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Automatic Index Tuning: A Survey
Yang Wu, Xuanhe Zhou, Yong Zhang, Guoliang Li

Abstract—Index tuning plays a crucial role in facilitating the
efficiency of data retrieval within database systems, which adjusts
index settings to optimize the database performance. Recently,
with the growth of data volumes, the complexity of workloads,
and the diversification of database applications, various Auto-
matic Index Tuning (AIT) methods have been proposed to address
these challenges. In this paper, we provide a comprehensive
survey on Automatic Index Tuning. First, we overview the
AIT techniques from multiple aspects, including (i) problem
definition, (ii) workflow, (iii) framework, (iv) index types, (v) index
interaction, (vi) changing factors, (vii) automation level, and show
the development history. Second, we summarize techniques in
the main modules of AIT, including preprocessing, index benefit
estimation, and index selection. Preprocessing involves workload
compression, index candidate generation, feature representation
of workloads and databases, and workload reduction. Index
benefit estimation approaches are categorized into empirical
methods and machine learning based methods. Index selection
involves algorithms of offline AIT and online AIT. Moreover,
we summarize the commonly-used datasets in AIT and discuss
the applications of index tuning in commercial and opensource
database products. Finally, we outline potential future research
directions. Our survey aims to enhance both general knowledge
and in-depth insights into AIT, and inspire researchers to address
the ongoing challenges.

Index Terms—Automatic Index Tuning, Machine Learning, In-
dex Selection, Index Benefit Estimation, Reinforcement Learning

I. INTRODUCTION

INDEXES serve as essential data structures in database
systems, which help to accelerate data retrieval by reducing

disk I/O operations, at the cost of extra maintenance work
and storage space. Traditionally, the task of designing and
adjusting indexes has been predominantly carried out by
human database administrators (DBAs), relying on empirical
theories and their cumulative experience. However, this man-
ual approach is labor-intensive and time-consuming. With the
exponential data growth, increasing workload complexities,
and widespread adoption of cloud databases, the challenges
of manual tuning have become even more significant. Con-
sequently, Automatic Index Tuning (AIT) methods have been
proposed to alleviate the burden of DBAs [29], [131], [150].

One key advantage of AIT lies in its ability to effec-
tively handle large volumes of data and complex workloads.
These methods employ various techniques to analyze database
statistics (e.g., data distributions, query selectivities, scan

Yang Wu, Xuanhe Zhou, and Guoliang Li are with the Department of
Computer Science, Yong Zhang is with Beijing National Research Center
for Information Science and Technology, all at Tsinghua University, Bei-
jing, China. E-mail: {wu-y22, zhouxuan19}@mails.tsinghua.edu.cn, {zhangy-
ong05, liguoliang}@tsinghua.edu.cn
Yang Wu and Xuanhe Zhou are co-first authors and make equal contributions.
Corresponding author: Yong Zhang and Guoliang Li.

Fig. 1: Challenges of Designing an Automatic Index Advisor

costs) [119], [120] and workload patterns. With this compre-
hensive analysis, they can make informed decisions regarding
the creation or update of indexes to optimize workload execu-
tion. Furthermore, in online index tuning, some AIT methods
can adapt to changing workloads under limited time thresh-
old [23], [150]. By doing so, AIT minimizes maintenance
overhead and ensures the effectiveness of selected indexes.

However, it is important to note that there is no universal
solution that guarantees optimal results in all cases [71].
AIT advisors may not always recommend the desired indexes
due to various challenges, e.g. they may derive sub-optimal
index configurations due to inaccurate index benefit estimation
results. Besides, the choice of different AIT methods depends
on the specific scenarios and even the database systems (e.g.,
some databases do not support hypothetical indexes).

This survey aims to provide a comprehensive overview of
AIT techniques, addressing their strengths and suitability for
various applications. It is designed for a wide variety of read-
ers. (i) Researchers on AIT can gain insights into the internal
mechanisms of index advising tools, and grasp the knowledge
of how to design an effective index advisor. (ii) Database
administrators (DBA) can learn about various automatic index
tuning tools, know how to fix performance problem, and work
together with tuning tools. (iii) Cloud service providers can
select an automatic index advising algorithm that best fits their
business scenario. (iv) Common database users can have a
grasp of the features of the automatic index tuning tools for
commercial or open-source database products, and choose the
database platform they are going to use.

Through extensive literature review, we summarize three
main challenges for designing an index advisor (Figure 1).

A. Challenges of Designing an Automatic Index Advisor

The first challenge is how to judiciously prepare the index
tuning features and candidate indexes. First, for workloads
with an extensive number of queries, it is important but tricky
to compress the workload, i.e. select a subset of queries that



Fig. 2: The Workflow of Automatic Index Tuning

are (i) frequently executed and (ii) most likely to be improved
through the implementation of selected indexes. Second, apart
from input features, it is common to generate potential index
candidates that form the initial index selection space. It is
also a challenge to conduct index candidate generation with
the goal of smaller quantity and better quality. Besides, with
the selected queries, there are numerous features of workloads
and databases, which need to be selected and elaborately
represented to facilitate the index selection procedure. We will
discuss relevant techniques in Section III.

The second challenge is how to accurately estimate the
benefit of different index configurations. First, the precision
of benefit estimates is of paramount importance for the final
effectiveness of the selected indexes. Besides, the efficiency of
benefit estimation also significantly impacts the overall index
tuning overhead (e.g., taking over 75% of the total index
tuning time [139]). However, achieving precise and efficient
index benefit estimates is challenging due to factors like (i)
the interaction between indexes [114], (ii) the multitude of
candidate combinations, and (iii) different data distributions.
We summarize relevant methods in Section IV.

The third challenge is how to effectively and efficiently select
index configurations from the large search space. Taking a ta-
ble with 10 columns as an example, there are 10 single-column
candidate indexes, 90 double-column candidate indexes, 30240
five-column candidate indexes, which lead to tremendous
search space. The hardness and complexity of Offline Index
Tuning (NP-hard combinatorial optimization problems [27],
[36], [100]) have been analyzed in existing literature, e.g.
by establishing connections with minimum cover problem and
k-densest subgraph problem. Naturally, the difficulties lie in
exploring diverse combinations of indexes to pinpoint the most
effective index configurations that facilitate query execution.
Performance and efficiency of the selection algorithm need to
be balanced, especially in online settings. We will introduce
offline index selection algorithms in Section V and address
special concerns for online index tuning in Section VI.

Although there exists summarizing work on index tuning,

they have limitations. The survey by Siddiqui et al. [121]
only focuses on machine learning-based index advising. The
experimental paper by Kossmann et al. [71] only focuses on
heuristic algorithms. The survey on database index tuning and
defragmentation [130], however, is short in space and lacks
extensive review. Our survey makes a comprehensive analysis
of both offline and online, both heuristic and machine learning-
based index selection algorithms. We present a more structured
survey, introducing the background, providing the problem for-
mulation, summarizing the framework and workflow, studying
the transferability of automatic index tuning, comparing exist-
ing index advisors in detail, and finally presenting potential
future directions for index tuning research.

B. Contributions

This survey provides a comprehensive review of existing AIT
research and real-world projects. First, we overview the AIT
techniques from multiple aspects, including (i) problem defini-
tion, (ii) AIT workflow, (iii) AIT framework, (iv) index types
in AIT, (v) index interaction in AIT, (vi) changing factors in
AIT, (vii) automation level of AIT, drawing a figure illustrating
the development history of AIT (Section II). Next, we explain
each module in the framework, including preprocessing (Sec-
tion III), index benefit estimation (Section IV), offline index
tuning (Section V), online index tuning (Section VI), and real-
world deployment (Section VII). Finally, we present potential
future directions of AIT research (Section VIII).

II. INDEX TUNING OVERVIEW

In this section, we first formalize the definition of automatic
index tuning. Next, we outline the workflow and framework
of automatic index tuning. Furthermore, we discuss some im-
portant issues that are commonly analyzed in relevant works,
such as the index types, index interactions, changing factors,
and automation levels.
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A. Definition of Automatic Index Tuning

Automatic Index Tuning (AIT) refers to the iterative process
of appropriately selecting, creating, updating and dropping in-
dexes in order to optimize the database performance. Database
performance refers to the overall efficiency and responsiveness
of a database system, affected by various factors, including
index design, query optimization, hardware resources, and
knob configurations. It is typically measured in terms of
workload execution speed and storage occupation.

Depending on the workload characters – whether they are
static or dynamically changing, AIT falls into two categories:
offline index tuning and online index tuning1. Definition 1 is
the definition of Offline Index Tuning, where the schema, data,
and workload are assumed to be known in advance and remain
unchanged. We give the definition of Online Index Tuning in
Definition 2.

Definition 1 (Offline Index Tuning): Let D denote a database
schema with Nt tables together with the initial data stored, W
denote the workload of queries to be executed, C denote Nc

constraints (such as storage budget Smax
2, selectable index

types Ts, maximum index width Wmax
3, and the maximum

number of indexes that can be built Nmax.), P denote the set
of candidate indexes on the table columns, the goal is to find a
subset of P under constraints C, such that the execution cost
of workload W is minimized.

