

Stream Streamŏ

Stream	Object	Client

Fig. 6. Write Message to StreamLake.
Producers and Consumers. Producers are responsible for
publishing messages to topics, which are named resources
to categorize streaming messages. Consumers, located down-
stream, subscribe to these topics to receive and process the
published messages. To ensure seamless integration with
existing open-source message streaming services used by our
customers in production environments, the producer and con-
sumer message APIs are designed to be compatible with the
open-source de facto standard. This maximizes connectivity
with the ecosystem, allowing users to easily migrate their
applications to StreamLake with minimum costs. Figure 7
demonstrates the process of writing and reading messages
using the producer and consumer APIs. In this example, a
producer writes a new message “Hello World” as a key-value
pair to a topic named “topic_streamlake_test”. The
consumer then subscribes to this topic and processes pub-
lished messages.

1		/*Sample	producer	code*/									
2		Producer	producer	=	new	Producer();		
3		Message	msg	=	new	Message("Hello	world");
4		producer.send("topic_streamlake_test",	msg);		
5			/*Sample	consumer	code*/			
6		Consumer	consumer	=	new	Consumer();
7		consumer.subscribe("topic_streamlake_test");
8		While	(true)	{	
9			/*Poll	for	new	data*/	`

Fig. 7. Sample code of Producer and Consumer.

Stream workers work together with stream objects discussed
in Section IV-A to tackle stream processing and message
storage. The number of stream workers is determined by
the configurations and the physical resources allocated to
stream storage. Each stream worker is capable of handling
multiple streams and a single stream object client. When a
topic is created, streams are added to the stream workers in a
round-robin manner to ensure even distribution and workload
balancing across the cluster.

Each stream is mapped to a unique stream object in the
storage layer, which is a storage abstraction customized to
key-value message streaming. The stream object offers effi-
cient interfaces and implementations for writing and reading

streams from the storage pools. The persistence process is
detailed in Figure 4.

Message delivery is carried out by stream object clients,
which monitor the stream objects. These clients unwrap
messages from clients, encapsulate them in the stream object
data format, and redirect them to the corresponding stream
objects via RDMA. To guarantee message delivery, clients
actively monitor the health of the stream objects to which
they are connected and regularly exchange critical service
data with the dispatcher service. This synchronization process
includes reporting the health of the stream object connections
and refreshing the stream objects connected to by the client.
Stream dispatcher. The stream dispatcher is responsible for
managing the metadata and configurations of the messaging
service, and directing external/internal requests to the ap-
propriate resources for message dispatch. The relationships
among topics, streams, stream workers, and stream objects
are stored as key-value pairs in a fault-tolerant key-value store
within the stream dispatcher. When there is a status change
(e.g., a stream worker or topic is added or removed), the
metadata in the key-value store is updated immediately to re-
fresh the topology tracking, which aids the stream dispatcher
in directing requests for message stream dispatch. When there
is a producer or consumer connection request, the stream
dispatcher will route the request to the appropriate stream
worker based on the associated stream topic, establishing a
direct message exchange channel between the producer, the
stream worker, and the consumer.

1		{	"stream_num"	:	3,										
2				"quota"	:	106,		
3				"scm_cache"	:	true,
4				"convert_2_table"	:{		
5								"table_schema"	:	{	…	},
6								"table_path”	:	…,
7								"split_offset"	:	107,
8								"split_time"	:	36000,
9								"delete_msg"	:	false,
10								"enabled"	:	true	}									
11				"archive"	:	{		
12								"external_archive_url”	:	null,
13								"archive_size"	:	262144,		
14								"row_2_col"	:	true,
15								"enabled"	:	true	}}	

Fig. 8. Stream Storage Configuration Example..

The stream dispatcher also sets configurations for the
messaging service in the unit of the topic. An example is
shown in Figure 8.

• The stream_num configuration sets the parallelism of
a topic, which should be provided during topic declaration.
In the example, three streams are created for the topic and
they are evenly distributed among stream workers to process
messages in parallel.

• The quota configuration sets the maximum processing
rate for each stream. In the example, each stream can process
up to 106 messages per second.

• The scm_cache configuration enables the use of stor-
age class memory (SCM) caches.

• The convert_2_table configuration enables the
automatic conversion of stream object messages to table



object records, and it can also be converted back. When it is
set, a background process will apply the table_schema
to convert messages to table object records periodically and
save them in table_path, i.e., the table object directory.
The conversion is triggered by either an accumulation of 107

messages or the passing of 36000 seconds. The advantage of
this configuration will be illustrated in Section V-B.

• The archive configuration automates the archiving
of historical data to meet business and regulatory require-
ments. Data can be stored in the cost-effective StreamLake
archive storage pool or automatically exported to an external
storage system specified in the external_archive_url
configuration. The archive_size configuration denotes
the data volume in MB that triggers archiving, and the
row_2_col configuration determines whether the data is
archived in a columnar format.

