2368

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

BP-Tree: A Predictive B™-Tree for Reducing
Writes on Phase Change Memory

Weiwei Hu, Guoliang Li, Member, IEEE, Jiacai Ni, Dalie Sun, and Kian-Lee Tan, Member, IEEE

Abstract—Phase change memory (PCM) has been considered an attractive alternative to flash memory and DRAM. It has promising
features, including non-volatile storage, byte addressability, fast read and write operations, and supports random accesses. However,
there are challenges in designing algorithms for PCM-based memory systems, such as longer write latency and higher energy
consumption compared to DRAM. In this paper, we propose a new predictive B -tree index, called the BP-tree, which is tailored for
database systems that make use of PCM. Our BP-tree reduces data movements caused by tree node splits and merges that arise
from insertions and deletions. This is achieved by pre-allocating space on PCM for near future data. To ensure the space are
allocated where they are needed, we propose a novel predictive model to ascertain future data distribution based on the current data.
In addition, as in [4], when keys are inserted into a leaf node, they are packed but need not be in sorted order. We have implemented
the BP-tree in PostgreSQL and evaluated it in an emulated environment. Our experimental results show that the BP-tree significantly

reduces the number of writes, therefore making it write and energy efficient and suitable for a PCM-like hardware environment.

Index Terms—Phase change memory (PCM), non-volatile storage, BP-tree, predictive model

1 INTRODUCTION

HE current established memory technologies suffer

from various shortcomings: DRAMs are volatile and
flash memories exhibit limited write endurance and low
write speed. The emerging next-generation non-volatile
memory (NVM) is a promising alternative to the traditional
flash memory and DRAM as it offers a combination of some
of the best features of both types of traditional memory
technologies.

There are some widely pursued NVM technologies:
magneto-resistive random access memory (MRAM), ferro-
electric random access memories (FeRAM), resistive ran-
dom access memory (RRAM), and phase change memory
(PCM) [13] and in this paper, we will focus on PCM tech-
nology. Like DRAM, PCM is byte addressable and supports
random accesses. However, PCM is non-volatile and offers
superior density to DRAM and thus provides a much
larger capacity within the same budget [19]. Compared to
NAND flash, PCM offers better read and write latency,
better endurance and lower energy consumption. With

e W. Hu and K-L. Tan are with the School of Computing, National
University of Singapore, Singapore 117417.

E-mail: {huweiwei, tankl}@comp.nus.edu.sg.

e G. Liand]. Ni are with the Department of Computer Science, Tsinghua
National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing 100084, China.

E-mail: {liguoliang@; njc10@mails. }tsinghua.edu.ch.

e D. Sun is with the Department of Computer Science, Harbin Institute of

Technology, Harbin 150001, China. E-mail: sdl@hit.edu.cn.

Manuscript received 11 Dec. 2012; revised 27 Nov. 2013; accepted 30
Nov. 2013. Date of publication 8 Jan. 2014; date of current version
29 Aug. 2014.

Recommended for acceptance by L. Chen.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier 10.1109/TKDE.2014.5

these features, PCM can be used as a storage between
DRAM and NAND flash, and we can expect it to have a big
impact on the memory hierarchy and adopt it as a desirable
storage for databases [4], [19]. In this paper, we focus on
designing indexing techniques in PCM-based hybrid main
memory systems.

Existing indexing techniques cannot be directly used in
PCM efficiently and there are several main challenges in
designing new algorithms for PCM. First, though PCM is
faster than NAND flash, it is still much slower than DRAM,
especially the write function, which greatly affects sys-
tem performance. Second, the PCM consumes more energy
because of the phase change of the material. We will elabo-
rate on this point in Section 2.1. Third, compared to DRAM,
the lifetime of PCM is shorter, which may limit the use
of PCM for commercial systems. However, as mentioned
in [4], [19], some measures could be taken to reduce write
traffic as a means to extend the overall lifetime. In general,
the long access latency and high energy consumption are
the major factors that affect the performance of PCM-based
memory systems.

We aim to design a write-optimized indexing technique
for PCM-based memory systems by reducing the number of
writes. As known to all, when nodes are full in traditional
Bt-tree indexing, nodes are split and half of the data on
these nodes are moved to new nodes which leads to many
extra writes. In other words, some data were written to the
wrong place initially and we can avoid such writes if we
know the future data access in advance. In [14], Nadembega
et al. proposed the Destination Prediction Model (DPM) to
predict the future movements based on historical move-
ment pattern which inspired us to propose a predictive
model to predict the future data distribution and reduce
the number of writes caused by nodes splits. We can make

1041-4347 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

the prediction based on historical data, e.g., user query log
or database access log.

In this paper, we propose BP-tree, an adaptive indexing
structure for PCM-based memory. We aim to devise new
algorithms to reduce the number of writes without sacrific-
ing search performance. Our BP-tree is able to achieve much
higher overall system performance than the classical B*-
tree. To summarize, we make the following contributions
in this paper:

(1) We propose a new predictive B-tree index, called
the BP-tree, which is designed to accommodate the
features of the PCM chip to allow it to work effi-
ciently in PCM-based main memory systems. The
BP-tree can significantly reduce both number of
writes and energy consumption.

(2) We develop a predictive model to predict data dis-
tribution based on current data, and we pre-allocate
space on PCM for future insertions to reduce the
key movements caused by node splits and merges
encountered in a typical B -tree.

(3) We implemented our technique in the open source
database PostgreSQL, and run it in an emulated
environment. The experimental results show that
our BP-tree index significantly outperforms the
state-of-the-art indexes.

The remainder of the paper is organized as follows.
Section 2 introduces PCM and related work. Section 3
presents the overview and main components of the BP-tree.
We propose the predictive model for index warm-up and
updates in Sections 4 and 5, respectively. Section 6 describes
the metrics for evaluating the predictive model and how we
can adjust the predictive strategy based on these metrics.
In Section 7, we present the main experimental evaluation.
Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we will introduce the PCM technology and
review some related work about the database design with
new memory hierarchy.

2.1 PCM Technology

PCM is a non-volatile memory that exploits the prop-
erty of chalcogenide glass to switch between two states,
amorphous and crystalline. The amorphous phase tends to
have a high electrical resistivity, while the crystalline phase
exhibits a low resistivity, giving rise to the so-called phase
change materials. The two different phases can be switched
back-and-forth reliably and quickly. For a large number of
times, the difference in resistivity is typically about five
orders of magnitude [22], which can be used to represent
the two logical states of binary data.

We present a brief comparison on the properties between
PCM and other layers in the memory hierarchy, includ-
ing DRAM, NAND Flash and HDD. Table 1 summarizes
the properties of these different memory technologies, as
presented in recent work [3], [4], [19] and the data all
corresponds to raw memory chips.

From Table 1, we see that the PCM has promising char-
acteristics. Compared with DRAM, PCM has a density

2369
TABLE 1
Comparison of Memory Technologies
| [DRAM | PCM [NAND | HDD |
Density 1X 2-4X 4X N/A
Read Latency | 20-50ns ~ 50ns ~ 2518 ~ 5ms
Write Latency | 20-50ns ~ lus ~ 500us ~ 5ms
Read Energy | 0.8]/GB 1J/GB 1.5]/GB | 65]/GB
Write Energy | 1.2]/GB 6]/GB 17.5]/GB | 65]/GB
Endurance) 106 — 108 | 10° — 10°)

advantage over DRAM. The read latency of PCM is com-
parable to that of the DRAM. Although writes are almost
an order of magnitude slower than that of DRAM, some
techniques like buffer organization or partial writes could
be used in algorithms design to reduce the performance
gap. Unlike NAND, PCM does not have the problem of
erase-before-writes and supports random reads and writes
more efficiently. Reads and writes are orders of magni-
tude faster than those of NAND and the endurance is also
higher than that of NAND. In most cases, PCM is between
DRAM and NAND Flash layer, and play a major role in the
memory hierarchy, impacting system performance, energy
consumption and reliability.