Definition 2 (Online Index Tuning): Let D denote a database
schema with Nt tables together with the initial data stored4,
Ws = {w1, w2, . . . , wT } denote a sequence of T workloads, C
denote Nc constraints (such as storage budget Smax, selection
algorithm running time limit Tmax, selectable index types Ts,
maximum index width Wmax, and maximum index number
Nmax, etc.), the goal is that at every timepoint t(1 ≤ t ≤ T ),
given current index configuration Ct, the new index config-
uration Ct+1 should be recommended incrementally for the
workload Wt+1 of next step within time limit Tmax, and Ct+1

should not exceed Wmax or Nmax.
Example: Assume there are 2 queries: Q1 and Q2.

Q1: select c_custkey, c_name from customer where
c_custkey < 10;

Q2: select c_custkey, c_nationkey from customer wher
c_custkey <20;

As for offline tuning, suppose its workload W1 only contains
Q1 and the memory budget is 500MB. Then the offline index
selection algorithm can enumerate different candidate index
combinations from scratch via branch-and-cut, heuristic, DQN
etc., and decide index configuration as (c_custkey, c_name)
using 488MB with the highest estimated workload cost reduc-
tion.

For online index tuning, given historical workload W1

(with Q1) and an incoming workload W2 (with Q1

1In this paper, index selection refers to selecting index type and columns
as well as how and when to create them. Index tuning includes preprocessing,
index selection, and index benefit estimation.

2Some researchers make storage budget one of the objective functions
[72], [135]. They try to minimize workload execution cost and index storage
occupation at the same time.

3Index width refers to the number of columns in a composite index.
4Only initial data distribution is defined because later data distributions can

be determined by the queries executed.

and Q2), the online index selection algorithm can incre-
mentally search the candidate index space (e.g. rely on
MAB, MCTS or some heuristic rules), and choose to (i)
add a new index (c_custkey, c_nationkey), or (ii) re-
move the index (c_custkey, c_name) and add a index
(c_custkey, c_name, c_nationkey) within 10 seconds.

B. Workflow of Automatic Index Tuning

As shown in Figure 2, the general workflow of AIT consists
of three parts:

1) Preprocessing: Analyze query workloads in database
logs or predicted future queries provided by DBAs,
analyze query frequencies, identify the most resource-
intensive and frequently accessed tables and queries, and
extract workload features after workload compression.
Furthermore, generate candidate indexes as the initial
search space of the following index selection algorithm.

2) Index Benefit Estimation: During the index selection
process, the benefits for workload execution over the cre-
ated indexes need to be estimated by the query optimizer
or machine learning models, so that the Index Selection
module can be guided to select the most beneficial index
configurations.

3) Index Selection: Determine (i) which table and columns
require indexing, (ii) index types (e.g., B-tree, hash,
GiST, GIN, learned index), and (iii) the column order
in composite indexes, as well as (iv) when and how to
create or drop the index in online index tuning.

C. Framework of Automatic Index Tuning

Figure 3 summarizes the techniques in index tuning, involving
preprocessing, index benefit estimation, index selection, and
deployment into databases.

1) Preprocessing: When the workload comprises a large
number of queries, compressing the workload by selecting
representative queries is essential and it should be ensured that
index tuning on the selected queries resembles the tuning on
the original workload. A comprehensive representation of the
target workloads is required to facilitate optimal index con-
figuration search. We will introduce workload compression,
feature representation techniques, and candidate generation
rules in Section III.

2) Index Benefit Estimation: During the search for optimal
indexes, it is essential to quantify the benefits of building
indexes at each step. The benefit of a set of indexes is typically
measured by comparing the reduction in workload execution
cost with the original cost before the indexes were built. Apart
from physical creation of indexes and actual execution of
workload, there are two common ways for cost estimation:
empirical formulas and machine learning models. We will
introduce them in detail in Section IV.

3) Offline Index Selection Algorithms: Offline index selec-
tion algorithms can be broadly categorized into the following
two classes:
• Exact algorithms: These algorithms guarantee finding the

exact optimal solutions. However, they are not scalable and
may not be practical for large datasets.
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Fig. 3: The Framework of Automatic Index Tuning

• Approximate algorithms: These algorithms are designed
to find near-optimal solutions more efficiently.

We will introduce and compare different offline index
selection algorithms in Section V.

4) Online Index Selection Algorithms: In online scenarios,
the index tuner should detect the workload change timely
and promptly re-recommend indexes, create new indexes,
and delete obsolete indexes, in adaptation to workload shifts.
Currently, there are heuristic approaches and machine learning
approaches (mainly Reinforcement Learning) for online index
selection. We will introduce online index selection methods in
Section VI.

D. Index Types in Automatic Index Tuning

In current research on index tuning, most index advisors
recommend B-tree indexes by default. Additionally, there have
been notable advancements in recommending different index
types based on specific requirements and database character-
istics.

MISA [12] recommends spatial, text, and hash indexes for
MongoDB. MANTIS [118] also provides recommendations
for various index types, including B-tree indexes, block range
indexes, hash indexes, and spatial indexes (specifically for
Postgres). Block range index is helpful in range queries.
Hash index improves the performance of hash joins and point
queries. Spatial index helps to quickly retrieve spatial data
based on its location.

ALMSS [152] goes even further by considering learning-
based index types. It dynamically evaluates the performance

Fig. 4: Level Pyramid of Changing Factors in AIT

of learning-based indexes and, if the error exceeds a certain
threshold, it reverts to using a traditional index type (B-tree or
hash) for the respective leaf node. A random forest classifier
and different regression models are utilized to compute the
error.

By incorporating various index types into recommendations,
index tuning can provide more tailored and effective index
configurations for different database scenarios.

E. Index Interaction in Automatic Index Tuning

Index interaction refers to the influences of one group of
indexes on the benefits of another group. Some researchers
assume that index interaction has little impact on index selec-
tion results and ignore the mutual influence between indexes
in their studies [25], [34], [40], [53], [55]. These researchers
determine the impact of each index on queries independently
and then aggregate them to obtain the net impact.

Nevertheless, it has been observed that the benefit of com-
bined use of multiple indexes (index intersection) often differs
from the mere sum of the benefits obtained when using the
indexes separately. As a result, the index benefit estimation
models need to take mutual influence between indexes into
account and re-evaluate different index configurations as a
whole [76]. Benefit estimation techniques considering index
interaction will be explored in Section IV.

F. Changing Factors in Automatic Index Tuning

In AIT, workload, data, schema [134], database system, operat-
ing system, and even hardware [63], [145] may change. These
changing factors affect index advisors by affecting benefit
estimation model. Wang et al. [153] points out that an open
problem is to enhance the index advisor’s generalization across
various database systems, considering differences in schema,
query optimization strategies, and data distributions. Sun and
Li [123] also extend their models to handle (i)tuple update,
(ii) column update, (iii) table update.

To make a clearer clarification of the transferability of index
tuning, which is vital to achieve more efficiency and better
generalizability, we define six levels for AIT on the basis of
changing factors, such as changing workloads [112], [117],
[150], data [92], schema [123], [134], database system [121],
and even hardware [63]. as shown in Figure 4.
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1) Level 0: Static Analytical Workload: This level corre-
sponds to offline index tuning, which refers to index tuning
for a static workload that is known in advance. It constitutes
the majority of current research on index tuning, as introduced
in Section V. For well-defined and relatively stable database
application scenarios, offline index tuning algorithms can be
employed before deploying the database. The advantage of
offline algorithms lies in their ability to leverage a large
amount of historical query data and sufficient time to train
the model, resulting in high-quality index recommendations.

2) Level 1: Dynamic Analytical Workload: This level and
those above belong to online index tuning. In adaptation to
dynamic analytical workloads, online index tuning is more
complex than offline index tuning, as it requires continuous
adjustments and needs to meet real-world requirements, such
as stricter time constraints, as explained in Section VI.

3) Level 2: Data Update: Some AIT methods focus exclu-
sively on analytical workloads, where the goal is to optimize
the retrieval of data without considering the impact of data
modifications [105], [106], while other researchers take data
update operations into considerations [69], [92], [97], [150],
which necessitates addressing the index maintenance cost.
As data evolves, indexes may become less effective, and the
overhead of keeping them up-to-date can be significant. This
includes the cost of index creation, deletion, and maintenance
during data updates.

4) Level 3: Schema Update: We define schema update as
the change of table definition such as table creation, column
appending, and removing. It demands careful design to handle
schema changes, which might bring about more candidate in-
dexes and different feature representations. Existing approach
to column name encoding is typically one-hot, thus not directly
transferable to new database schemas. However, column can
be encoded in a transferable way for cost estimation [56]5. Sun
and Li [123] also considered column update and table update
in their cost estimation model. Learning-based algorithms need
to be schema-agnostic, trained on several schemas, and capable
of recommending indexes for a new schema.

5) Level 4: Change Database System: Most index advisors
are designed for relational databases [33], [131]. As the
popularity and usage of NoSQL databases grow, there has been
an increasing focus on developing index tuning approaches
for non-relational database systems, such as MISA for Mon-
goDB [12], DRLISA for NoSQL database [143], and holistic
indexing for main-memory column stores [99]. Recommend-
ing indexes for different database types enables better perfor-
mance optimization in diverse data management environments.
Moreover, there have been notable developments in index
advisors specifically designed for cluster databases [37], [52],
[104]–[106], [127]. The change of database system requires
cost estimation model and index advisor to achieve cross-
database compatibility, e.g. pretrained models should transfer
across different database systems [93].