Overall, the StreamLake stream storage provides guar-
anteed delivery, efficient transfer, and high elasticity for
enterprise use.
Delivery Guarantee: Our system ensures consistent message
delivery through several measures. (1) Data within a stream
object is strictly ordered, ensuring that messages are con-
sumed in the order in which they are received. (2) Message
writing is idempotent, which means that for network failure,
duplicate messages sent by the producer can be identified. (3)
Strong data consistency is achieved by eliminating unreliable
components like file systems and page caches, and storing
data in stream objects that can tolerate node, network, and
disk failures. (4) The system provides exactly-once semantics
through a transaction manager and the two-phase commit
protocol. This tracks participant actions and ensures that all
results in a transaction are visible or invisible at the same
time.
Efficient Transfer: Our system implements several mech-
anisms to efficiently transfer data. First, Stream workers
and stream objects are connected through a data bus with
RDMA, which reduces the switching overhead in the TCP/IP
protocol stack. Second, an I/O aggregation mechanism is
used to aggregate small I/O requests and increase throughput.
This function can be disabled for latency-sensitive scenarios.
Finally, a local cache is implemented at the stream object
client to speed up message consumption.
High Scalability: Our system provides high elasticity by
decoupling data storage and data serving to achieve high
scalability. The number of stream workers can be adjusted
without data migration, and the mapping between stream
workers and stream objects can be updated to reflect the
changes in a matter of seconds. This allows the message
streaming service to easily scale up or down to accommodate
changes in service demand.

B. Lakehouse Operations

StreamLake also provides support for concurrent read-
ing and writing of tabular data, similar to the architecture of
the lakehouse [7]–[9]. Besides directly inserting tabular data,

we can also get it from the conversion of streaming data.
In this section, we first describe the storage conversion from
stream messages to tabular records, and then the implemen-
tation of key lakehouse operations.
Stream-to-table conversion. This process is performed by
a background service and results in the conversion of
records from stream objects to table objects, allowing ef-
ficient downstream processing, which is triggered by the
convert_2_table configuration in Figure 8, which in-
cludes the table schema and the time for data freshness in
downstream processing. The table schema must be specified
in the topic declaration, as it determines the expectations
for field types and values across all messages. To effectively
leverage the storage, users can choose to keep messages in
crucial topics as stream objects to support real-time applica-
tions while converting most stream data to table objects. The
reverse conversion, from table records to stream messages,
is also supported for data playback. This conversion helps to
reduce the storage cost because we can just store one copy to
achieve both stream and batch processing. Also, this design
can reduce unnecessary data movement between storage and
compute clusters for data conversion.

For tabular data processing, our StreamLake services
implement lakehouse read/write operations using a table
object and high-performance caches to accelerate concurrent
data reads and writes. In the rest of this subsection, we will
introduce the implementation of key read/write operations in
detail.
CREATE TABLE: This operation begins by registering the
table information, such as the schema, path, database, and
table name, in the catalog. The /data and /metadata
directories are then created under the table path. Then
table configurations (schema, partition specification, target
file size, etc.) are written to the metadata directory for
persistence.
INSERT: This operation includes the persistence of data and
metadata, as well as caching of metadata, which is introduced
to combine small I/O accesses to the underlying storage
pools.
(a) Data persistence: Records are written directly to the
persistent layer as parquet files in the corresponding partition
path under the table root directory.
(b) Metadata caching: Metadata updates are mostly small
I/O operations. To avoid generating a significant number
of small files, we leverage a write cache to aggregate the
metadata updates, which is achieved through the following
steps: (b-1) Each added parquet file generates a commit
record containing file-level metadata and descriptions. All
new commit records are written to the write cache as key-
value pairs when a commit is made. (b-2) The latest snapshot
will be read from the persistence layer to the cache and its
commit data will be updated. (b-3) The snapshot descriptions
and version history in the catalog are also read from the per-
sistence layer and overwritten by adding the latest snapshot
description.
(c) Metadata persistence: Metadata in the write cache



is asynchronously flushed to the persistent storage pool
when the buffer is full. A metadata management pro-
cess (MetaFresher) transforms the commits and snap-
shots from key-value pairs to files and writes them to the
table/metadata directory.

Compute	Engine

Persistent	Storage	Pool

ҁD҂data

ҁb҂metadata

Write	Cache	
Catalog(version,	description)

Snapshots	(Si,Si+1,…,Sn)

Commits	(Ci,Ci+1,…,Cn)

MetaRefresher ҁc҂metadata
����		(commit,snapshot	file҂

ҁb-1҂

ҁb-2҂

ҁb-3҂

Fig. 9. Metadata Acceleration in Lakehouse Read/Write.

SELECT: The select operation first reads the catalog to
retrieve the table profile for collecting the list of snapshot
files needed for this query, such as the metadata version
and snapshot descriptions. Then the corresponding snapshots
and commit metadata are read from both the cache and
the persistent storage pool to generate the latest complete
snapshots and commit metadata. When all the record file
addresses are confirmed, data is read from the persistence
pool by read tasks.
DELETE: The delete operation begins with a select operation
to find files containing records that match the filtering con-
ditions. There are two cases to consider: If the filtering con-
ditions match all data in several partitions, only the metadata
will be updated, and a new commit version will be generated
by eliminating the information of deleted partitions. If the
filtering conditions only match some files, these files will be
read, and the data matching the filtering condition will be
deleted. Computation pushdowns are applied to process file
reading and writing to reduce data transmission to/from the
compute engines (we do not illustrate this in detail due to
the space limitation).
UPDATE: Similar to the delete operation, the update opera-
tion also uses a select statement to identify records that match
the specified conditions. Optimizations, such as pushdowns,
are applied to reduce data movements during the file read
and write processes.
Drop Table: There are two types of drop table operations:
(1) Drop table soft unregisters the table from the catalog
but retains the table’s metadata and data in the persistent
layer for potential future restoration. To restore a soft-deleted
table, a new table can be created and linked to the original
table path, effectively registering the deleted table back to the
catalog. (2) Drop table hard removes both the metadata (files
under /metadata) and data (files under /data) of the
table and clears the table from the catalog. Note that some of
the metadata may have been written to the acceleration cache
during the drop table hard operation and will be flushed to
the persistent layer asynchronously in the background. The

operation to delete the metadata will first clear it from the
cache, and then delete it from the disk.