Recent studies on embedding PCM in the memory hier-
archy can be broadly divided into two categories. One is to
replace DRAM with PCM directly to achieve larger main
memory capacity. Though PCM is slower than DRAM, Lee
et al. [10] have shown that some optimizations like buffer
organization and partial writes can be used to improve the
system performance while preserving the high density and
non-volatile property. The other proposal is to replace the
DRAM with a large PCM and a small DRAM (3% - 8%
size of the PCM capacity [19], [20]) and use the DRAM as
a buffer to keep some frequently accessed data to improve
the system performance. In this paper, we will adopt the
second approach with novel revisions.

From Table 1, we can also observe that if we want to
replace the DRAM with PCM in the main memory sys-
tem, one of the major challenges is to reduce the number
of writes. Compared with reads, PCM writes incur higher
energy consumption, higher latency and limited endurance.
In this paper, the limited endurance is not our focus, since
some optimizations like round robin or write leveling algo-
rithms can be utilized when designing the PCM driver.
We mainly focus on how to reduce energy consumption,
latency and the number of writes.

2.2 Related Work

Database Algorithms Design for PCM. The recent
study [4] has outlined new database algorithm design con-
siderations for PCM technology and initiated the research
on algorithms for PCM-based database systems. The ana-
lytic metrics for PCM endurance, energy and latency are
presented and the techniques to modify the current B*-tree
index and Hash Joins based on the PCM-based database has
been proposed.

PCM-based Main Memory System. Several recent studies
from the computer architecture community have proposed
new memory system designs on PCM. They mainly focused
on how to make PCM a replacement or an addition to

2370

the DRAM in the main memory system. Although these
studies mainly focused on the hardware design, they pro-
vided us the motivation on the use of PCM in the new
memory hierarchy design for database applications. The
major disadvantages of the PCM for a main memory system
are the limited PCM endurance, longer access latency and
higher dynamic power compared to the DRAM. There are
many relevant studies addressing these problems [10], [18],
[19], [27]. In [19], Qureshi designed a PCM-based hybrid
main memory system consisting of the PCM storage cou-
pled with a small DRAM buffer. Such an architecture has
both the latency benefits of DRAM and the capacity bene-
fits of PCM. The techniques of partial writes, row shifting
and segment swapping for wear leveling to further extend
the lifetime of PCM-based systems have been proposed to
reduce redundant bit-writes [10], [27]. Qureshi et al. [18]
proposed the Start-Gap wear-leveling technique and ana-
lyzed the security vulnerabilities caused by the limited
write endurance problems. Zhou et al. [27] also focused on
the energy efficiency and their results indicated that it is fea-
sible to use PCM technology in place of DRAM in the main
memory for better energy efficiency. There are other PCM
related studies such as, [24] focusing on error corrections,
and [25] focusing on malicious wear-outs and durability.
Write-optimized B*-tree Index. Write-optimized B*-tree
index has been an intensive research topic for more than
a decade. For the BT-tree index on hard disks, there are
many proposals to optimize the efficiency of write oper-
ations and logarithmic structures have been widely used.
In [16], O'Neil ef al. proposed the LSM-tree to maintain a
real-time low cost index for the database systems. It was
designed to support high update rate efficiently. Arge pro-
posed the buffer tree for the optimal I/O efficiency in [2].
Graefe proposed a new write optimized BT -tree index in [9]
based on the idea of the log-structured file systems [23].
Their proposals make the page migration more efficient
and retain the fine-granularity locking, full concurrency
guarantees and fast lookup performance as well.

Recently, there are some proposals on the write-
optimized B*-tree index on SSDs [1], [11], [26]. The major
bottleneck of the B*-tree index for SSD is to reduce the
small random writes because of the erase-before-write.
In [26], an efficient B-tree layer (BFTL) was proposed to
handle the fine-grained updates of B-tree index efficiently.
The implementation is in the flash translation layer (FTL)
and thus there is no need to modify the existing applica-
tions. FlashDB proposed in [15] used a self-tuning database
system optimized for sensor networks. The self-tuning B*-
tree index in the FlashDB uses two modes, Log and Disk,
to make the small random writes together on consecutive
pages. Li et al. [11] proposed the FD-tree which consists of
two main parts, a head B*-tree and several levels of sorted
runs in the SSDs. It limits the random writes to the small
top BT-tree and convert many small random writes into
sequential ones by merging.

There are also some proposals focusing on the Write-
Once-Read-Many (WORM) storage [12], [17]. In [12], Mitra
proposed an inverted index for keyword-based search and
a secure jump index structure for multi-keyword searches.
In [17], Pei proposed the TS-Trees and they also built
the tree structure based on a probabilistic method. These

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

WORM indexing proposals mainly focused on designing
mechanisms to detect adversarial changes to guarantee
trustworthy search. Unlike WORM indexing, we want to
reduce the number of writes. Moreover, we can update
the index and afford the small penalty of adjustments due
to data movement if the prediction is no longer accurate
because of changes in data distributions.
Cache-optimized Tree Indexing for Main Memory
System. There are several proposals related to the
cache-optimized tree indexing for main memory systems
like Cache Sensitive BT-Trees (CSB*-Trees) [21], fractal
prefetching-B*-Trees (fpB*-Trees) [5], BD-Trees [7], [8]. The
target of them aim to make the index cache conscious.
In [21], CSB*-Trees only stores the address of the first child
in each node and the rest of the children can be found
by adding an offset to that address, because it can raise
the utilization of a cache line and further make the whole
tree cache-efficient. In [5], fpB*-Trees is proposed to opti-
mize both cache and disk performance. To make itself cache
efficient, fpB*-Trees increased the node size to be multi-
ple cache lines wide and prefetched all cache lines within
a node before accessing it. These Bt-Tree variants also
focused on the main memory indexing, they want to make
the structure cache-efficient. However, our focus is to make
our indexing write-optimized.

3 PREDICTIVE BT-TREE

In this section, we will first present the overview of BF-
tree index and then introduce the basic phases when
constructing the index.

3.1 Overview of the BP-Tree

Design Principle: Our goal is to reduce the number of
writes of both insertions and updates without sacrificing
query performance. This is achieved in two ways. First,
we adopt the Unsorted Leaf strategy in [4]. Essentially,
newly inserted keys are simply appended to the end of
the key entries. They are not necessarily in sorted order.
Second, we develop a predictive model to minimize data
writes caused by node splits and merges.

Basic Idea: The general idea is to predict the data distri-
bution based on the past insertions and pre-allocate space
on PCM for accommodating future tree nodes, which can
reduce the key movements caused by node splits and
merges. Fig. 1 illustrates the main architecture of a BF-
tree. We use the following two techniques to implement
a Br-tree.

1) DRAM Buffer. We use a small DRAM buffer to main-
tain a small B*-tree for current insertions. We also
record the summary of previously inserted keys and
use them to predict the structure of the BP-tree. If
the buffer is full, we will merge it into the BP-tree
on PCM.