6) Level 5: Change Machine: Yu et al. [145] observed that
the hardware can influence plan node of different types. Wu et
al. [138] make modifications to query optimizer’s cost model

5https://github.com/DataManagementLab/zero-shot-cost-estimation

to predict runtime on different hardwares. Data Calculator [63]
and Wehrstein et al. [134] also takes hardware (CPU, memory,
caches) into account. By utilizing these hardware-transferable
cost estimation techniques, or to be hardware-transferable
itself, a universal cross-platform automatic index tuner will
be able to adapt to the heterogeneity of features varying
across databases, OS, and hardware [121], achieving zero-
shot or few-shot learning ability and guaranteeing competitive
performance.

G. Automation Level of Automatic Index Tuning

Based on the level of human involvement, index tuning can
be classified into semi-automatic tuning and fully automatic
tuning from the aspect of automation level.

• Semi-automatic tuning: Semi-automatic methods empha-
size the interaction between humans and tools. These
methods involve the use of algorithms to recommend
indexes, but DBAs can stop the algorithm when they
are satisfied with the intermediate results [40] and they
will confirm the indexes recommended by algorithms.
Implemented in Kaizen [66] system, WFIT [113] com-
bines the best of DBAs and automatic tools, providing
indirect expert knowledge to the recommendation tool
and provides feedback on the recommended results by
allowing for iterative adjustments of indexes.

• Fully automatic tuning: Fully automatic methods aim
to make index selection tools self-driving without the
need for human intervention. These methods employ
algorithms, such as machine learning or optimization
techniques, to analyze workloads and recommend suitable
indexes for various queries and data distributions.

In the following sections, we separately introduce the de-
tailed techniques in different AIT modules (Figure 5) and
discuss their advantages and disadvantages.

III. PREPROCESSING

In order to optimize index configurations for query execution,
it is crucial to handle the huge search space by compress-
ing a large workload [28], [120] and generating candidate
indexes [77], both of which work ultimately to reduce the
number of required index benefit estimation calls. Feature
representation of queries and databases [32], [43], [72], [117],
[150] is also of significance to facilitate other preprocessing
steps as well as index selection and index benefit estimation.
These approaches enable search algorithms to prioritize and
focus on frequently executed and significant queries, leading
to improved index recommendations. Additionally, Brucato
et al. [20] proposed workload reduction recently to reduce
the complexity of what-if calls, which is a research direction
orthogonal to other preprocessing techniques.

A. Workload Compression

When dealing with a large number of queries, workload com-
pression (a.k.a. workload summarization) is often required,
because it is hard to take all queries into consideration. This
involves extracting key queries, focusing only on dominating
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Fig. 5: Development History of Automatic Index Tuning

queries, and merging similar queries into templates. Suitable
indexes can then be recommended for these critical queries.
The objective of workload compression is to ensure that the
index recommendations for the compressed workload closely
align with those for the uncompressed workload [120].

We can categorize workload compression methods into
indexing-agnostic and index-aware approaches, as Siddiqui et
al. [120] do.

1) Indexing-Agnostic Methods: These methods do not take
indexes into special consideration when compressing work-
loads. They often involve uniform sampling and extraction of
query templates from a large number of queries. A template
represents a group of structurally similar queries. Chaudhuri et
al. proposed GSUM [32] to compress workloads, maximizing
the coverage of features (e.g., columns) and representativity
of the entire workload. Ma et al. [83] and Chaudhuri et
al. [28] reduced the number of queries using query clustering
algorithms. Deep et al. [43] employed a greedy algorithm
to select the most representative subset of queries from the
entire workload. Zhou et al. [150] mapped queries to query
templates and maintained a certain number of SQL templates
using an LRU strategy to identify candidate indexes. While
indexing-agnostic workload compression methods can iden-
tify frequently occurring queries in the workload, they may
overlook queries that have more significant implications for
index creation.

2) Index-Aware Methods: One example of index-aware
workload compression approaches is ISUM [120]. It decom-
poses the benefit of an index recommended for a query
into utility (benefit for the query) and influence for other
queries. The influence of qi on qj is the multiplication of
the similarity between the two queries and the utility of qj ,
representing the reduction in the utility of qj when qi is
selected for index tuning. The similarity between queries is
determined based on their indexable columns, each of which
is assigned an importance value and a weight. To avoid pair-
wise similarity computation, a summary feature is computed
for a workload and each query’s similarity to the workload is

computed against the summary feature. The algorithm selects
the maximum benefit greedily at every step and updates query
features and utilities of queries correspondingly. After queries
are picked out, they are clustered in templates and their
weights are re-calibrated.

B. Candidate Generation

To narrow the search space, candidate generation is often
performed based on heuristic rules summarized by DBAs
from their tuning experience. Indexable columns are combined
to form candidate indexes, among which the optimal index
configurations will be searched for in the index selection
process. This greatly speeds up index selection, compared with
searching among all permutations of indexable columns.

Candidate generation can be regarded as a rule-based
approximate index selection algorithm without storage con-
straints6.

Lan et al. [77] proposed five rules to guide the generation
of index candidates, e.g. first attributes in predicates, then
GROUP BY and ORDER by etc.

Yadav et al. [142] analyzed PROJECTION, SELECTION,
JOIN, GROUP BY, and ORDER BY clauses to obtain partial
orders of indexable columns, e.g. factorizing complex AND-
OR predicates into disjunctive normal form and obtaining a
partial order for each factor, with the more selective predi-
cate columns put first. Then these partial orders are merged
according to some rules, e.g. index-prefix-predicate columns
take higher priority than columns that feature in GROUP BY
and ORDER by clauses.

Lahdenmaki and Leach [75] proposed the Three-Star Index
criteria for a query, introducing concepts of matching columns,
screening columns, fat index and so on7. Their proposed

6However, it is hard to recommend optimal indexes for a workload of
queries under storage constraints using simple rules, because this is an
optimization problem. A cost-based search is indispensable.

7These concepts help us to understand how to devise indexes to minimize
I/O operations.
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QUBE analysis is helpful for understanding ideal index se-
lection and candidate index generation, e.g. about positioning
EQUAL predicate columns, RANGE predicate columns, OR-
DER BY and GROUP BY columns in a composite index8.

Yadav et al. [142] proposed an automated index man-
agement system AIM, which identifies impactful secondary
indexes for SQL databases in order to efficiently use available
resources such as CPU, I/O, and storage. The paper mainly
introduces heuristic algorithms to generate candidates for
SELECT, GROUP BY, and ORDER BY clauses, followed
by a partial order merge process. AIM treats complex join
queries systematically, considering coordinated exploration of
candidate indexes across multiple tables. AIM is featured by
its solution quality better or at par with the state-of-the-art
algorithms and relatively cheap and stable runtime.

C. Feature Representation

An effective representation of workload and database features
plays a critical role in enhancing the selection of optimal
indexes. The process faces two main steps:

• Feature selection and extraction. This entails identi-
fying pertinent features to extract from query plan trees,
such as operator type, predicate selectivity, data statistics,
and index information.

• Feature representation. This involves selecting an ap-
propriate model to embed the concatenated features into
a low-dimensional representation, such as LSTM (Long
Short-Term Memory) [58], GNN (Graph Neural Net-
work [107]), and Transformer models.

The difficulties of representation primarily stem from the
inherent high dimensionality of features and the intricacies of
query interactions. Notably, queries may introduce interference
that is not easily discernible based solely on plan features, such
as resource contention between concurrent queries. Taking
index features as one of the inputs, as Shi et al. [119] did,
is particularly vital, especially in the context of index tuning.

Various types of Machine Learning models have been
utilized to represent queries, e.g. Ding et al. [44]’s DNN with
random forest, Yuan et al. [146]’s LSTM, Gao et al. [49]’s
combined use of LSTM, GCN, and ResNet, Zhao et al. [149]’s
tree-structured Transformer, Kossmann et al. [72]’s "bag-of-
operator", and Sharma and Dyreson et al. [117]’s using pre-
trained RoBERTa [80].

Features and models in these methods are compared in detail
in Table I in Section IV.

D. Workload Reducation

Brucato et al. [20] proposed a new idea to decrease what-if call
time. Their method, named WRED, rewrites workload queries
to be simpler, by eliminating column and table expressions
unlikely to benefit from indexes from the query plans, such
that it will be quicker for the optimizer to do what-if estimates

8One execution strategy of query Q might involve sorting rows in group
order before selection of rows, whereas another strategy might prefer selection
before sorting in group order. If selectivity is high, selection before sorting is
preferable. If there is ’LIMIT N’ in the query, maybe sorting first is better.
This decision influences index selection and depends on specific scenarios.

while guaranteeing that the indexes recommended on the
rewritten queries are similar to those recommended on original
queries. This workload reduction technique is complementary
and orthogonal to other index tuning techniques such as work-
load compression. Experiments show that combining WRED
and ISUM results in higher speedups than either of the two
techniques alone and maintains the quality of index tuning.

IV. INDEX BENEFIT ESTIMATION

During the search for optimal indexes, estimating the benefit of
each index configuration is crucial so that the most beneficial
one can be selected. The benefit of an index configuration is
determined by how much it reduces the query execution time
and minimizes the index maintenance cost after its creation.
The lower the query execution time and the index maintenance
cost, the higher the index benefit.

Ideally, the most accurate way to evaluate index benefit is to
actually build each index and execute the workload to observe
the performance improvement. However, this approach is
computationally expensive and impractical for large databases
and complex workloads.

To overcome this challenge, benefits are typically estimated
based on the reduction in estimated costs [76], [77], [116].
Fortunately, it is sometimes sufficient to provide relative cost
estimates for different index configurations to select the better
ones, not necessary to obtain the exact execution time of
queries.