VI. LAKEBRAIN OPTIMIZATION

Optimizing query processing over large-scale data is sig-
nificant in data warehouse and big data systems, as discussed
in [24], [36]–[41]. However, designing an optimizer like in
a database is challenging in StreamLake because of the
complicated compute-and-storage disaggregated architecture.
Moreover, there exist a large number of tunable and interde-
pendent variables, making it hard to optimize because of the
large search space [42].

To address this, we present LakeBrain, a novel data lake
storage optimizer that aims to optimize the data layout at
storage-side, so as to improve resource utilization and query
performance. Unlike query engine optimizers that focus on
join order and cardinality estimation [12], [13], [43], data
layout is key to improve both query performance and storage
resource utilization in a storage-disaggregated design. Here
we mainly focus on two cases, i.e., automatic compacting
small files and judiciously partitioning tables to improve
resource utilization and performance.

A. Automatic Compaction

In a streaming application, data ingestion and transactions
often result in numerous small files, leading to low query
performance on merge-on-read tables. A typical method is
to compact files statically using rule-based methods such as
setting a time window or a data size threshold [7], [8]. In
this part, LakeBrain designs the automatic compaction
to combine these small files into fewer and larger ones,
so as to improve the block utilization as well as query
performance. The block utilization at a certain state t is
defined by

∑n
i=1 fi

t

K×
∑n

i=1⌈
fi
t

K ⌉
, where nt denotes the number of

files at the state, f i
t denotes the size of each file and K is

the block size. As streaming data is continuously ingested,
we are likely to frequently determine whether to merge small
files in each partition.

However, considering a certain state in the system, we
cannot simply compact files when the block utilization is low
because both compaction and data ingestion require commits,
which may have conflicts, leading to compaction failure. On
top of that, compaction consumes a relatively large amount
of computing resources. Moreover, there exist a number of
parameters, e.g., file ingestion speed, target file size (the
maximum size of a file after compaction), number of small
files, number of concurrent queries, etc., that influence the
system. The action (i.e., whether to merge files) at each
state will change some parameters, but it does not purely
influence the current system situation, but also future states.
Hence, compaction aims to achieve long-term rewards, i.e.,
co-optimizing the query performance and storage utilization
at the end. Therefore, we propose a reinforcement learning
framework that can well capture the relationship between the
system parameters of each state and the long-term benefit



(considering the future system states) of conducting the
compaction or not for each table partition. To be specific,
we show the details in Figure 10.
Agent can be taken as our automatic compaction model
that receives the reward (resource utilization) and state
(system/partition parameters) from the environment (the
storage system). Then it updates the policy network (e.g.,
Deep Q-Network [44], [45]) to guide whether to conduct the
compaction operation for each partition so as to maximize
the long-term reward.
State denotes the current state of the storage system, de-
scribed by a number of features (parameters) as discussed
above. The features can be categorized into two sets i.e.,
one for the entire storage system and the other for individual
partitions. The former one includes global features like
target file size, ingestion speed, query patterns, global block
utilization, etc. The latter one includes partition features like
data access frequency, data access ordering, block utilization
of the partition. The two features will be concatenated as the
input of the policy network.
Reward reflects whether the compaction has a positive or
negative effect. Specifically, if the compaction succeeds,
the reward is computed by the improvement of the block
utilization of the partition. If it fails, the reward is the minus
of (1 - the expected improvement of the block utilization).
The negative reward indicates that if the compaction tends to
fail estimated by the policy network at current state, and the
expected block utilization improvement is small, we tend to
not conduct the compaction.
Action denotes whether we compact for each partition at each
state, which is the output of the policy network. If we decide
to compact, we will use the binpack strategy [7] to efficiently
merge small files to the target file size.

Overall, the training process is that given each state in
the system, when acting the compaction or files are keeping
ingested, the state will change and we can observe the reward
provided by the environment. We will store these experiences
(previous states, action and reward triples) and allow the
agent to reuse them to train the policy network of the agent.
This process repeats until the model converges. For inference,
as the streaming data comes continuously, we can trigger the
trained RL model every few moments to determine whether
to compact the files.

Agent

Reward:succeed	or	not

State:parameters

Environment

Action

Compact?

Fig. 10. Automatic Compaction using RL.

B. Predicate-aware Partitioning

With data increasing, we have to partition the data into
different storage blocks such that the query efficiency can be

much improved. In practice, users always select a single (or
multiple) column as the partition key, apply a hash function
to the values of the key, and then distribute the data to
different blocks based on the partition values. This method
is sub-optimal w.r.t. the latency because it may lead to
imbalanced data distribution. LakeBrain designs predicate-
aware method to partition the data in a fine-grained way such
that given a query, the number of tuples to be assessed is
minimized, and thus the efficiency is improved.

age<30

G=Male age<50

age>5030<age�50age�30
G≠Male

age�30
G=Male

Cardinality	Estimation

Query-tree Table

Skipped	
Partitions

#-Skipped	
Tuples	

Workload	W

update

Fig. 11. Predicate-aware Partitioning.