2) B’-tree on PCM. Like a standard B*-tree, a BP-tree is
also a balanced multiway search tree. The key differ-
ences between the BP-tree and the B*-tree include:
(1) The structures and nodes in a BP-tree can be
pre-allocated; (2) Given a branching factor 2M of
a BP-tree, the number of children of an internal

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

DRAM

B'-tree Histogram

éé}.j\.jhﬂﬂl

BP-tree

| HINN] EEN) EEE| EEN

Fig. 1. BP-tree architecture.

node may be smaller than M, and the real num-
ber of children is between [0, 2M]; (3) The insertions
and deletions are different from the B*-tree (see
Section 5); (4) The tree construction process con-
sists of two phases: (i) warm-up phase: The first N
keys are initially inserted into the tree as a warm-
up process; (ii) update phase: All new keys are first
inserted into a DRAM buffer. Each time the buffer
is full, the keys in DRAM would be merged into
the main tree on PCM. For a search query, we will
find them from both the B*-tree in DRAM and the
BP-tree in PCM.

3.2 Main Components of BP-Tree

In this section, we will introduce the details of the construc-
tion process of the BP-tree. It consists of two phases, the
warm-up phase and update phase which will be described
in Sections 3.2.2 and 3.2.3 respectively. For ease of presen-
tation, we summarize the notations used throughout this
paper in Table 2

3.2.1 DRAM Buffer

As new keys are inserted into the the DRAM buffer, a small
standard B -tree with branching factor 2m is built in buffer.
If the buffer is full, we will flush the keys in the B*-tree to
the BP-tree on the PCM.

To capture the data distribution, we also maintain a his-
togram. Suppose the range of the keys is [L, U]. If we want
to partition the keys into buckets By, By, ..., Bjp|, the bucket
width is ===. For each bucket B;, we malntaln the number

TABLE 2
Notations

Parameter | Description |

Height of the BP-tree and BT -tree

The branching factor of the BP-tree on PCM

The branching factor of the BT -tree on DRAM

M divided by m (K is an integer and K > 1)

The i-th bucket

N The number of keys in leaf nodes buffer can hold
A The maximum number of keys one bucket can hold
w The bucket width
n

d

The node of the tree
The duplicate factor of key values

2371

Warm-up

4 B* Histogram N

A0, 19)

B:[19,32) C:[32,50)

D: [50,56) E: [56,75) F:[75, +<)

0! 20 40 60 80 100 120

-
BP-tree
[so] []
19 32[39 56]75
A B c c’ D E \ F
(Is [el []I el [sofse] [J[ss[ss[[][wshod | I/

Fig. 2. Example of a warm-up phase.

of keys that fall in this bucket. We will use the histogram
to “forecast” the data distribution.

The main function of DRAM buffer is to adaptively
adjust our predictive model based on the currently inserted
keys in a time window. Then we can use the updated pre-
dictive model to merge all the keys in the time window in
the BT -tree to the BP-tree on PCM.

3.2.2 Warm-Up Phase

Initially, the BP-tree on PCM is empty. We use a DRAM
buffer for warm-up. We create a standard B*-tree for sup-
porting insertions, deletions and search. Before the buffer
is full, we use the conventional B*-tree for the initial oper-
ations. Once the DRAM bulffer is full, all the keys in the
buffer are moved to PCM, and this step is called the warm-
up process. The main function of the warm-up phase is to
construct the skeleton of the BP-tree on PCM. Suppose the
DRAM buffer can accommodate N keys. We first predict
the total number of possible keys. Then, for each B*-tree
node, we use our predictive model to decide whether to
split it in an eager manner to avoid writes for subsequent
insertions. We will provide the details for constructing the
initial BP-tree in Section 4.

Fig. 2 shows an example for the warm-up phase. The
Bt-tree and histogram are in the DRAM and BF-tree is in
the PCM. In this example, N is 12 and the buffer is full and
thus we need to flush all the keys in the B*-tree to the PCM.
The black portion of the histogram bar indicates the number
of inserted keys in each range so far, while the whole bar
indicates the predicted number of keys in each range based
on our predictive model. We find the structure of the BF-
tree is similar to that of the original B*-tree. However, there
are two key distinctions. First, the node could be split in
an early manner if it meets the requirement of node splits.
Second, some of the nodes could underflow due to either
an enlargement of the node size or an early split. These
are guided by our predictive model and tree construction
strategy.

In the example, node C in the BT -tree is split into nodes
C and C’ when it is moved to the BP-tree, nodes B and E
become underflow because of the enlargement of the node
size, while node C and node C’' are underflow because of
the early split.

N

Freq 24
Histogram

A ﬁ _|_|/B & \ D E F £ F G
L 3812 |[1o]23] [|[o2feolss]][se] [] [s0fs3]52[ss][eels8]] esleelos]] ol T [7s]tosle1]s9 |
- _/

Fig. 3. Example for update phase.

3.2.3 Update Phase

After the warm-up phase, we have a BP-tree structure on
the PCM. Then for new operations, we use both the DRAM
buffer and BP-tree to handle the operations. For an inser-
tion, we insert it into the B*-tree. For a search query, we
search the key from both the B*-tree on DRAM and the B?-
tree on PCM. If we find it, we return the answer; otherwise
we return “null”. For delete, we search it from both the B*-
tree and the BP-tree. If we find it, we remove it from the
Bf-tree and the BP-tree. However, even if a node “under-
flows” after deletions, we do not merge it with its siblings.
The reason is that since the read latency of PCM is much
less than the write latency, the overhead caused by empty
nodes during query processing is negligible. Furthermore,
space could be reserved for future insertion keys to reduce
subsequent writes. For update operation, like other indexes,
we treat it as a deletion operation followed by an insertion.
Note that we need to update the histogram for the inser-
tion and deletion operations. If the DRAM bulffer is full, we
need to merge the BT-tree into the BP-tree.

Fig. 3 shows an example for update phase following the
earlier example described in Fig. 2. The case in Fig. 3 is that
the buffer is full for the second time and all the keys in the
Bt-tree are merged into the BP-tree described in Fig. 2. In
this example for the update phase, we want to delete the
key 5 in the BP-tree index. First, we search the B*-tree in the
buffer and cannot find it. Then we search BF-tree on PCM
and find it in node A and subsequently remove it from BF-
tree. As depicted in the figure, the histogram is updated
to reflect the effect of this deletion and the new round of
prediction is performed based on all the keys inserted cur-
rently including the keys in the buffer. Node F in the BP-tree
is split because of the similar reason as that of the node C
in Fig. 2. We will describe the details in Section 5.

4 PREDICTIVE MODEL FOR WARM-UP

In this section, we introduce a predictive model to construct
a BP-tree structure in the warm-up phase. We first discuss
how to predict the BP-tree skeleton in Section 4.1, and then
illustrate how to construct the BP-tree in Section 4.2.

4.1 Predicting the BP-Tree Skeleton
Suppose there are N keys in the DRAM BT -tree, the height
of the BT-tree is /i, and the branching factor is 2m. Since

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

we want to predict the skeleton first, the BP-tree will have
the same height as the B*-tree, but with a larger branching
order 2M = K % 2m, where K is an integer and K > 1. K
can be set by the administrator. We can also predict K as
follows.

Let T denote the total number of possible keys in the
whole dataset. We estimate T using the numbers of keys in
the histogram. Suppose the maximal number of keys inside
one bucket among all the buckets is A. Suppose the bucket

width is W = %, thus there are at most W keys in a

bucket. For duplicate keys, we calculate a duplicate factor
d which means how many percent of keys among all the

keys have duplicate values. We use N x W%‘N to predict

the possible key number T. As there are T keys in BF-tree
and N keys in B*-tree, we set K = log), 1.