Typically, there are two ways to estimate query cost:
1) Utilize empirical formulas.
2) Train machine learning models such as neural networks.

A. Cost Estimation Based on Empirical Formula

In the early stages of database optimization, optimizers did not
provide externalized cost estimates, researchers had to resort
to developing their own simple cost models to mathematically
emulate the cost estimates given by query optimizers [13],
[82], [108], [136], [144]. Modern optimizers, however, use
more refined cost models and DBAs rely on query optimizers
to estimate the costs of query execution. This technique
is called hypothetical index, also known as "what-if cost
estimation" [29].

Hypothetical indexes work to simulate how query execution
plans would change if the hypothetical indexes were actu-
ally created in the database and they won’t be used in the
actual execution path of any query. One advantage of using
optimizer-estimated cost as the cost metric of a query is that
the "consumer" of a configuration is the optimizer, resulting in
better synchronization. An optimizer’s decision on whether or
not to use an index is solely based on the statistical information
on the column(s) in the index, such as histograms of the
column values obtained via sampling instead of scanning all
rows [29].

Lum and Ling [82], Anderson and Berra [13], Schkolnick
[108], and Whang et al. [136] all proposed their own empirical
formulas to estimate costs.

Presently, many mainstream database products rely on query
optimizers to evaluate costs, such as AutoAdmin [29] for
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Microsoft SQL Server, Oracle’s index advisor, and DB2’s
advisor [131].

Taking AutoAdmin as an example, it creates hypothetical
indexes by sampling and allows users to specify the fraction
of the table to be scanned when gathering sample data on
columns of the index. It adopts an adaptive page-level sam-
pling algorithm and starts with m pages (e.g. the square root
of the number of pages), the Sample-Table contains statistical
measures such as the data density and histograms. Then it
samples new pages as cross-validation and stops the sampling
if the density measure converges.

AIM [142] is a recent practical heuristic online index tuning
approach that ranks and selects candidate indexes based on
heuristic formulas. The approach separately estimates the gain
of index set for read queries and the overhead of index
maintenance.

Idreos et al. [63] proposed Data Calculator that can answer
what-if data structure design questions to understand how
the introduction of new design choices, workloads, and hard-
ware affect the performance (latency) of an existing design.
Therefore, it potentially increases the transferability of index
advisors, and is very useful to estimate index benefit and help
index advisors to choose the best index design.

Although there may be discrepancies between estimated
costs and actual execution costs [95], these estimations can
be used to compare different plans and choose the best. The
advantage of empirical cost estimation is their light weight,
thus widely applied in real-world database systems.

B. Cost Estimation Based on Machine Learning

When relying on the optimizer, biases in index benefit esti-
mates can come from the limitations of the optimizer, such
as erroneous selectivity estimates and the inaccurate cost
model [79]. These traditional cost models are typically based
on the weighted sum of cost features, where the weights
are static [150] and may cause errors [150]. The biases in
index benefit estimation can affect the accuracy of the search
algorithms. In recent advancements in academia, machine
learning algorithms are employed to estimate query cost, some
achieving better accuracies than traditional models. These
algorithms can be divided into general methods and index-
specific methods, based on whether they contain information
of existing indexes in their feature representation and therefore
whether they rely on query optimizer’s what-if calls.

General cost estimation methods such as Query-
Former [149], MB2 [84], ZeroShot [56], AImeetsAI [44],
E2ECost [123], QPPNet [85] do not contain the information
of existing indexes in their features, so they rely on what-if
calls to get query execution plans and they learn a mapping
from the featurized query execution plan to query execution
cost9.

Index-specific methods such as DISTILL [122] and
LIB [119], however, contain the information of existing in-
dexes in their feature representation. Therefore, they need not

9General methods can also handle INDEX SCAN operator type or node,
but the information of the use of INDEX SCAN is provided by the query
optimizer.

rely on what-if calls. They can learn a mapping from the tuple
<query SQL statement, indexes> to the execution cost of the
query or the benefit of the indexes10

1) General Methods: Ding et al. [44] presented a technique
to featurize query plans into vectors and trained classifier
models to compare the costs of two plans. In adaptation
to other databases, the authors combined offline models and
local models to improve prediction accuracy. The authors tried
logistic regression, bagging and boosting ensemble of trees as
the offline model per database or globally. The local model is
lightweight, only trained on a small amount of execution data
from one database. Experiments show the proposed classifier
results in 2 to 5 times of reduction in errors than regression
models that first predict costs and then compare.

Zhao et al. [149] replaced the representation model of
E2ECost [123] with a learning-based query plan representation
model called QueryFormer. The model has a tree-structured
Transformer architecture that can model long paths of in-
formation flow in query plans and capture parent-children
dependency. It takes data statistics into account, such as
histograms, random samples, and physical query plans. Query-
Former can better estimate query costs than AIMeetsAI and
help downstream index selection tasks perform better.

Hilprecht and Binnig [56] introduced zero-shot cost models
to generalize across databases11. The database-dependent mod-
ule captures database-specific data characteristics(e.g., his-
tograms, estimated cardinalities) while query plans are rep-
resented as database-agnostic features and these transferable
features serve as input to the general database-agnostic GNN
module, which predicts query costs. The sophisticated feature
engineering and the powerful graph neural network make
the proposed cost model more accurate than the state-of-the-
art models for a wide range of real-world databases with
few query executions on unseen databases. Providing cost
estimates, the zero-shot cost model is promising to enhance
the transferability of index advisors across databases.

2) Index-specific Methods: Siddiqui et al. [122] trained a
cost estimation model for each group of queries that share
similar patterns concurrently during index tuning. Among
linear regression, decision tree, tree-based ensemble model,
and multilayer neural network, the tree-based ensemble model
achieves the best result in consideration of both estimation
time and accuracy.

Shi et al. [119] introduced the Learned Index Benefit
(LIB) model that contains the Set Transformer and represents
interactions between indexes and takes operator types, column
statistics, and index information as input. Its parallel execution
and dedicated design enable it to accurately estimate costs,
generalize well to unseen workloads and datasets, and make
index tuning faster.

Gao et al. introduced SmartIndex [49], which extracts fea-
tures from query plan trees and relevant indexes using LSTM,

10Containing index features does not mean they can’t use query plans.
Index-specific RIBE [145] encodes indexes but it also utilizes query plans,
because they obtain query plans under no indexes ahead of time. RIBE uses
ChangeFormer to predict whether query plan structure will change after new
indexes are built. Therefore, RIBE is a little bit different from previous index-
specific methods like DISTILL and LIB.

11https://github.com/DataManagementLab/zero-shot-cost-estimation
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TABLE I: Comparison among ML-based Cost Estimation Methods

Type Method Features Models Target of
estimation Advantage Disadvantage Performance

general

AIMeetsAI [44]

measure of
work done,
structural
information,
and physical
operator
details

RF and DNN plan cost
comparison

utilize estimated
information of
query execution

require many
comparisons
between query
plans

render better index
selection quality

QueryFormer [149]
operator type,
predicate, and
data statistics

Tree-structured
Transformer

query
execution
cost/time

consider
parent-children
dependency and
long information
flow in query
plans

slower than
AIMeetsAI [44]
due to complex
encoding schema

better than
E2ECost [123] and
AIMeetsAI [44]

MB2 [84]

amount of
work, parallel
invocation
status, and
DB knobs

OU-specific
models and

one
interference

model

query
execution
cost/time

less training time
and data, better
accuracy and
robustness

no
hardware-across
generalization

more accurate than
QPPNet [85] and
E2ECost [123]

ZeroShot [56]
parallelism,
operators, data
statistics, etc.

GNN
query

execution
cost/time

generalization
across databases

computationally
expensive

better or equal to
workload-driven
cost models

QPPNet [85]

operator
types,
cardinalities,
I/O number,
etc.

Tree-structured
neural network

query
execution
cost/time

capturing the
structure of query
plans

large training
overhead

outperform TAM
and SVM.

E2ECost [123]

operator,
predicate,
metadata,
sample bitmap

Tree-structured
neural network

query
execution
cost/time

training cost and
cardinality
estimation
simultaneously
and handles string
embeddings

large training
overhead

outperform
traditional
optimizer’s cost
estimation.

index-

DISTILL [122]

operator type,
estimated
computation,
and index
features

LR, tree-based
ensemble

model, and
MLP

improvement

clustering and
grouping of
queries reduce
computation

time-consuming
query plan
generation

better than
DTA [31]

specific

LIB [119]
operator type,
data statistics,
and indexes

Set
Transformer improvement

consider index
interaction and
run in parallel

ignore the
relation between
operators

more accurate and
faster than
PostgreSQL cost
estimator

SmartIndex [49]

operator type,
estimated
computation,
execution
order, and
index features

LSTM, GCN,
and Attention

Model

query
execution
cost/time

represent
execution plans
and indexes better

require a large
amount of
computation

faster than DB2
Advisor [131] and
Extend [109]

AutoIndex [150]
query type
and index
features

deep
regression
model and
empirical
formula

query
execution
cost/time

dynamically
balance IO cost
and CPU cost

model not
complex enough

higher estimation
accuracy

ChangeFormer [145]

operator type,
table, statistics
of input and
output,
predicate, join
schema, index

Transformer change prune the number
of what-if calls

incorrect
prediction of
change harms
accuracy

achieve cost
estimation accuracy
comparable to that
of the optimizer

GCN, and ResNet. They used Mean Square Error (MSE) as
the loss function and the actual execution time of query as
labels. Integrated with the proposed cost estimation model,
their greedy search algorithm outperforms DB2 Advisor [131]
and Extend [109] on the Job dataset.