Specifically, our partition method is based on the query-
tree framework [28], and additionally leverage the machine
learning based cardinality estimation method to optimize the
query tree, so as to find a fine-grained data partition with high
query efficiency. As shown in Figure 11, given a table T and a
query workload W consisting of the pushdown predicates, we
will build a query tree, similar to a decision tree where each
inner node denotes a predicate in the form of (attribute, oper-
ator, literal), where operator includes {≤,≥, <,>,=, IN}.
Each leaf node refers to a partition such that when executing
W , we can skip as many tuples as possible. For example, the
leftmost partition contains tuples satisfying age < 30 and
G=Male. Given W and the partitions, we can compute how
many partitions that we can skip. But in order to compute the
number of skipped tuples, we have to know the cardinality of
each partition. We can either directly compute the cardinality,
or sample for estimation, which is time-consuming or not
accurate enough. Hence, we can use AI-driven cardinality
estimation methods [12], [13], [25], [26] to estimate the
cardinality accurately and efficiently via learning the data
distribution. In practice, we use the sum-product network [12]
as the estimator.

VII. EXPERIMENT

A. Experimental Settings

Our Experimental Scenario. We employ a real-world use
case simplified from the case in Section I. A mobile financial
company collaborates with China Mobile to collect and
analyze its app usage data. The company aims to understand
its usage patterns to prevent frauds and enhance its prod-
uct experience. China Mobile provides this analytic service
through an end-to-end big data processing pipeline, which
includes several jobs such as data collection, normalization,
labeling, and querying, as depicted in Figure 12. We compare



StreamLake framework with their current solution to build
a pipeline that can facilitate business analysis.
(a) Collection: The network carrier collects mobile app data
packets in data centers and transfers them to a centralized
storage pool.
(b) Normalization: In the storage pool, data packets are
unified into records with validated accuracy and quality,
while sensitive information is shielded for privacy protection.
(c) Labeling: Labels from knowledge bases are added, so as
to classify the records and identify useful insights.
(d) Query: Following normalization and labeling, records
are inserted into tables for query engine access. The app
company utilizes secure API calls for data queries. Figure 13
demonstrates an SQL query example, counting daily active
users (DAU) across provinces.

The network carrier establishes two data flows: one handles
batch processing of full data every two hours, while the other
continuously processes stream messages for time-sensitive
logs, such as new logins and payments. This setup enables
comprehensive analysis of both historical data and real-time
events for accurate decision-making.
Settings. This use case is evaluated in a cluster using different
sizes of input data packets and the results are compared with
open-source storage solution Hadoop Distributed File System
(HDFS) [6] and Kafka [3]. The reason of why we choose
the two storage systems is that in reality, China Mobile has
been using them for many years, which have shown stable
and good performance. Hence, it is reasonable to directly
compare with the systems that our customer (China Mobile)
is using. Also, in practice, many of our customers also use
HDFS and Kafka to cope with similar application scenarios.

To be specific, the cluster consists of 3 nodes, each with
24 2.30 GHz cores and 256 GB RAM. The cluster is
configured as a 3-node StreamLake when we measure it.
While running the open-source solution, it is configured to
host a 3-node HDFS storage and a 3-node Kafka cluster
simultaneously. Spark is employed as the compute engines
for data processing because of the extensive usage across
customer environments. The number of input data packets
varies: 10 million, 50 million, 100 million, 500 million, and
1 billion packets. Each packet has an average size of 1.2 KB,
resulting in corresponding data volumes of 12 GB, 60 GB,
120 GB, 600 GB, and 1.2 TB, respectively.

Overall, Figure 12 shows the data processing process.
Kafka and HDFS serve as independent stream storage and
batch storage respectively to pass data across collection,
normalization, labeling and query jobs. As a typical ETL
practice, a new copy of all data is written to HDFS and
Kafka after each job. In case failing accidentally, a job can
read its input data to reproduce the results.

In our solution, StreamLake serves as a unified stream
and batch processing storage. We replace Kafka and HDFS
with StreamLake, which handles the message streaming
and data storage. Only minimal changes are made to the
compute engines, so the business logic remains unchanged.
As StreamLake supports time travel, only updated rows are

written to the storage. When a job needs to re-run, it can use
time travel to retrieve its input data. During the query jobs,
for example, the three filters in the WHERE clause and the
COUNT aggregate in Figure 13 are pushed down to compute
in StreamLake, so as to accelerate the query.

B. Overall Comparison

Table 1 shows the results. The numbers of input data
packets are in the top row. The storage usage and processing
time for StreamLake (S), HDFS (H), Kafka (K) are in
the following rows. The “Ratio” represents that the ratio
between HDFS (Kafka) and StreamLake with respect to
the storage usage or time. Note that HK denotes the sum of
the storage usage in HDFS and Kafka.

The experiment demonstrates that StreamLake signif-
icantly improves the total storage cost and the batch pro-
cessing time. The storage cost in the HDFS and Kafka is 4
times as much as StreamLake. The reason is that in HDFS
and Kafka, full data is written into the storage when each
ETL job is finished, which is a common practice to support
downstream jobs restart after unexpected failures. As a result,
six copies of full data are written into the storage. While for
our StreamLake, we save 75% storage cost by saving one
copy of full data plus updates in each ETL job via the stream-
to-table conversion and lakehouse functionality.