Obviously, if we overestimate K, the BP-tree will be quite
sparse; on the contrary, if we underestimate the number, we
may need to do more splits. We assume that each tree node
in the final BP-tree is expected to be u% full, i.e., each leaf
node has E = 1% x 2M keys. Thus the i-th level is expected
to have Ef nodes (the root is the first level, which has only
one node).

4.2 BP-Tree Construction
In this section, we discuss how to construct the BP-tree
based on the current BT-tree structure. We traverse the
Bt-tree in post-order. For each node, we predict whether
we need to split it based on our predictive model (which
will be introduced later). If we need to split it, we split
it into two (or more) nodes, and insert separators (or
keys) into its parent node, which may in turn cause the
parent node to be split. As we employ a post-order traver-
sal, we can guarantee that the child splits are before the
parent split, and our method can keep a balanced tree
structure.

Next we discuss how to split a B*-tree node. For ease
of presentation, we first introduce a concept.

Definition 1 (Node Extent). Each node n in the index tree
is associated with a key range [n;, n,], where n; and n, are
respectively the minimum key and the maximum key that could
fall in this node. We call this range the extent of the node.

The extents of node A and B of the B*-tree in Fig. 2
are [0, 19) and [19, 32) respectively. If a node is not the left-
most or the rightmost child of its parent, we can get its
extent from its parent except for the root node; otherwise
we determine it from its ancestors.

Consider a BT-tree node n on the i-th level. Suppose
its extent is [Key,,i,. K€Yl and currently it has |n| keys,
key,, keyy, - - -, key,,. We access the keys in order. Suppose
the current key is key.. We next discuss whether to split
the node according to key; as follows. As key,,;, is the
possible minimum key in the node, we first estimate the
number of possible keys between key,,;, and key;, denoted
by P(key,,,, key;). Then we estimate the number of keys
that can be accommodated between key,,;, and key; on the
BF-tree, denoted by A(key,,;;,, key)).

Obviously if P(key,,;,, key;) < A(key,,;,, key;), we do not
need to split the node according to key;; otherwise we
need to split the node. We generate a BP-tree node with

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

keys Keyn, - .., key;_1, remove the keys key,;,, ..., key;_;

from the DRAM B-tree node, insert the key key; to its
parent on DRAM Bt-tree, and update the pointers of the
BT-tree node: the left pointer of this key points to the BP-
tree node, and the right pointers of this key points to the
Bt-tree node. Next we repeatedly split the node with keys
key;, ..., key), (Note that key; turns to the first key in the
new node). If we cannot split the node for the last key, we
will create a BP-tree node with the same keys in the B*-
tree node, and update the pointer of its parent to the BP-tree
node. Next we discuss how to predict A(key,,;,, key;) and
P(keY i, key;).

Predicting the number of possible keys between key,,;,
and key;: If key,,;, and key; are in the same bucket Bs,
we can estimate P(key,,;,, key;) as follows. Based on the
histogram, there are 1, keys in the bucket. Then the num-
ber of keys between key,,;, and key; can be estimated by
(key; - keyyin) x 5. Thus the number of possible keys in
the range is

P(KeY,in: key,) = K x (key; — key,y;,) x ’iv\j 1)
if key,,;, and key; are in the same bucket B;.

On the contrary, if key,,;, and key; are in different buck-
ets, we estimate the number as follows. Without loss of
generality, suppose key,,;,, is in bucket Bs and key; is in
bucket B,. Let BY denote the upper bound of keys in bucket
Bs and B!, denote the lower bound of keys in bucket B. Thus
the number of keys between key,,;, and key; in bucket B; is
(BY-key,iy) x 5. The number of keys between key,,;, and
key; in bucket B, is (key; - Bé) x"—v*}. Thus the total num-
ber of keys between key,,;,, and key; is (By-key,,) x5 +
el e+ (key; - Bl) x 5. Thus the number of possible
keys between key,,;,, and key; is

n
P(KeY,yin, key;) = K x ((BY — key,y) x Ws +
e—1 1y
!
> m+(key; =By x o). (2)
t=s+1

if key,,;, and key; are in different buckets.

Predicting the number of keys that can be accommodated
between key,;, and key;: Node n has |n| keys and it is
expected to have E keys, thus the number of accommodated
keys in this node is E — |n|. Thus

A(KeY iy, key;) = min(key; — key,,;,,, E — [n]),

if n is a leaf node.

If node 7 is a non-leaf node, we can directly add j chil-
dren between the two keys. In addition, we can also add
some keys between key,,;, and key; as there are E—|n| posi-
tions which are not used in the node. Obviously, we insert
at most min(key; — key,,;,,, E — |n]) keys in the node. Thus
we can add at most ¢ = j + min(key; — key,;,,, E — |n|) chil-
dren under the node between key,,;,, and key,. As node n is
in the i-level, the children are on i + 1-level. As each child
can have E keys and E + 1 children, each node can have
(E + 1)"7"=1 descendants. Thus there are ¢ x Z?;é_l (E +
1)! nodes between the two keys. As each node can

2373

accommodate E keys, the total number of accommodated
keys is

h—i—1

A(KeY,in. key) =E xcx Y (E+ 1), (3)
t=0

if node 7 is a non-leaf node.

To summarize, we can use the predicted numbers to split
the nodes. Iteratively, we can split all the nodes and insert
the new nodes into PCM. Fig. 4 illustrates the algorithm.
The Warm-up algorithm first traverses the B*-tree in post-
order by calling its function PostOrder (line 4). Function
PostOrder splits the nodes iteratively. Given a node n on
level i, it checks whether the node should be split by call-
ing function Split (line 4), which is used to split a node
based on our predictive model. If our model decides to
split node 1, we generate a BP-tree node with keys, key,,;,,
e key]-_l (line 6), remove the keys, key,;,, ..., key]-_l,
from the DRAM B*-tree node (line 7), insert the key key;
to its parent on DRAM B-tree (line 8), and update the
pointers of the B*-tree node: the left pointer of this key
to the BP-tree node, and the right pointers of this key to
the B*-tree node. Next we repeatedly split the node with
keys, key;, ..., key, (line 9). If we cannot split the node
for the last key, we will create a BF-tree node with the
keys, and update the pointer of its parent to the BF-tree
node (line 10). Iteratively, we can construct the BP-tree
structure.

As shown in Fig. 2. The previous node C is split into
two nodes C and C’, though it is not full. Since there
are only two keys in previous node C, we shall calculate
A(key,,i,, key,) and P(key,,,, key,) as follows. A(key,,;,,
key,) = min(39 — 32,4 — 2) = 2, P(key,;;,, key,) = (39 —
32) 2% =2.8. As A(key,,;,, key,) < P(key,,;,, key,), accord-
ing to the algorithms in Fig. 4, node C needs to be split
and a new node C’ is created and then we update the
pointers.

5 PREDICTIVE MODEL FOR UPDATES

In this section we propose a predictive model for the
update phase and we will describe the basic operations
of the BF-tree. We will discuss the search and deletion
operations in Sections 5.1 and 5.2 respectively. The inser-
tion will be finally illustrated in Section 5.3. The search
and deletion operations are generally the same as those
in the standard B*-tree except that we have to deal with
unordered leaf entries. While the insertion is quite differ-
ent and is the major point we will discuss in the following
section.