Zhou et al. [150] trained a one-layer deep regression model
that considers index update cost, using empirical formulas with
hyperparameters to estimate CPU and IO costs and summing

them up with dynamically learned weights. Focusing on index
updates that involve disk IO and ignoring in-placement updates
where the new and old index tuples are recorded in the same
heap page, the authors designed meticulous cost models that
result in improved estimation results.

Sun and Yan [145] proposed RIBE, they trained Change-
Former to predict whether the structure of query plan will
change after new indexes are built. If they predict positive,
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what-if has to be called again. However, if the structure
of query plan is predicted not to change, RIBE utilized a
much simpler method to estimate the benefit of the indexes
than calling the complex what-if call again. For example,
simply subtract INDEX SCAN cost from SEQ SCAN cost.
Experiments show that RIBE can achieve cost estimation
accuracy comparable to that of the optimizer.

The disadvantage of ML-based methods is that they often
require a substantial amount of training data and may not be
suitable for general business environments. To mitigate the
requirement of huge training data, Ma et al. [84] proposed
a decomposed behavior model MB2 and trained a separate
model for each Operating Unit (OU). Table I shows a com-
parison among ML-based cost estimation methods.

C. Challenges and Solutions

Index benefit estimation faces two challenges:
1) C1: Accuracy (index interaction). Factors accounted for

the costs are complex and interrelated, and include the
frequency of read and write queries, distribution of data,
index size, and maintenance of candidate keys and index
structures [13]. Moreover, there exist interactions between
indexes that affect their benefits mutually. Creating or
deleting one index might affect the performance of other
indexes [16], [64], [137]. Thus, the benefit of a set of
indexes can not be calculated as the sum of the benefits
of each individual index, which makes index selection
harder than the classical Knapsack Problem.

2) C2: Efficiency (slow evaluation). The total number of
candidate indexes is huge and evaluating each takes
significant time. Papadomanolakis et al. [95] showed that
cost estimation accounts for 90% of the total time of
index tuning. Even if virtual indexes [29] are used, the
majority of index tuning time is still spent on what-if
calls [139]. Neural network models trained on historical
data of query execution can lead to more accurate cost
estimation but they take even more time to estimate
execution cost, not to mention its prolonged training time
and big size.

To address C1, index interaction should be properly handled
to make index benefit estimation more accurate. Schnaitter et
al. [114] proposed to compute the degree of interaction (DOI)
between pairs of indexes in offline index selection setting. DOI
is calculated as the difference in the benefit of one index before
and after another index is created divided by the query cost.
The authors integrated index interaction evaluation into index
tuning and presented heuristics to schedule index materializa-
tions. Bruno and Chaudhuri [22], [23] also considered index
interaction by analyzing the usefulness of one index given
another. Their approach classifies usefulness into four levels,
adjusting the benefits of other indexes accordingly, e.g. after
one index is created, it reduces the benefits of relevant indexes,
and increases benefits for index deletion.

Approaches to address C2 can be classified as below:
• Caching mechanism. Store previous what-if cost estima-

tion results of one query under one index configuration
for later use to avoid repeated identical calls [24], [71],

[95]. The space of the cache is limited and the Least
Recently Use (LRU) strategy can be used to replace
outdated evaluation results with new ones.

• Cost derivation. Derive costs from previous what-if calls
to reduce the number of optimizer calls. For example, C-
PQO adopts the MEMO data structure (a configuration-
parametric physical operator tree) that enables fast cost
estimation based on previously optimized queries with
similar structures. BAIT [139] limits the budget of what-if
calls and derives the cost of an index set as the minimum
cost over all subset configurations with known what-if
calls for offline index selection scenarios, where database
and workload are assumed to be fixed.

• Independent partitioning. WFIT [113] divides indexes
into independent sets, ensuring that indexes in different
sets do not interact with each other. In this way, benefits
of indexes from different sets satisfy linearity and can be
added up, thus reducing the number of index configura-
tions that need to be evaluated.

• Ranking strategy. Proposed by Schnaitter et al. [110],
COLT first ranks index candidates with easy-to-compute
yet crude performance statistics and identify a small set
of hot indexes. The benefits of hot indexes and materi-
alized indexes are estimated with accurate and expensive
methods. Materialized indexes are given precedence in
spending what-if budgets.

• Query rewrite for reduced complexity. Brucato et
al. [20] proposed WRED that rewrites query (e.g. elim-
inating some filters, joins, etc.) to reduce optimization
complexity. Their experiment shows that the average
what-if call time grows proportionally to the average
number of column references and table reference.

V. OFFLINE INDEX SELECTION ALGORITHMS

Offline index selection algorithms can be classified into exact
algorithms and approximate algorithms. Exact algorithms such
as brand-and-cut can enumerate and find the optimal index
configuration, but they are not efficient in tuning large-scale
databases. On the other hand, approximate algorithms offer
more scalable solutions, including heuristic algorithms and
learning-based ones, especially Reinforcement Learning (RL).

A. Exact Algorithms

Exact algorithms for offline index selection include searches
with pruning and Dynamic Programming approaches. They are
guaranteed to find the optimal solution for the optimization
problem.

1) Search with Pruning: To tackle the offline index se-
lection Problem, researchers often take Knapsack Problem
(KP) [68] and Generalized Uncapacitated Facility Location
Problem (GUFLP) [25], [26] as reference. Formulated as
Linear Programming (LP) problems, index selection problem
can be solved by searching the candidate space. Appropriate
pruning is applied in efficient searches for optimal solutions
to these problems.

For example, Caprara et al. [25] assumed that a query
can only utilize at most one index in their early methods,
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and Dash et al. [40] assumed the cost model is linearly
separable [24], [95].Moreover, the assumption that there is
no interaction between indexes is made by many researchers
such as Cophy [40] so that the benefit of each index can be
evaluated independently.

Caprara et al. [25], [26] employed a branch-and-cut algo-
rithm to search, and it could provide the distance between a
solution and the optimum. Schkolnick [108] used a guided
depth-first search to find the optimal set of indexes if the
cost function is regular. This method constructs chains of
sets, each being a superset of the previous one by adding one
more candidate index. The process ensures a non-increasing
sequence of workload costs. Points with smaller costs are
included in the current set, and the precedence between two
points in an independent set is discovered during the partial
search.

Exact algorithms are only suitable for small-scale problems.
Moreover, existing research on exact algorithms often makes
certain assumptions to simplify the mathematical model, but
the assumptions are sometimes unrealistic in practical cases.
For instance, the regular property [108] does not necessarily
hold due to interaction among indexes (e.g., the cost function
value of the index set (A, B, C) is the smallest, but the cost
of (A, B) is larger than that of (A) and (B)).

2) Dynamic Programming Methods: Dynamic program-
ming is commonly used to calculate the optimal index con-
figuration under different space constraints and recursively
compute the results by modeling offline index selection as
KP.

Let Benefit(X,Smax) be the maximum benefit we can
get from building a subset of index set X under the storage
constraint of Smax. The recursive formula would be

Benefit(X,Smax)

= max{Benefit(X − I, Smax − Storage(I))

+Benefit(I, Storage(I)},
for I ∈ X and Storage(I) ≤ Smax (1)

Qiu et al. [102]12 employed Dynamic Programming tech-
niques to recommend the optimal indexes and stored results of
subproblems after hashing to avoid duplicate computing. Yang
et al. [144]13 proposed CedarAdvisor based on Xiaomi SQL
Optimization and Rewriting Tool (SOAR) [141]. CedarAd-
visor automatically collects workloads from logs, gathers
query frequencies, generates candidate indexes for individual
queries, and evaluates index benefits and costs. It also employs
Dynamic Programming to find the optimal index configura-
tion for the entire workload, or near-optimal one if time is
constrained. Tested on the distributed database Cedar [42],
experiments demonstrate the effectiveness of CedarAdvisor.

Dynamic Programming is not scalable to large data volumes
because it involves many times of calculating benefit(X, stor-

12PDF version of this paper can be found at https://jos.org.cn/josen/article/
abstract/5906

13PDF version of paper can be found at https://cloud.tsinghua.edu.cn/f/
a7ffed1ca8234d4eb75f/

age) which is NP-hard itself [27], [36], [100], and thus not
widely used.

B. Approximate Algorithms

In practical applications, exact optimal solutions for index
selection are often unattainable and unnecessary. On one hand,
the mathematical modeling of index selection itself is an
approximation of the real-world scenario. The assumptions
and simplifications made in the modeling process introduce
inherent imprecision. On the other hand, it is often adequate
to find an acceptable solution, as long as the solution pro-
vides significant performance improvements and meets desired
goals. Most importantly, exploring the entire solution space
with limited computational resources and time is unfeasible.

To address these challenges, researchers have explored
various approaches to select indexes more efficiently. These
approaches include DB-Specific heuristics, approximate LP
approaches, evolutionary strategies, and RL algorithms.

Apart from generating candidate indexes based on empirical
rules, integrating heuristics into the search process can also
lead to improved efficiency in index selection. One common
type of heuristics is the greedy heuristic, which aims to get
a near-optimal result at every step greedily (e.g. selecting
the index with the best benefit-to-size ratio). There are two
directions to search: ADD heuristics and DROP heuristics:

• Greedy ADD Heuristics. AutoAdmin [33], DB2 Advi-
sor [131], and Extend [109] apply ADD heuristics. Their
search starts from an empty set and gradually adds useful
indexes until constraints are violated. Ip et al. [64] and
Chaudhuri et al. [27] also employed this heuristic. ADD
heuristics are more widely applied in index selection
approaches, but they might choose an insignificant index
that looks as if it were important at the initial stage of
the design but deviates from the optimal.