The batch processing speed in StreamLake is better
than HDFS when the workload is 50 million records or
more. As the workload grows, StreamLake is 50% faster
than HDFS when the workloads are 500 million and 1
billion records because we use the LakeBrain optimizer
and metadata acceleration to improve the efficiency. On the
other hand, StreamLake may not be the best choice for
small workloads. When the workload is 10 million records,
StreamLake is 20% slower than HDFS as it performs extra
metadata management. The message stream processing speed
in StreamLake is competitive to Kafka. StreamLake
and Kafka process about 300 thousand messages per second
when the workload is 10 million records. Both systems scale
to process about 500 thousand messages per second when
the workloads are 100 million and more.

C. Evaluation of Message Streaming

To quantitively measure the message streaming service as
an independent stream storage, we conduct an experiment to
evaluate its throughput, latency, elasticity and volume. We
select OpenMessaging [46] as our benchmark because it
is widely used to compare messaging platforms. A cluster
with three nodes is used in this experiment for ease of
reproduction. To help better understand the impact of tiering
storage, two sets of hardware configurations are tested. In
the first set of hardware (Set-1), each node has 10 CPU
cores, 128 GB RAM and 800 GB NVMe SSD, 3 PB SAS
HDD and all the nodes are connected with 10 Gb ethernet. In
the second set of hardware (Set-2), all the configurations
are the same except that each node has additional 16 GB
persistent memory to serve as an extra cache. Messages are



Fig. 12. Data Analytic Pipelines for a Real-world Use Case.

#-Data Packet 10,000,000 50,000,000 100,000,000 500,000,000 1,000,000,000

Storage Space Usage (GB)
StreamLake 34 166 329 1,659 3,289
HDFS + Kafka 145 729 1451 6,901 13,816

Ratio (HK/S) 4.33 4.38 4.40 4.16 4.20

Stream Processing Speed (Messages/Second)
StreamLake 301,522 417,303 518,065 530,077 546,987

Kafka 302,611 413,613 527,826 531,021 539,893
Ratio (K/S) 1.00 0.99 1.02 1.00 0.99

Batch Processing Total Time (Second)
StreamLake 259 664 1173 4868 9646

HDFS 212 795 1548 7535 14771
Ratio (H/S) 0.82 1.19 1.32 1.55 1.53

TABLE 1
STREAMLAKE V.S. HDFS AND KAFKA .

1  Select COUNT(*) as DAU        
2  From TB_DPI_LOG_HOURS
3  Where  url = ‘http://streamlake_fin_app.com’
4       and  start_time >= 1656806400 --July 3rd, 2022
5       and  start_time  < 1656892800 --July 4th, 2022   
6  Group By province;

Fig. 13. Query Example of Computing DAU.

sent from producers to consumers in a fixed size of 1 KB.
The data volumes are 100 TB, 500 TB and 1 PB respectively.

Figure 14 shows the results in terms of latency, throughput,
scaling time, and space consumption. As shown in Fig-
ure 14(a), persistent memory reduces the latency as we ex-
pect, especially when the workload is 200k messages per sec-
ond or less. When it comes to the throughput (Figure 14(b)),
as the messages to process increase from 50000 per second to
1.5 million per second, the system throughput increases lin-
early. Set-1 and Set-2 achieve almost the same through-
puts, indicating that it does not improve the throughput to
add persistent memory as a cache. Figure 14(c) shows the
high elasticity of the stream storage. The service gracefully
scales from 1000 to 10000 partitions in less than 10 seconds.
The good scalability demonstrates a significant advantage of
the disaggregated storage architecture. Finally, Figure 14(d)
compares the space consumption different storage strategies
(Replication refers to saving data in its original format
using multiple copies, EC refers to using erasure coding to
store the data, EC+Col-store refers to first converting the
data to columnar format and then applying erasure coding).
The X-axis, e.g., Fault Tolerance(FT)=1 means that a
storage cluster with the redundancy strategies can tolerate one
node failure, and no data is lost. The Y-axis means the times
of its original data size using these redundancy strategies.
Without scarifying the reliability, StreamLake provides the
options (EC and EC+Col-store) to use erasure coding and
column-store which can save three to five times of storage

cost compared to Replication.

D. Metadata Acceleration in Lakehouse

We assess Lakehouse metadata acceleration by comparing
it with file-based catalog systems, focusing on how different
metadata structures affect metadata operations and query
execution. We execute 100 real queries, akin to those in
Fig.13, using Where clause conditions to utilize metadata
for data filtering. Two scenarios are examined.

We first use data of real production environment which
partitions the data in the unit of hours. i.e., files generated in
each hour are put into the same file. The number of files (the
X-axis in Figure 15(a)) we use in this experiment is generally
as follows: 489,000 files/960 partitions (40 hours), 865,000
files/1920 partitions (80 hours), 2,1204,000 files/3840 parti-
tions (160 hours), 3,947,000 files/7680 partitions (320 hours),
4,409,000 files/9600 partitions (400 hours), respectively. The
Y-axis denotes the metadata operation time. We can observe
that as the number of partitions increases, the latency of
the method without metadata acceleration increases linearly,
while our method with acceleration increases moderately.
When the partition number increases 10 ×, the difference
becomes significant. The reason is that, when we use key-
value cache to accelerate the metadata, the lookup cost is
constant instead of linear to the partition number.