5.1 Search

Since we use a small DRAM as a buffer, some newly
inserted keys will still be in the main memory B-tree
and have not been merged into the main BP-tree on PCM.
Thus, both the Bt-tree and BP-tree need to be searched.
We first lookup the small B*-tree in the buffer, and then
search the main BP-tree. As noted, since the entries within
a leaf node of the BP-tree may not be sorted, the search
will examine every key entry. If neither of the two steps

2374

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

Algorithm 1: Warm-up(B*-tree, Histogram)

Algorithm 2: Search(B*-tree, B?-tree, key)

Input: Bf-tree and Histogram in DRAM Buffer
Output: BP-tree on PCM

1 begin

2 Let r denote the root of the Bt-tree;

3 Level i =0 ;

4 PostOrder (r, i, Histogram) ;

5 end

Function PostOrder (n, i, Histogram)

Input: n: BT-tree node; i: Level of n; Histogram
Output: BP-tree nodes

1 begin

2 for each child c of n do

3 L PostOrder (¢, ¢ + 1, Histogram);

4 keyj = Split (n, i, Histogram);
5 while key; ! = ¢ do

6 Generate a BP-tree node with
keymin" o /keyjfl;

7 Remove keys before keyj from node n;

8 Insert key; to the parent of n on Bt-tree
and update the pointers ;

9 Split(n, i, Histogram);

10 Generate a BP-tree node with

Key,ins - ,keyjfl, remove node n, update the
pointer of n’s parent;
11 end

Function Split (n, i, Histogram)

Input: n: BT-tree node; i: Level of n; Histogram
Output: Key: Split Key
1 begin

2 Let key,,,,,, denote the first key in node n ;
3 for j =2,3,---|n| do

4 if PredictTwoKeys (key,,,;,, key;, i) then
5 | return key; ;

6 return ¢ ;

7 end

Function PredictTwoKeys (key,,,;,,, key; His-
togram)

Input: key,,,;,; key;; Histogram
Output: True or false
1 begin
2 Compute A(key,,,;,, key;) ;
3 Compute P(key,,;,, key,) ;
4 if A(KeY, ;. key;) < P(Key,,;,, key;) then
return true;
5 else return false;
6 end

Fig. 4. Warmup algorithm.

return any results, null will be returned. The above steps
are summarized in Fig. 5. Obviously the time complexity
of the search operation is O(h), where F is the height of the
BP-tree.

Input: B -tree; BP-tree; A search key
Output: Search result
begin

[y

2 | Search both B*-tree and B?-tree using key ;

3 if Find key in B*-tree or find key in B’-tree
then

4 L return the entry or entries;

5 else

6 | return null;

7 end

Ei

g. 5. BP-tree: Search operation.

5.2 Deletion

Similar to the search operation, the deletion operation also
requires searching both BP-tree and B*-tree. A deletion on
the BP-tree is handled in a similar way as that for standard
Bt-tree with two differences. First, the deleted entry can
be replaced by the last key entry in the node. This is to
pack the entries within the leaf node. Second, if the cor-
responding leaf node has fewer than M keys, we will not
borrow keys from its siblings. This can avoid the merge
operations. The reason is that since the read latency of PCM
is much shorter than the write latency, the overhead caused
by the empty node in the query processing stage is negligi-
ble. Furthermore, the space could be reserved for the future
keys to reduce subsequent writes. Note that we also need
to update the histogram.

Given a key to delete, we first search it in Bt-tree. If we
find the entry, we directly remove it. Otherwise we search it
in BP-tree. If we find the leaf node in the BP-tree, we remove
the key from the node. Note that we will not do merge
operations even if the node has less than half (M) keys. We
do not propagate the deletion operation to its ancestors.
The above steps are summarized in Fig. 6. Obviously the
time complexity of the deletion operation is O(h).

Algorithm 3: Delete(B*-tree, BP-tree, key)

Input: B*-tree, BP-tree, key
Output: Delete status

1 begin

2 result « false ;

3 | Search the BT-tree using key ;
4

5

if Find key in Bt -tree then
delete the entry in a B-tree operation
manner;

6 result « true ;

7 Search the BP-tree using key ;

8 if Find key in BP-tree then

9 remove the entry from the leaf node;
L result « true ;

11 return result ;
12 end

Fig. 6. BP-tree: Deletion operation.

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

Algorithm 4: Insert(B™-tree, BP-tree, key)

Input: B*-tree, BP-tree, key
Output: Updated BP-tree
begin
Search the leaf node for key, L ;
Upgrade (L, Histogram);
end

W N =

Function Upgrade (n, Histogram)

Input: n: A BP-tree node, Histogram
begin

1

2 PNO,, — GetPredictedNumber(n);

3 ANO,, — GetAccomodatedNumber(n);

4 if PNO, < ANQO,, then

5 insert key into n;

6 return;

7 else

8 midKey «— GetMiddleKey(n);

9 midKey is pushed upward to the parent p

10 A new leaf node 7' is created and new
pointer from the parent node to n’ ;

1 Remove keys larger than midKey from n
ton;

12 Upgrade (p, Histogram) ;

13 end

Fig. 7. BP-tree: Insertion operation.

5.3 Insertion

BP-tree is designed by adding the DRAM buffer and a
predictive model, thus both the B*-tree in buffer and the
histogram of the predictive model need to be instantly
updated. When the buffer is full, the BT -tree will be merged
into the main BP-tree on PCM.

All the keys in the B -tree will be inserted into the main
tree one by one. Once a key is to be inserted, we first look
up the leaf node L that the new key belongs to as the
standard Bf-tree. Then we predict whether it should be
directly inserted into the node or the node should be split.
We first compute the number of keys that can be accommo-
dated in this node L, denoted by ANOr. We then predict
the number of keys that could fall in this node, denoted by
PNOy. If PNO;, = ANOj, we need to split the node; oth-
erwise, we will not. If we need to split the node, a new
leaf node will be created and a “middle” key will be cho-
sen based on the predictive model and pushed upward to
the parent node. Existing keys in the node L needs to be
adjusted according to the “middle” key. The middle key
is not the key in the median position as BT-tree. Instead,
we need to select a median key based on the data distri-
bution. As we insert a middle key into its parent, it may
cause its parent to split. The above steps are summarized in
Fig. 7. Next, we discuss how to compute PNO,, and ANO,,
for node n.

Computing the accommodated key number of node 7,
ANO;;: Suppose node 7 is in the i-th level. Each node has
at most 2M keys and 2M+1 pointers, thus node 7 has

2375

Z’t:ll (2M + 1)! descendants. Thus the accommodated key
number of node 1 is

h—i
ANO, =2M Y M +1)". (4)
t=0

Predicting the possible key number occupancy in node 1,
PNO,;: Next we predict the total number of keys that could
potentially belong to this node. We first find the extent of
this node, denoted by [key,,;,.. KeY, .,], where key,,;, and
key,,.., are respectively the minimum key and the maximum
key in this node. Based on the two bounds, we can compute
the number of possible keys fell into this node as discussed
in Section 4.2.
If key,,,, and key,,;, are in the same bucket Bs,

n
PNO, = K x (K& 0 — K€Y ,in) X WS; (5)

otherwise if key,;, and key,,, are respectively in two
different buckets B; and B,.