• Greedy DROP Heuristics. Drop [136] and Relax-
ation [21] apply DROP heuristics. Their search starts
from a full set of all possible candidate indexes (e.g., the
combination of the optimal indexes for each query) and
gradually drops useless indexes until the space constraint
is satisfied. The advantage of DROP heuristics over ADD
heuristics is that Drop heuristics can take the influence
of an index on others into account from the beginning
because all indexes are initially present [136].

1) DB-Specific Heuristics: AutoAdmin by Chaudhuri et
al. [33] adopts a greedy iterative approach that first recom-
mends single-column indexes and then multi-column indexes
of increasing width. At each step, they added the index that
resulted in the highest cost reduction among all possible
choices.

As for DB2 Advisor [131], after the completion of greedy
selection, it introduces one more variation step, where parts of
the existing indexes are randomly replaced with indexes not
recommended but more beneficial for workload execution.

Extend [109] recursively adds single-column indexes with
the highest cost-space reduction ratio or extends an existing
index by appending a column at its right, until the storage
budget is reached or no further cost improvement can be made.
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It takes index interaction into account, efficiently recommends
multi-attribute indexes, and can extend to large-scale instances.

Drop [136] iteratively removes indexes that lead to the
lowest cost of processing transactions from a full index set
until no further cost reduction is possible. Relaxation [21]
iteratively transformed the initial set containing all queries’
optimal indexes into sets that consume less storage space by
merging, splitting, prefixing, clustering, and removing, at the
same time trying to keep the benefit as high as possible.

Chaudhuri [30] presented a greedy heuristic that merges
multiple indexes into a single index. The goal was to minimize
either the query execution cost given a storage budget or the
storage requirement given a cost reduction budget. This merg-
ing procedure can be utilized after indexes are recommended
by other index selection algorithms to reduce storage overhead
as well as maintain query performance.

Ameri et al. [12] employed mining algorithms [45] to
generate column combinations. Schnaitter and Polyzotis [113]
proposed WFIT that independently searches for candidate in-
dexes that do not affect each other, and the optimal indexes are
the ones that minimize the total function value by employing
divide-and-conquer.

DB-specific heuristic algorithms of index selection are most
widely applied due to their simplicity and effectiveness.

2) Approximate Linear Programming: Papadomanolakis
and Ailamaki [94], Dash et al. [40] and Talebi et al. [125]
all employed off-the-shelf LP solvers to find approximate
solutions after formulating the offline index selection as LP
problems.

Papadomanolakis et al. [95] generated several index con-
figurations. Each index configuration is a set of candidate
indexes. They represented each index configuration with one
variable, pruned the search space by fixing one variable to 0
or 1, and obtained two sub-problems, which were solved by
depth-first or breadth-first search, guided by heuristic rules.

CoPhy [40] applies soft constraints and Chord algo-
rithm [41] to search for Pareto Optimal, balancing the index
space and the algorithm runtime, but one variable represents
one index in CoPhy, leading to fewer variables and faster
speed than Papadomanolakis’s. Talebi et al. [125] and Kllapi
et al. [68] also employed LP techniques to recommend indexes
for OLAP databases and data stream processing engines
separately.

Despite their efficiency, approximate algorithms to LP for-
mulations are not flexible to adapt to workload shifts.

3) Evolutionary Strategy: Many researchers [48], [67],
[69], [70], [74], [89], [96] applied evolutionary strategies to of-
fline index selection, where each candidate index (individual)
is represented as binary strings (genome) and index benefit
acts as the fitness function, quantifying how well the index
contributes to query execution.

Unlike traditional optimization methods, GAs start the
search from a group of feasible solutions instead of a single
one and update through selection, crossover, and mutation
until reaching the optimal criteria or the maximum number
of iterations. Transitions in GAs are probabilistic rather than
deterministic, enabling the search to jump out of local optima.
Another advantage of GA is that it only requires the evaluation

of solutions to determine their fitness, without the need to
deduce knowledge from the original problem.

However, GA approaches haven’t been applied in any real
system as far as we know and not the focus of research on
AIT because the evolving process takes a long computational
time.

4) Reinforcement Learning Algorithms: Since 2015, a sig-
nificant number of RL approaches have been explored for
AIT. RL is a prominent paradigm in Machine Learning, used
to describe and solve problems where an intelligent agent
interacts with an environment to learn strategies that maximize
rewards so as to achieve specific goals [103], [124].

To apply RL algorithms, index selection is commonly
modeled as a Markov Decision Process (MDP) where indexes
are recommended one by one at each step until constraints are
reached.

We make a detailed comparison among different index
selection methods based on RL. Table II presents a summariza-
tion of the algorithms as well as the designs of state, action,
and reward for each RL method.

These methods can be categorized into offline and online
approaches, depending on their ability to adapt to changing
workloads. In this section, our primary focus is on RL-based
offline index selection approaches. We will discuss online
tuning methods in Section VI. For brevity, we include RL-
based online index selection approaches in the table, because
they share similar characters.

Basu et al. [17] were the first to apply RL to index
selection14 and their approach surpassed WFIT [113].

Sharma et al. [116]15, Lan et al. [77]16, Sharma et al. [118],
Yan et al. [143], Wu et al. [140] all applied Deep Q-Networks
(DQN) [86] for recommending indexes, from single-column
B-tree index [116], to multi-column [77]. MANTIS [118] and
DRLISA [143] can even recommend multiple types of indexes.
Taking [77] as an example, the current state, represented as
a one-dimensional array, is the input to the neural network,
and the output is an array of the same dimension, where each
value represents the Q-value for selecting the corresponding
candidate index at the corresponding position in the array. The
agent selects the index at the position with the maximum Q-
value in a greedy manner, receives feedback from the DBMS,
and updates its value function.

Welborn et al. [135] designed a structured action space and
applied permutation learning with Sinkhorn Policy Gradient
Algorithm [46] to encode the inductive bias of index selection
task, addressing the instability of training and inefficiency of
samples when applying Deep RL.

Instead of using neural networks to approximate reward
values, Paludo et al. [92] designed a Q-learning algorithm with
a linear function approximator and it is a rare research that
measured benefits with actual query execution time17.

Sadri et al. [105], [106] proposed DRLIndex, an index
advisor for cluster databases utilizing RL. In this context,

14https://github.com/Debabrota-Basu/rCOREIL-Learning-to-Tune-Databases
15https://github.com/shankur/autoindex
16https://github.com/rmitbggroup/IndexAdvisor
17https://github.com/mir-pucrs/smartix-rl
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TABLE II: Comparison among Index Selection Methods Based on RL

Algorithm Method Multi-
column

Data
update

Workload
shifts State Action Reward

function
Terminal
condition

Policy
iteration COREIL [17] support support not support

index
configurations

built

changes of
indexes

the negative of
action cost

when parameters
converge

Linear
Q-

learning
SmartIX [92] not

support support support
index

configurations
built

create or delete a
one-column

index
QPHH@SIZE N/A

NoDBA [116] not
support

not
support not support

index
configurations
built and their

selectivities

create a
single-column

index

reduction of
query

execution cost

limit on the index
number

Lan’s
DQN [77] support not

support not support
index

configurations
built

choose one
candidate index

and create it

relative
reduction of

workload
execution cost

limit on index
number

DQN DRLindex [105] not
support

not
support not support

index
configurations

built, workloads,
access vectors,

and index
selectivities

create a
single-column
index on one

replica

weighted sum
of cost

reduction and
reciprocal of

workload shift

limit on the index
number

MANTIS [118] support not
support not support

index
configurations

built

build an index of
one type

reduction of
cost and index

space

limit on index
space

DRLISA [143] support support not support

index
configurations

built and
workloads

N/A

throughput
increase minus
index update

cost

when no more
performance
improvement

Sinkhorn
Policy

Gradient

Welborn’s
index

advisor [135]
support not

support not support
current queries
and history of

building indexes

choose one
candidate index

and create it

ratio of cost
reduction and
space increase

N/A

PPO SWIRL [72] support not
support support

workload
features and

meta-data

choose a
candidate index

ratio of cost
reduction and
space increase

limit on index
space

MCTS

BAIT [139] support not
support not support

index
configurations

built

choose a
candidate index

percentage of
performance
improvement

limit on the
number of what-if

calls

AutoIndex [150] support support support index
configurations

choose an
un-built index

cost reduction
of read queries

and cost
increase of

write queries

limit on index
space

PPO-MC Lai’s
PPO-MC [76] support not

support not support

index
configurations

built and
workload

selectivity matrix

choose one
column to build

index

reduction of
cost N/A

MAB

DBABandit [97] support not
support support

index
configurations

built and
workloads

choose a
super-arm

reduction of
workload

execution time
N/A

HMAB [98] support not
support support

index
configurations

built and
workloads

choose a
super-arm

reduction of
query execution
time and time

of index
recommending

N/A

the advisor not only recommends indexes for replicas but
also considers workload balance and generates route tables.
Kossmann et al. reproduced the algorithm and compared it
with their own proposed method18 [72].