Second, we apply different sizes of allocated memory on
the compute side to observe the relation between memory
size and query time. In Figure 15(b), the X-axis denotes the
allocated memory and the Y-axis denotes the query time. It is
observed that the query performs faster and more stable when
the metadata acceleration is applied. For example, when the
memory is 1GB, the method without acceleration runs out
of memory (OOM). Our solution is more efficient and stable
because the metadata acceleration partially complements the
allocated memory for the compute engine.



50k 200k 500k 1000k 1500k
Workload (message/s)

0

5

10

15

20

25

La
te

nc
y 

(m
s)

(a) Latency

Set-1
Set-2

50k 200k 500k 1000k 1500k
Workload (message/s)

0
2k
4k
6k
8k

10k
12k
14k

Th
ro

ug
hp

ut
 (M

B/
s)

(b) Throughput

Set-1
Set-2

2k 4k 6k 8k 10k
#-Stream Objects

0
1
2
3
4
5
6
7
8

Sc
al

in
g 

Ti
m

e 
(s

)

(c) Scaling Time

100TB
500TB
1PB

FT = 1 FT = 2
Factor of tolerance

0

1

2

3

4

Ti
m

es

(d) Space Consumption

Replication
EC
EC + Col-Store

Fig. 14. Evaluation of Message Streaming.

960 1920 3840 7680 9600
#-Partition

0

4

8

12

16

La
te

nc
y 

(s
)

(a) Metadata Operation Time

1GB 2GB 3GB 5GB
Size of Allocated Memory

0

10

20

30

40
La

te
nc

y 
(s

)

OOM

(b) Query Execution Time

No Metadata Acceleration Metadata Acceleration

Fig. 15. Evaluation of Metadata Acceleration

24GB 48GB 60GB 90GB0%

15%

30%

45%

Q
ue

ry
 Im

pr
ov

m
en

t

(a) Auto-Compaction 
 Query Improvment

Default-compaction
Auto-compaction

Q10 Q6 Q70.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

By
te

s 
Sc

an
ne

d 
(1

e1
0)

(b) Predicte-Aware Partitioning: 
 Query Bytes Scanned

Full Day Ours

Q10 Q6 Q70

2

4

6

8

10

12

R
un

 T
im

e 
(s

)

(c) Predicte-Aware Partitioning:
 Query Run Time

Full Day Ours

Fig. 16. LakeBrain Compaction and Partition Performance.

E. Evaluation of LakeBrain

Auto-Compaction: To precisely evaluate the effectiveness of
our automatic compaction strategy, a TPC-H based test bed is
set up to ingest data from the message streaming platform to
the data lake storage, during which a compaction strategy is
tested. We run the experiment with 24 GB to 90 GB data
and compare our Auto-compaction in StreamLake
with Default-compaction strategy, i.e., a static
strategy which simply compacts data files in a 30-second
interval. We follow the method in [47] to randomly generate
5,000 queries based on the schema of TPC-H, and multiple
rounds of there queries are executed in parallel to obtain
their end-to-end performance, serving as the train data. The
training time takes 3.5 hours. As shown in Figure 16(a), the
results depict how much improvement of query performance
that the compaction strategies can make, compared with the
baseline. We can observe that the auto-compaction strategy
outperforms the static one for all data volumes. As the data
volume increases, the advantage becomes more significant
because the number of blocks to be visited is reduced.

We evaluate auto-compaction block utilization by vary-
ing file ingestion speed to generate different file num-
bers. Auto-compaction consistently outperforms default-
compaction, achieving approximately 50% higher block uti-
lization on average during system operation. The system em-
ploys reinforcement learning to identify optimal compaction
opportunities, prioritizing scenarios with numerous small files
and low file ingestion speed and block utilization.

Predicate-Aware Partitioning: We test the partitioning
method on TPC-H with different scale factors. Initially, we
train a probabilistic model on 3% randomly sampled data
from the lineitem table in a dataset of scale factor 2,
requiring 1.5 hours for training. Subsequently, we optimize
the partitioning policy with our proposed method and eval-
uate it across scale factors of 2, 5, 10, and 100. To gauge
performance, we compare bytes skipped for the lineitem
table under different partitioning strategies: (1) No partition
(Full), (2) Partition by the day of l_shipdate (Day),
and (3) Our predicate-aware partitioning method (Ours).
Notably, our approach outperforms partitioning by the day of
l_shipdate, particularly evident in finer data skipping and
query runtime improvements, as depicted in Figure 16(b,c).

VIII. CONCLUSION

We develop StreamLake, combining stream and batch
data processing with high elasticity, reliability, scalability,
and efficiency through a disaggregated architecture. This
system incorporates lakehouse functionality to ensure ACID
compliance for tabular data and deploys LakeBrain for
query and resource optimization.