PNO,, = K x ((B" — k&Yi) X %Jr

e—1 (6)
n

Z ny + (keymax - Bé) X Wh)

t=s+1

Based on ANO,, and PNO,,, we can decide whether to

split a node n. Next we discuss how to select a middle key
if we need to split a node.
Computing the middle key in node n, midKey: Consider
the keys in n are keyy, key,, ..., key|n|. Without loss of gen-
erality, suppose key; < key, < --- < key|,. Based on extent
of a node, we define the middle key formally.

Definition 2 (Middle Key). A key key; in node n is called a
middle key if

P(key, ;.. ki
P(keyminv keyl) < (ey%%”x)’

2 ’
where P(keyl-,key]-) denote the number of predicted keys
between key; and keyj,

P(keymin’ keyi+1) >

A straightforward method to find the middle key from
a node is to compute P(key,,;,,, key;) for each i from 1 to ||
until we find the middle key. The complexity is O(M). If
the keys are sorted, e.g., the keys in an internode, we can
use an alternative method. We have an observation that
if the keys are sorted, P(key,,;,, key;) = P(key,,,, key;) for
i < j as formalized in Lemma 1. Thus we can employ a
binary search method to find the middle key and reduce
the time complexity to O(log M). If the keys are unsorted,
the complexity is O(M).

Lemma 1. Given a node n with keys ordered as key,, key,, ...,
key,,, and two keys Key,,;, < key, and key,,, > key,,, we
have

P(keYyin, key;) < P(keYyi,, key;)

fori<j.

2376

Proof. Based on the definition of P(key,,,,key,) in
Equation 1, P(key,,;,. key;) monotonically increases with
the increase of i. Then the lemma is proved. O
Thus the worst-case time complexity of an insertion

operation is O(M + h x log M), where M is the branching

factor and / is the height.

6 EVALUATING BP-TREE

In this section, we will first introduce some metric to eval-
uate the status of our index. Then we will discuss the
concurrency problem of our index. Finally, the recovery
techniques of our index are illustrated.

6.1 Metric Evaluation

In this section, we introduce several metrics to evaluate the
status of BP-tree and use them to guide prediction which
is necessary to keep the tree balanced.

The first metric is insertion overflow. When inserting a
new entry into the BP-tree, we employ a leaf-to-root way,
that is we always insert a key into leaf node first. If the
node overflows, it needs to be split and some of the keys
need to be moved to other nodes. Obviously, the larger the
number of keys in a node is, the higher the probability to
split will be. Thus we can use the number of keys in a node
to evaluate the degree of insertion overflow.

The second metric is unqualified-node ratio. A node is
called an unqualified node if its key number is smaller than
M. If there are many unqualified nodes, the constructed BF-
tree is very sparse. For a node 7, the smaller the value of
Neys, the sparser the tree will be. To evaluate the overall
BP-tree, we need to consider all tree nodes. Let 1, denote
the number of unqualified nodes. The larger the value of
nun, the sparser the BP-tree is. We can easily determine 1,
as follows. Initially, all nodes are unqualified nodes and 1
is the total number of nodes. When inserting a key, if an
unqualified node turns to be a qualified node (with key
number no smaller than M), we decrease the number 7,
by 1.

Next we combine the above two factors to evaluate a BP-
tree. As the expected utilization is ;1% and then the average
key number of a node is ;1% x2M, we can use the following
equation to evaluate the BP-tree,

Q=) 8 % (geys — % x 2M), @)
n
where

Mkeys

Key,——key,— (Mkeys = 1% x 2M)
' ®)

kGYIrlax_keymin (nke s < /'LD/O X ZM)
Nieys Y

and [key,,;,,, k&Y.,] is the extent of node n and p is 69 for
the standard B*-tree in [6].

Formula (8) is used to reflect the filling degree (sparse
or dense) of the nodes. If Q is larger than 0, then it means
that the BP-tree is very dense. The larger the value of Q,
the denser the BP-tree will be. However it may involve
many more numbers of writes when the tree needs to be

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

reorganized. If Q is larger than an upper bound 7, we need
to tune our model to do more splits when merging B*-tree
with BP-tree. For example, in the extreme case when many
keys are inserted in order, they will be firstly inserted into
the top DRAM B+-tree. After the DRAM B+-tree becomes
full, if they are merged into the BF-tree, some nodes in BF-
tree may become very dense (i.e., the metric Q is larger
than an upper bound t,), then we will tune our model
to do more splits during the real merge process. Thus the
extreme case can be solved and performance of our index
can be guaranteed.

Conversely, if Q is smaller than 0, BP-tree is very sparse.
The smaller the value of Q, the sparser the BF-tree will
be. If Q is smaller than a lower bound 7, we need to
tune our method to reduce the number of splits. Thus in
the worst searching cases, when each of the nodes in the
index reaches the lower bound 7, the searching complex-
ity can be log(u%x2M—|z)) Nt, Nt is the number of the total
entries. However, in most cases, the searching bound can
be lognNj.

6.2 Concurrency Discussion

Next we briefly discuss the concurrency performance of
our BP-tree. Admittedly, we have added the DRAM B+
tree part. The accesses to DRAM B+ tree are excluded by
write lock for a short period when merging happens. The
range of entries to be merged in the DRAM B+ tree can
be pre-calculated and a write lock that would happen on
the range can be easily utilized. Then the CPU time can
be well saved in a batch fashion during the merging pro-
cess without attempts to consider each entry individually.
In addition, the size of the DRAM B+ tree is very small.
Above all, the basic structure of our proposed index has few
modifications compared with B+ tree index. Therefore our
proposed index has comparable concurrency performance
with B+ tree and the traditional concurrency techniques
used for the B+ tree can be applied to our index with minor
revisions.

6.3 Recovery Discussion

Of course, we are faced with the classical recovery prob-
lem: to recover the work that has been done in memory
after a crash. Actually, we do not need to create special
logs for the newly inserted indexes. Because the transac-
tional insert logs for the newly entries can be written out
to a sequential log file during the normal course of events.
It is the matter to treat the insert logs as a logical base for
reconstruction. This minor revision can be easily applied
to the system recovery algorithm. Further, the size of the
DRAM B+ tree is very small and this will make little sense
to overall performance of our proposed index.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our pro-
posed BP-tree. We start by introducing the simulation
platform and experimental setup. Then extensive exper-
iments are conducted to evaluate the effectiveness and
efficiency of our BP-tree index.

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

TABLE 3
Parameters and Their Value Ranges

| Parameter [
Size of DRAM buffer
Size of cache line
Size of the BT -tree node
Size of the BP-tree node

Value Ranges |
5% of the size of the PCM used
64B
256B (4 cache lines)
256B, 512B, 1024B
(4, 8, 16 cache lines)
K 1,2,4
Number of keys in 5 millions
the data set

7.1 Experimental Setup

Experimental platform. Similar to the method proposed
in [4], we also extended a cycle-accurate out-of-order X86-
64 simulator, PTLsim!, with PCM support. We model data
comparison writes for PCM writes. When writing a cache
line to PCM, we compare the new line with the original line
to compute the number of modified bits and the number
of modified words. The former is used to compute PCM
energy consumption, while the latter impacts PCM write
latency. In addition, we record the execution time in cycles
for the entire operation. Based on the benchmark used
in [3], [4], [19], the parameters are set as follows: the read
latency of a PCM cache line is 288 cycles; the write latency
of PCM is 281 cycles for every 4 bytes; the read latency of
a DRAM cache line is 115 cycles and the write latency of
DRAM is 7 cycles for every 4 bytes. In PCM, the energy
consumption is estimated as: the read energy per bit is 2p]
and the write energy per bit is 16p]. In Table 3, we list the
other parameters used in our experiments and their value
ranges.