Lai et al. [76] trained an RL agent with PPO-MC (Proximal
Policy Optimization - Monte Carlo) method [65], which has
the advantages of fast convergence and reliable performance.
Implemented on Kossmann et al.’s index selection evaluation

18https://github.com/hyrise/rl_index_selection/tree/main/experiments/
drlinda_multi_attribute

platform, Lai’s PPO-MC index advisor has a shorter training
time and achieves some improvement in the effectiveness of
index selection in comparison with Autoadmin [29], DB2
Advisor [131], and Relaxation [21].

Kossmann et al. proposed index advisor SWIRL [72] that
utilizes Proximal Policy Optimization (PPO) [115] with In-
valid Action Masking [60]19. They maintained a vector rep-
resenting the indexing of all columns but in a compressive
way. Implemented on the platform [71], SWIRL outperforms

19https://github.com/hyrise/rl_index_selection
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Extend [109] in experiments, showing a significant reduction
in execution time.

To accelerate index selection, Wu et al. [139] set limits on
the number of what-if calls and the number of indexes. For
a given index configuration and query pair, they derived cost
from the minimum cost over all subset configurations with
known what-if costs, assuming that including more indexes
into a configuration does not increase the what-if cost20. In
this case, the derived cost is essentially an upper bound on
the what-if cost, and the index benefit function is a monotone
submodular set function, which provides a theoretical founda-
tion for their formulation of offline index selection as well as a
lower bound on the benefit of indexes selected by their greedy
algorithm on Monte Carlo Tree [19]. Experiments showcase
the superiority of their method compared to DBA bandits [97]
and NoDBA [116].

RL-based index selection methods optimize database index
selection by capturing complex workload patterns and making
intelligent recommendations through learned policies, often
using deep neural networks. However, they rely on quality
historical data, require significant computational resources and
training time, and lack interpretability. In contrast, rule-based
methods are interpretable but cannot handle all situations with
a universal set of rules.

VI. ONLINE INDEX SELECTION ALGORITHMS

Compared to offline index selection, online index selection
targets varying workloads, requiring a workload change de-
tector or forecaster. The change detector identifies significant
fluctuations in workloads or data patterns, while the forecaster
predicts future workloads [9], [59] to preemptively select and
build indexes, aiding with periodic queries . When significant
changes are observed, the index configuration updater is trig-
gered, working incrementally to add beneficial indexes and
remove outdated ones, eliminating the need for a complete
search from scratch each time.

Schnaitter and Polyzotis [112] proposed a benchmark for
evaluating the performance of an online tuning algorithm in
a principled fashion. Their workload suites are described in
Section VII. In this section, we will introduce online index
selection algorithms based on heuristics and RL.

A. Heuristic Approaches

Bruno and Chaudhuri [23] proposed an online predictive
index selection approach based on a retrospective approach
that finds optimal configurations offline. Knowing the entire
sequence of queries in the workload, the optimal algorithm
determines the optimal schedule by analyzing the cumulative
benefits of candidate indexes for sub-sequences of queries. It
creates an index if the future benefit of the index is promising
and drops an index otherwise, based on whether the reduction
in query execution cost outweighs the overhead of index
update.

In Bruno and Chaudhuri’s approach [23], the online algo-
rithm uses past information to decide whether to create or

20This assumption targets offline index selection and assumes no data
update.

drop an index based on inferred optimal strategies for previous
queries. It tracks and compares the maximum and minimum
benefits of indexes. If the optimal strategy would have taken a
certain action, the online algorithm follows suit shortly after.
When storage limits prevent building promising indexes, it
replaces less promising ones with better options. Experiments
show that this online algorithm performs competitively with
the optimal strategy.

COLT [111] models the current workload based on in-
coming queries, divides the online workload into epochs,
estimates index gains, and selects those providing the best
performance within space constraints. To control overhead,
COLT adjusts its budget for what-if calls at each epoch’s end,
increasing it when detecting workload shifts and decreasing
it when the workload is stable. Experiments show COLT
matches offline selection algorithms for stable workloads and
outperforms them for evolving workloads. Running parallel to
query execution, COLT is resilient to noise but only selects
single-column indexes for simplicity.

AIM [142] is one of the few industrial strength index recom-
mendation engines that is deployed on production databases at
a large scale. It mainly focuses on index recommendation for
static workload, but by running periodically it is also suitable
for online index tuning.

Instead of modeling workload as a set of queries, Agrawal et
al. [11] treat workload as a sequence of sets, where each set is
a group of queries. The aim is to find a configuration sequence
that minimize the workload sequence execution cost. They
showed that finding the minimum sequence cost is equivalent
to finding the shortest path in the possible configuration
transition graph. Cost-based pruning and split-and-merge are
applied to improve the efficiency of the algorithm.

Adaptive indexing [50], [51], database cracking [54], [61],
[62], holistic indexing [99], and predictive indexing [15] are
a line of recent research that build indexes online, partially
and incrementally, during CPU idle time or query processing.
They are mainly designed for column-store databases and fall
under the category of new index structure design (specifically
workload-adaptive, self-involving index structures), thus out of
the scope of our survey. We mainly focus on tuning existing
index structures to optimize workload performance.

B. Reinforcement Learning Approaches

Reinfocement Learning endows index advisors with the ability
to intelligently adapt to changing workloads.

Perera et al. [97] introduced a self-driving approach for
online index selection, referred to as DBABandit, which
addresses the index selection problem as a sequential decision-
making task and employs Multi-Armed Bandit (MBA) algo-
rithm [132]. At each timestep t, the algorithm selects an arm
(chooses new index configuration Ct) for new workload Wt

based on the C2UCB algorithm [101], in maximizing the
cumulative reward. In balancing the exploration of unknown
actions and exploitation of known optimal actions, DBABandit
can provide regret bounds to ensure the effectiveness of
indexes recommended online. In terms of convergence speed
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and performance stability, DBABandit outperforms other DRL
approaches 21.

Perera et al. [98] proposed Hierarchical MAB (HMAB)
to improve their previous work. HMAB uses a two-level
bandit structure to handle large action spaces and enable
parallel execution of the L1 bandit. The L1 bandits select
candidate indexes, which serve as arms for the L2 bandit, with
one group recommending database-wide views and another
recommending table-specific indexes. Different contexts for
each bandit group and the L2 bandit enhance decision-making.
This hierarchical approach achieves a 96% improvement in
index and view tuning for dynamic workloads compared to
commercial tools22.

Sharma et al. developed Indexer++ [117], an online index
advisor using DQN and a pre-trained Transformer model to
detect workload trend changes. Index++ treats similar work-
loads as unchanged if their trend centers overlap; otherwise, it
triggers an index configuration update using DQN [77]. The
approach clears the replay buffer, updates the DQN model
with new data, merges workloads, and re-recommends indexes
incrementally, avoiding retraining from scratch. Experiments
on TPC-H and IMDB datasets showed Indexer++ dynamically
adapts to workload changes and recommends appropriate
indexes. The weakness of Indexer++ is that it ignores index
maintenance costs.

Zhou et al. proposed AutoIndex [150] 23, an incremental
index management system for openGauss [79]. AutoIndex
matches incoming workloads with templates, extracts promis-
ing candidate indexes, and uses Monte Carlo Tree Search [19]
to select high-benefit indexes. The input to the model includes
information on the current workload and historical index
statistics. When workload changes lead to decreased efficiency,
the system decides whether it’s necessary to update indexes.
The policy tree is used to evaluate the current indexes and
explore potential indexes that yield greater benefits, thus newly
beneficial indexes will be added and obsolete indexes will be
deleted at each step. In experiments conducted on the TPC-
C and TPC-DS, indexes recommended by AutoIndex achieve
better efficiency and throughput than baselines.

Currently, RL algorithms fail to be practical to be deployed
in real system due to their expensive computation and long
runtime, but they remain an interesting and promising direction
for online index tuning.

C. Challenges of Online Index Selection

Online index selection faces two primary challenges:
1) Promptly determining what indexes to update as well as

when and how in adaptation to workload changes.
2) Considering overheads of index construction and main-

tenance in addition to the benefit indexes bring to query
execution.

For the first challenge, workload changes should be detected
timely and the index selection algorithm should finish in an
acceptable duration. Additionally, it needs to avoid oscillation

21https://github.com/malingaperera/DBABandits
22https://github.com/malingaperera/HMAB
23https://github.com/zhouxh19/AutoIndex

(i.e., the same indexes are continuously created and dropped) if
the selection algorithm reacts too quickly. For the second chal-
lenge, COLT [111], OnlinePT [23], WFIT [113], SOFT [81]
involves calculating index overheads such as creation cost.

VII. APPLICATION OF INDEX TUNING ALGORITHMS

In this section, we first summarize commonly-used datasets
in research on index tuning, and then take six databases as
examples to introduce how index advisors are applied in real-
world database systems.

A. Commonly-Used Datasets for Index Tuning

In papers on open-source systems or academic research of
index tuning, common-used datasets include TPC-H, TPC-C,
TPC-DS, JOB, SSB, and YCSB, as shown in Table III. To
test index advisors’ ability to handle skewed data distribution,
skewed versions of benchmarks are also widely used [104],
[106].

Some researchers use self-generated datasets to test perfor-
mance on more complex workloads [139].

Schnaitter and Polyzotis [112] described how they design
workload suites to test specific features of online index
tuning algorithms. They varied the time period of phases,
the complexity of workloads, the inclusion of data updates,
and the stability of workloads, so as to test the agility at
adapting to changes, the performance, the consideration of
maintenance overheads, and the convergence of online index
tuning algorithms.