ACKNOWLEDGMENT

This paper is supported by the NSFC(62102215,
U23B2019,61925205, 62232009), CCF-Huawei Populus
Grove Fund (CCF-HuaweiDB202306), National Key R&D
Program of China (2023YFB4503600). Yuping Wang
is supported by the NSFC (U23A20297). Ye Yuan
is supported by the National Key R&D Program of
China(2022YFB2702100), the NSFC (61932004, 62225203,
U21A20516) and the DITDP (JCKY2021211B017). Guoren
Wang is supported by the NSFC (U2001211). StreamLake is
the result of the efforts of many people, supported by funds
of Huawei storage research and joint innovation between
Huawei and China Mobile. We thank Zhuo Chen, Zhiwei
Guo, Sha Dai, Hong Li, Ziqin Zhou, Qi Yuan, Changchen Li,
Xiaomin Xia, Chao Ma, Yang He, Shiqiu Zhao, Feng Wang,
Jiacheng Liu, Anwei Chen, Chunming Chen, Jianzhuang Ge,
Mao Ye, Shuncun Zhao, Jiangbo Lu, Yafei Li, Jingbin Cheng,
Zesheng Yang, Zhiwei Chen, Liming Xie, Xuesong Wang,
Hongliang Tang, Robert Foley, Peter Puhov, Hui Lei, Meng
Guo, Banghong Liu, Hao Pan, and Wei Zha for their contri-
butions. We are grateful to Haiyong Xu, Meng Yang, Jibin
Wang, Xin Pang, Sheng Chang, Lingxiang Sun, Fei Xiang,
Weijie Wang, and Weifeng Fang for their strategic vision and
supports. Jeff Naughton and Remzi Arpaci-Dusseau reviewed
the paper.



REFERENCES

[1] “Cloud object storage - amazon s3 - amazon web services.”
https://aws.amazon.com/s3, Amazon S3.

[2] https://e.huawei.com/en/products/storage, Huawei Data Storage Sys-
tems.

[3] https://kafka. apache.org, Apache Kafka.
[4] “Pravega - a reliable stream storage system.” https://cncf.pravega.io/,

Pravega.
[5] https://pulsar.apache.org/, Pulsa.
[6] “Filesystem compatibility with apache

hadoop. apache software foundation,”
https://cwiki.apache.org/confluence/display/HADOOP2/HCFS, ASF
Infrabot. 2019.

[7] https: //iceberg.apache.org, Apache Iceberg.
[8] https://hudi.apache.org, Apache Hudi.
[9] M. Armbrust, T. Das, S. Paranjpye, R. Xin, S. Zhu, A. Ghodsi,

B. Yavuz, M. Murthy, J. Torres, L. Sun, P. A. Boncz, M. Mokhtar,
H. V. Hovell, A. Ionescu, A. Luszczak, M. Switakowski, T. Ueshin,
X. Li, M. Szafranski, P. Senster, and M. Zaharia, “Delta lake:
High-performance ACID table storage over cloud object stores,”
Proc. VLDB Endow., vol. 13, no. 12, pp. 3411–3424, 2020. [Online].
Available: http://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf

[10] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine
learning,” in Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017. ACM, 2017, pp. 1009–1024. [Online].
Available: https://doi.org/10.1145/3035918.3064029

[11] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing,
Y. Wang, T. Cheng, L. Liu, M. Ran, and Z. Li, “An end-to-end
automatic cloud database tuning system using deep reinforcement
learning,” in Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019. ACM, 2019, pp. 415–432.
[Online]. Available: https://doi.org/10.1145/3299869.3300085

[12] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting,
and C. Binnig, “Deepdb: Learn from data, not from queries!”
VLDB, vol. 13, no. 7, pp. 992–1005, 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf

[13] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, P. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised
cardinality estimation,” VLDB, vol. 13, no. 3, pp. 279–292, 2019.
[Online]. Available: http://www.vldb.org/pvldb/vol13/p279-yang.pdf

[14] https://www.dell.com/en-uk/dt/big-data/data-lake/index.htm, Dell
EMC.

[15] “Data management solutions for the cloud — netapp,”
https://www.netapp.com/data-storage, NetApp Data Storage.

[16] https://www.netapp.com/media/19868-wp-7217.pdf, NetApp.
[17] https://blog.netapp.com/optimize-data-management-and-analytics-

with-netapp-solutions-for-hadoop, NetApp Hadoop.
[18] https://www.netapp.com/artificial-intelligence/big-data-analytics/, Ne-

tApp Bigdata.
[19] https://aws.amazon.com/big-data/datalakes-and-analytics/datalakes,

AWS.
[20] https://azure.microsoft.com/en-us/solutions/data-lake, Azure.
[21] https://cloud.google.com/solutions/data-lake , Google Cloud.
[22] https://www.alibabacloud.com/zh/product/data-lake-analytics , Alibaba

Cloud.
[23] https: //parquet.apache.org, Apache Parquet.
[24] X. Zhou, C. Chai, G. Li, and J. Sun, “Database meets artificial

intelligence: A survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 3,
pp. 1096–1116, 2022.