The experiments were conducted in CentOS release 5.6
with g++ 4.1.2. Our system is powered with a 16-core Intel
Xeon E5620 2.4GHz CPU and 64GB main memory.
Datasets and workloads. In order to fully evaluate the per-
formance of our proposed index, we utilize two synthetic
and one real datasets in our experiments and next we will
introduce the details.

For the synthetic datasets, one is generated to follow
the uniform distribution, the other follows the skewed dis-
tribution. The skewed data is with the Zipf factor 1. We
generate 5 millions distinct keys in each dataset. Each index
entry contains a 4-Byte key and a 4-Byte pointer. We gen-
erate various workloads to evaluate the performance of

1. http://www.ptlsim.org

2377

our index. The search queries are composed of both the
point queries and range queries. Based on the experimental
results, we find that similar to the skewed dataset the per-
formance of our proposed index on uniform dataset also
shows obvious priority over the other indexes. Thus due
to the space limitation we only discuss the results on the
skewed.

The real dataset is obtained from the TPC-C Order table.
The TPC-C workload showed higher temporal and spatial
localities of index operations than synthetic workloads.

In our experiments, the node size of the DRAM BT -tree

is 256B, which is equivalent to 4 cache lines; whereas the
node size of all tree structures on the PCM varies from
256B, 512B to 1024B. The size of the DRAM buffer used
is approximately 5% of the size of the PCM. The update
operation is processed as a deletion operation followed by
an insertion operation.
Algorithms compared. We compare four different indexing
structures including our BP-tree, the traditional Bt-tree, the
proposed Unsorted Leaf tree in [4] and our BP-tree with
sorted leaf nodes.

As the BP-tree is a composite structure including the
main Bf-tree on PCM and the small buffer Bt-tree on
DRAM, we need to determine how to compute each per-
formance metric first. In the performance evaluation, we
only consider the PCM cost while calculating the num-
ber of writes and the energy consumption. As for the CPU
cost, the CPU cycles occupied for manipulating the DRAM
BT -tree are recorded, which can represent a more accurate
processing time.

In all figures presented in this section, “BP-tree” rep-
resents our BP-tree; “B-tree” represents the traditional B*-
tree; “Unsorted” represents the proposed unsorted leaf tree
in [4]; and “BP-minus” represents BP-tree with sorted leaf
nodes. The x-axis represents the node size of the corre-
sponding tree, e.g., x-coordinates 4 indicates that the node
size of the corresponding tree is 4 cache lines.

7.2 Results and Analysis
7.2.1 Insertion

First we evaluate the insertion performance of BP-tree. In
Fig. 8, we compare the insertion performance of four tree
indexing schemes. The three subfigures correspond to our
three metrics respectively. In each subfigure, we present the
performance of the four tree structures with three different
node sizes. The scale of y-axis in Fig. 8(a) and (b) are both

20 50 4
B-tree m— B-tree m 204 B-tree
BP-minus =TT BP-minus 169 35 BP-minus i 4.05
Unsorted 49.3 40 Unsorted ¢ Unsorted ¢
15 | BP-tree = BP-tree 100 3 BP-tree
_ 308232 = P / =) 25
= ‘ / E '61 /i b i
7 I = e o w
o N =) 5 | 7 2
g 3 2 g & ‘ 3
= S 8 & 15
1
10
0.5
; | 0 : i | 0 § o
8 16 4 8 16 4 8 16
Node Size (cache lines) Node Size (cache lines) Node Size (cache lines)
(a) (b) (c)

Fig. 8. Insertion performance. (a) Writes. (b) Energy. (c) Cycles.

2378

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

5 2000 20
B-tree B-tree B-tree m—
BP-minus & BP-minus i BP-minus i
4 Unsorted Unsorted ¢ Unsorted
BP-tree 1500 | BP-tree 15 BP-tree
< = >
&3 £ &
7 3 1000 7 10
£ 2 2 IS
2 w 9
1 500 5
0 [N o AN 0 I 4 i 0 i NN AN
4 8 16 4 8 4 8 16
Node Size (cache lines) Node Size (cache lines) Node Size (cache lines)
(a) (b) (c)

Fig. 9. Update performance. (a) Writes. (b) Energy. (c) Cycles.

in millions. We get two interesting observations from the
results.

First, our BP-tree achieves the best performance on all
the three metrics and the performance gap increases as
the node size becomes larger. The reason is that for large
node sizes, our predictive model can estimate the splits
more accurately, which can significantly reduce the num-
ber of writes by avoiding online splitting. On the other
hand, Unsorted outperforms B*-tree and BP-minus. This is
because most writes will appear in leaf nodes and Unsorted
can reduce the number of writes on leaf nodes. Our BP-tree
outperforms the Unsorted scheme, as it splits the nodes in
advance, which can reduce the numbers of future splits. BF-
tree incurs about 5%, 22%, 37% less PCM writes than the
Unsorted scheme on the three different node sizes respec-
tively. For energy consumption, the result is very similar to
that of the writes. For CPU cycles, the gap becomes slightly
smaller because BP-tree incurs extra CPU costs on the small
Bt-tree in the DRAM buffer. However, BP-tree still per-
forms better than the Unsorted tree by a factor of 18% when
the node size is 16 cache lines.

Second, we compare the performance of the two tree
indexes with sorted leaf nodes, BP-minus and Bt-tree.
BP-minus outperforms B*-tree in all metrics. BP-minus
reduces about 25%, 33%, 42% of writes compared with
Bt-tree. Similar trend is observed in energy consumption.
For CPU cycles, the gap is not that significant due to the
extra cost on the small BT-tree in DRAM buffer. However,
BP-minus still reduces 14%, 22%, 35% more cost than that
of Bt-tree.

7.2.2 Update

In this section, we evaluate the update performance of
BF-tree. We first insert all the keys as the previous inser-
tion experiment and then we generate 100k update queries

15 8

B-tree mmm—
BP-minus
Unsorted

BP-tree 6

4 I
2 | I
0
4 8 16

Node Size (cache lines)

B-tree mm—
BP-minus
Unsorted
BP-tree

Cycles(E+6)
Cycles(E+9)

4 8 16
Node Size (cache lines)

(a) (b)

Fig. 10. Search performance. (a) Point query. (b) Range query.

randomly. The update query consists of two keys, oldKey
and newKey. We first search the oldKey. If we find it,
we delete it and insert the newKey. Otherwise, we will
ignore the insertion request. In Fig. 9, we compare the
average update performance of our BP-tree with the other
three indexes. The result is similar to that of the insertion
performance.

Our BP-tree still achieves the best performance among
all the three measures. The main reason is that our BP-tree
can predict future insertions and can pre-allocate space to
reduce the number of writes. Compared to Unsorted, our
BP-tree reduces 24% of the writes, 26% of the energy and
19% of the CPU cycles, when the node size is 16 cache
lines.

Compared with the traditional B*-tree, the performance
of BP-minus is better. It reduces 14% of the writes, 22% of
the energy and 7% of the CPU cycles and the gap increases
as the node size becomes larger.

7.2.3 Search

The philosophy of BP-tree is two-fold: 1) BP-tree is designed
to reduce the number of writes on PCM, and 2) BP-tree
should be efficient for query processing as well. In this sec-
tion, we evaluate the search performance of BF-tree. The
experiments include point queries and range queries. We
experiment on both the uniform and skewed datasets. We
first insert all keys into the index. Then for both point query
and range query, we randomly generate 50k queries and
calculate the CPU cycles during the processing.