B. Applications of Index Advisors in Major Databases

We list several major index tuning tools, comparing their
differences and similarities.

1) Index Advisor for Microsoft SQL Server: It narrows
down the candidate index space based on workload query fea-
tures, recommends indexes for each query independently, and
then iteratively merges single-column indexes into composite
indexes with a given maximum index number as the constraint.

AutoAdmin [33], later evolved into Anytime [10], [31],
[33], a.k.a. DTA [71]. In DTA, indexes can be enumerated
with arbitrary width, no need to search narrower indexes
before wider indexes as AutoAdmin does. The feature of
Anytime is that the tuning can be interrupted at any time
and provide temporarily optimal indexes, with the option to
continue searching for better indexes if time permits.

There is also a practice report [39], which provides a
detailed analysis of incorporating AIT in Microsoft Azure SQL
Database. They utilized machine learning techniques to hori-
zontally learn from all databases in Azure SQL Database and
dynamically enhance the tuning actions. Employing DTA [31]
as the selection algorithm, the index advisor results in about
82% CPU time improvement over DBAs on average in A/B
testing experiments on Azure.
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TABLE III: Commonly-Used Datasets for Index Tuning

Name Scale Data types Database Property Using Scenario

TPC-H [1] 8 tables, 61 columns, 22
query templates

structured data, primarily
numeric, text, and date

a decision support
benchmark, focusing on

ad-hoc queries and
concurrent data
modifications.

used to evaluate the performance of
decision support systems that analyze

large volumes of data and execute
complex queries.

TPC-DS [2] 25 tables, 429 columns, 99
query templates

structured data, including
numeric, text, and dates.

a decision support
benchmark, models several

generally applicable
aspects of a decision

support system, including
queries and maintenance.

covering various scenarios ranging from
simple report generation, data mining, to

complex OLAP, it provides relevant ,
objective performance data to industry

users.

TPC-C [3]
nine types of tables with a
wide range of record and

population sizes

Structured data, including
numeric, text, and dates.

a complex OLTP system
benchmark, involving a
mix of five concurrent

transactions of different
types and complexity either
executed on-line or queued

for deferred execution

portraying the activity of a wholesale
supplier, representing any industry that

must manage, sell, or distribute a
product or service.

JOB [4]24

113 query instances, 33
query templates, 21 tables,
and 108 columns, based on

IMDB25

structured data, primarily
numeric and text.

focus on the performance
of join operations,

especially evaluating
different join order

strategies.

used to evaluate the efficiency of
database systems in executing complex

join queries.

SSB [91] 6 tables, 96 columns, 13
query templates

structured data, primarily
numeric, text, and date

a simplified star schema
data based on TPC-H

used to test the performance of
multi-table JOIN query under star

schema or to test the performance of the
query engine

YCSB [38]

flexible schema, designed
to work with large,

distributed databases; data
sizes can range from a few

GB to several TB

key-value pairs,
semi-structured data.

measures the performance
of cloud-serving systems,

focusing on CRUD
operations (Create, Read,

Update, Delete)

used to evaluate the performance of
NoSQL databases and cloud data

services, particularly for web
applications.

2) Dexter for PostgreSQL: Dexter [14] is an open-source
index advisor developed by Andrew Kane to automatically
tune indexes for PostgreSQL [14]. It relies on HypoPG to
create hypothetical indexes and pg_query to parse queries and
extract workload features. By creating hypothetical indexes on
unindexed columns, Dexter chooses the indexes with the most
significant cost-saving, after comparing the query cost without
index and with index. The drawback of Dexter is that the index
maintenance costs are not considered and write-heavy tables
need to be identified manually.

3) DB2 Advisor: DB2 Advisor [131] is used for index
selection in DB2 database. As introduced in Section V, it
models the offline index selection problem as a variant of
the Knapsack Problem and contains two steps – candidate
generation and greedy selection. One key advantage of DB2
Advisor is that it places the enumeration algorithm inside the
optimizer, thus greatly reducing the number of optimizer calls.

4) Oracle Access Advisor: Oracle Access Advisor [8] is
a SQL tuning tool for Oracle databases that recommends not
only indexes but also materialized views and data partitioning.
It selects candidate indexes based on column usage patterns
in queries, identifies candidate indexes that effectively reduce
workload execution time by executing test queries, and auto-
matically creates or deletes indexes based on changes in the
application workload. Users can specify the size of additional
space for recommendations or filter out queries that satisfy
certain conditions. Structural statistics about tables and indexes
should be collected to improve the advisor’s recommendations.

5) Index Advisor for OpenGauss: The embedded index ad-
visor [78] of openGauss employs rule-based analysis methods
to recommend indexes for a single query. As for a workload
of queries, it will first compress the workload by templating
and sampling to reduce the number of required functional
calls, recommend indexes for each query template, estimate
the benefit of each candidate index for the entire workload,
and select candidate indexes greedily, e.g. in the decreasing
order of their benefits.

The primary similarity among all these tools is that they all
use the optimizer’s hypothetical index utility and they greedily
select candidate indexes according to their benefits.

These index advisor modules play a crucial role in automat-
ing index tuning processes in large-scale database management
systems. It is noticeable that the complexity, big size, and
inefficiency of neural network models are still hindering ML-
based index selection algorithms from being deployed into real
systems.

VIII. FUTURE RESEARCH DIRECTIONS

In this section, we present possible future research directions.

A. Preprocessing for Index Tuning

Preprocessing can be extremely important to improve the
efficiency or quality of the following index selection. However,
most of existing preprocessing methods only rely on manually-
crafted rules so their benefits can be limited. Thus, we can
adopt more advanced preprocessing methods to enhance the
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semantic understanding capabilities for different tuning scenar-
ios. First, generative models such as Large Language Models
(LLMs) [47] have demonstrated excellent context understand-
ing and code generating ability [47], [128], [151]. By em-
ploying these models to learn from database code, documents,
and even historical queries and data, we can further automate
the process of generating rules that guide candidate index
generation, which currently rely on the specialized knowledge
of human engineers. Second, we can leverage LLMs to un-
derstand relationships and extract features from query SQL
statements and database schema information. These features,
combined with the current index configuration, can serve as
input to a neural network, generating index recommendations.
Now that Trummer [129] can predict data correlations from
column names with LLMs, it might be possible for LLMs to
predict potential indexes.

B. Index Benefit Estimation

It is vital to improve the transferability of existing learned
benefit estimation model. Hilprecht and Binning [56] have
shown the feasibility of a zero-shot cost model that can
generalize to different unseen database schemas. Therefore, it
is a promising direction to devise an index estimation model
that can provide high-quality estimation for unseen workloads
and databases. Siddiqui et al. [121] call for researchers to de-
sign system-agnostic estimation and selection components for
index tuning. The representation component should adapt to
the heterogeneity of features varying across database engines.
Only system-specific interaction APIs need to be implemented
for the index tuner to work for new systems26.

C. Index Selection

There are still several challenges in index selection, espe-
cially considering new database characteristics and complex
correlated database mechanisms. First, the range of index
types is extensive, such as LSM-trees [90], hashing. Current
index selection algorithms primarily focus on B-tree indexes.
Future research should intelligently recommend more suitable
index types based on specific application scenarios, and var-
ious index structures (both learned indexes [73] and adaptive
indexes [62]). Second, integrating index selection models
with recommendations for other physical designs, such as
buffer management [126], automatic compression [18], knob
tuning [148] and shard selection [57], which is not explored
enough but remains necessary and significant because the
performance of physical designs, such as MVs and indexes,
correlates with other system knobs and designs. For example,
UDO has unified transaction code variants picking, index
selection, and database system parameter tuning [133]. Uni-
Tune [147] has tuned index, knobs, and SQL query advisors
together. However, further analysis of more unified framework
requires exploring.

26Examples of system-specific APIs are parser, what-if calls, statistics
getting etc. and system-agnostic index tuning components include planner,
operations, search algorithms, and ML models [121].

D. Index Tuning from an Extensive Viewpoint

From an extensive viewpoint, index tuning should contain
index selection, index materialization, index deletion, index
suspension, invisible indexes [5], [110], and index defragmen-
tation [35], [88], [130]. Through literature review, we find
that current researches focus on directly adding or removing
indexes, but lacks enough exploration in the three areas of
improvement: (i) index materialization (when and how); (ii)
the decision-making among index deletion27, disabling28 and
invisibility29; and (iii) the timing for index defragmentation,
including whether to rebuild30 or reorganize the existing
indexes. The key point of defragmentation decision-making
is determining when index fragmentation level is too high: at
this point, the benefits of defragmenting the index outweigh
the costs associated with using an index that leads to high
random read frequencies.

IX. CONCLUSIONS

This paper provides a comprehensive review of current re-
search in Automatic Index Tuning. We give the definition
and workflow of AIT, and summarize its framework of 3
modules: preprocessing, index benefit estimation, and index
selection. We also discuss index types, index interaction,
changing factors, and automation level of AIT, summarizing
the development history of AIT in a figure. For each module
of AIT, we categorize existing solutions and introduce typical
approaches together with their advantages and limitations.
Additionally, we discuss commonly-used datasets in AIT
and applications of index advisors in major databases. We
finally propose potential future directions in AIT research.
We hope the survey provides a comprehensive summary of
current research on AIT, inspirations for better approaches to
AIT designs, and solutions for deploying AIT into database
systems.
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