[25] J. Wang, C. Chai, J. Liu, and G. Li, “FACE: A normalizing flow based
cardinality estimator,” Proc. VLDB Endow., vol. 15, no. 1, pp. 72–84,
2021. [Online]. Available: http://www.vldb.org/pvldb/vol15/p72-li.pdf

[26] J. Sun, G. Li, and N. Tang, “Learned cardinality estimation for
similarity queries,” in SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, G. Li,
Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp. 1745–1757.
[Online]. Available: https://doi.org/10.1145/3448016.3452790

[27] D. V. Aken, D. Yang, S. Brillard, A. Fiorino, B. Zhang, C. Billian,
and A. Pavlo, “An inquiry into machine learning-based automatic
configuration tuning services on real-world database management

systems,” Proc. VLDB Endow., vol. 14, no. 7, pp. 1241–1253, 2021.
[Online]. Available: http://www.vldb.org/pvldb/vol14/p1241-aken.pdf

[28] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F.
Minhas, P. Larson, D. Kossmann, and R. Acharya, “Qd-tree:
Learning data layouts for big data analytics,” in Proceedings
of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020. ACM, 2020, pp. 193–208. [Online]. Available:
https://doi.org/10.1145/3318464.3389770

[29] X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning
with tree-lstm for join order selection,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020. IEEE, 2020, pp. 1297–1308. [Online]. Available:
https://doi.org/10.1109/ICDE48307.2020.00116

[30] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu,
X. Zhang, and H. Yuan, “CDB: optimizing queries with crowd-based
selections and joins,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu, Eds. ACM, 2017, pp. 1463–
1478. [Online]. Available: https://doi.org/10.1145/3035918.3064036

[31] X. Yu, C. Chai, G. Li, and J. Liu, “Cost-based or learning-based?
A hybrid query optimizer for query plan selection,” Proc. VLDB
Endow., vol. 15, no. 13, pp. 3924–3936, 2022. [Online]. Available:
https://www.vldb.org/pvldb/vol15/p3924-li.pdf

[32] J. Wang, C. Chai, J. Liu, and G. Li, “Cardinality estimation using
normalizing flow,” VLDB J., vol. 33, no. 2, pp. 323–348, 2024.
[Online]. Available: https://doi.org/10.1007/s00778-023-00808-x

[33] H. Dong, C. Chai, Y. Luo, J. Liu, J. Feng, and C. Zhan,
“Rw-tree: A learned workload-aware framework for r-tree
construction,” in 38th IEEE International Conference on Data
Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-
12, 2022. IEEE, 2022, pp. 2073–2085. [Online]. Available:
https://doi.org/10.1109/ICDE53745.2022.00201

[34] R. Zhu, Z. Wu, C. Chai, A. Pfadler, B. Ding, G. Li, and J. Zhou,
“Learned query optimizer: At the forefront of ai-driven databases,”
in Proceedings of the 25th International Conference on Extending
Database Technology, EDBT 2022, Edinburgh, UK, March 29 - April
1, 2022, J. Stoyanovich, J. Teubner, P. Guagliardo, M. Nikolic,
A. Pieris, J. Mühlig, F. Özcan, S. Schelter, H. V. Jagadish, and
M. Zhang, Eds. OpenProceedings.org, 2022, pp. 1–4. [Online].
Available: https://doi.org/10.48786/edbt.2022.56

[35] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin, “Fine-grained
partitioning for aggressive data skipping,” in International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014. ACM, 2014, pp. 1115–1126. [Online]. Available:
https://doi.org/10.1145/2588555.2610515

[36] https://docs.oracle.com, Oracle Documentation.
[37] https://docs.teradata.com/, Teradata Documentation.
[38] M. Eltabakh, A. Subramanian, A. Al-Omari, M. Al-Kateb, S. Nair,

M. Hasan, W. Cabrera, C. Zhang, A. Kishore, and S. Prasad, “Not
black-box anymore! enabling analytics-aware optimizations in teradata
vantage,” Proceedings of the VLDB Endowment, vol. 14, no. 12, pp.
2959–2971, 2021.

[39] A. Pandit, D. Kondo, D. Simmen, A. Norwood, and T. Bai, “Accel-
erating big data analytics with collaborative planning in teradata aster
6,” in 2015 IEEE 31st International Conference on Data Engineering.
IEEE, 2015, pp. 1304–1315.

[40] X. Tang, R. M. Wehrmeister, J. Shau, A. Chakraborty, D. Alex, A. A.
Omari, F. Atnafu, J. Davis, L. Deng, D. Jaiswal, C. Keswani, Y. Lu,
C. Ren, T. Reyes, K. Siddiqui, D. E. Simmen, D. Vidhani, L. Wang,
S. Yang, and D. Yu, “SQL-SA for big data discovery polymorphic and
parallelizable SQL user-defined scalar and aggregate infrastructure
in teradata aster 6.20,” in 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016.
IEEE Computer Society, 2016, pp. 1182–1193. [Online]. Available:
https://doi.org/10.1109/ICDE.2016.7498323

[41] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, 2015, pp.
1383–1394.



[42] A. Jindal, S. Qiao, R. Sen, and H. Patel, “Microlearner: A fine-grained
learning optimizer for big data workloads at microsoft,” in 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE,
2021, pp. 2423–2434.

[43] X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning
with tree-lstm for join order selection,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020. IEEE, 2020, pp. 1297–1308. [Online]. Available:
https://doi.org/10.1109/ICDE48307.2020.00116

[44] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nat., vol. 518, no. 7540, pp. 529–533,
2015. [Online]. Available: https://doi.org/10.1038/nature14236

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[46] https://github.com/openmessaging/benchmark, Openmessaging.
[47] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,

J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised
cardinality estimation,” Proc. VLDB Endow., vol. 13, no. 3, pp. 279–
292, 2019. [Online]. Available: http://www.vldb.org/pvldb/vol13/p279-
yang.pdf