In Fig. 10, we compare the search performance of the
four tree indexes. The left subfigure is for point query and
the right one is for range query. The y-axis represents the
total CPU cycles to run these search queries. For point
query, the performance of BP-tree is better than Unsorted.

0.8

0.7

0.6 k
0.5 i
0.4 F£

03}

Leaf Nodes Utilization
’. H\Q

02 F

BP-tree-8 e
BP-tree-1

05 1 15 2 25 3 35 4
Number of Insertions

0.1

Fig. 11. Leaf nodes utilization.

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

2379

Cycles(E+10)
Cycles(E+9)
Cycles(E+6)

Node Size (cache lines)

(a)

Fig. 12. Sensitivity to data distribution changes. (a) Insertion. (b) Update.

This is because when we process the search query, we sim-
ply scan the node and once we find the key, we will return
the associated data. If the BP-tree has more leaf nodes than
Unsorted, some keys located in the right part of some nodes
in Unsorted may be in the left part of some nodes in BP-tree
and thus more cache line reads are needed. The perfor-
mance of BP-minus is better than that of Unsorted, which
is expected since each search in Unsorted should read all
the keys in the leaf node.

For range query, we can find that when the node size is 4
cache lines, the performance of our B?-tree and BP-minus is
worse than that of the B*-tree and Unsorted. Because when
the node size is small, the tree will be more sensitive to the
split strategy and generate more leaf nodes which could
affect the range search performance. When the node size is
larger, all the four tree indexes show a similar performance.

7.2.4 Node Ultilization

In this experiment, we compare the leaf node utilization of
the BP-tree and the traditional B*-tree. Fig. 11 shows the
results. The experiments are same as the insertion perfor-
mance experiment and we build the two trees based on
the same data set and calculate the leaf nodes utilization
periodically during the insertion. The scale of the x-axis
is 0.5 million. The suffixes -4, -8, -16 in the figure indi-
cate different node sizes. As we can see in the figure,
the leaf node utilization of the Bt-tree is stable, around
70% which is close to our assumption in Section 6. When
the node size of the BP-tree is 4 cache lines which is the
same as that of the BT-tree, the utilization is similar to
that of the BT-tree at first and then decreases as early
splits happen and then it increases as the evaluation met-
rics described in Section 6 starts to work. When the node
size is 8 cache lines, the utilization is smaller than that
of the B-tree at first because of the enlargement of the
node size and then it starts to increase. The result for the

8
Node Size (cache lines)

o, Effoe mm—

30

‘ Unsorled
0 JJ
Node Siz (ache ling ; Number of Insertions

©) (d) (©)

(c) Point search. (d) Range search. (e) Leaf node utilization.

Cycles(E+8)
N
8

3

Leaf Nodes Utilization

BP-tree-8 -
BP-tree-16_—«
15 2 25 3 35 4

05 1

node size of 16 cache lines is similar. The stable utiliza-
tion of all the three different BP-tree indexes are all slightly
smaller than that of the traditional B*-tree, but according
to the previous range search experiment, the influence of
the utilization gap on the range search performance is not
obvious.

7.2.5 Sensitivity to Data Distribution Changes

In this section, we evaluate the sensitivity of our predic-
tive model when data distribution changes. We change the
dataset as follows. The size of the dataset is 5 millions and
the dataset follows a skewed (Zipf) distribution. However,
we gradually change the Zipf factors and add a random off-
set every one million keys generated, resulting in a change
of the data distribution. We did the insertion, update, search
experiments as in previous sections. In Fig. 12, we show
comparisons of the CPU cycles of all the four tree indexes
with respect to different operations.

Meanwhile we find the performance of insertion, update
and point search is very similar to that of the previous
experiments. For the leaf node utilization, when the node
size is 4 cache lines, the trend of the first half is similar
to that of the previous result, but the utilization decreases
slightly as the second half starts and increases again at
last. Because the changes of data distribution caused a
wrong prediction from the predictive model and further
caused some improper splits. After that the predictive
model adjusts its prediction via the evaluation metrics and
makes the structure normal again.

Fig. 12(e) reveals the stable utilization value is a bit
smaller than that of the previous experiments, which may
have also caused the range search performance to degrade
slightly as shown in Fig. 12(d).

To sum up, the BP-tree achieves excellent performance
under different data distribution.

B-tree s

30 T T T

FD-Tree s
B-tree 5
BP-minus @7
Unsorted mummmm
BP-tree 72

KXXN
25

20

Cycles(E+9)

7 T T T 3000 T
FD-Tree &5 FD-Tree
6 B-tree 2500 -
5 BP-minus BP-minus
e Unsorted = 2000 |- Unsorted
+ BP-tree "~ =] BP-tree
o 4+ =
ng’ g 1500 R
£ 3r §
E oLl @ 1000 |
1 L 500 F
NE= &
. NGz
4
Node Size (cache lines) Node

(a)
Fig. 13. TPC-C trace. (a) Writes. (b) Energy. (c) Cycles.

Size (cache lines)

(b)

Node Size (cache lines)

(c)

2380

7.2.6 Scalability Analysis

In this section, we use the real TPC-C trace to eval-
uate BP-tree. Besides, in order to fully prove that our
proposed indexes can be excellently suited to PCM, we
have added the FD-Tree index experiments to make com-
parison. Because the FD-Tree is almost the best representa-
tive index which adopts the batch or lazy idea to convert
the random writes into sequential ones which has been
proved in [11]. The experiments is depicted in Fig. 13.
However, the FD-Tree shows the worst performance in
the PCM. Because the core idea of FD-Tree is to con-
vert the small random writes into sequential ones which
is quite appropriate for the disk or SSD. However, the
index has to incur large numbers of write operations.
In FD-Tree, the update entry has to be copied from the
top level to the lowest level and produce many unneces-
sary writes. For PCM, the random and sequential writes
have few performance differences then this idea is not
helpful.

8 CONCLUSION

In this paper, we proposed the BP-tree index for the non-
volatile memory PCM. The major design objective of our
BP-tree is to reduce the number of writes and energy con-
sumption while keeping the tree construction and search
efficiency. We developed a predictive model to predict
future data distribution based on the current data access
and pre-allocate space to reduce the possible writes caused
by node splits or merges. We presented the model and
show some metrics to evaluate the performance of our
model. The experiments on PostgreSQL database system
showed that our BF-tree indexing scheme achieves better
performance than the traditional Bf-tree and outperforms
the state-of-the-art solutions. Additionally, our BP-tree can
be easily implemented in the current commercial database
with minor revisions.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China under Grant 61272090 and
Grant 61373024, National Grand Fundamental Research
973 Program of China under Grant 2011CB302206, Beijing
Higher Education Young Elite Teacher Project under
Grant YETP0105, a project of Tsinghua University under
Grant 20111081073, Tsinghua-Tencent Joint Laboratory for
Internet Innovation Technology, and the “NEXT Research
Center” funded by MDA, Singapore, under Grant WBS:R-
252-300-001-490.

REFERENCES

[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh,
“Lazy-adaptive tree: An optimized index structure for flash
devices,” Proc. VLDB, vol. 2, no. 1, pp. 361-372, 2009.

[2] L. Arge, “The buffer tree: A new technique for optimal I/O-
algorithms,” in Proc. WADS, Kingston, ON, Canada, 1995,
pp- 334-345.

[3] F. Bedeschi et al, “A multi-level-cell bipolar-selected phase-
change memory,” in Proc. IEEE ISSCC 2008 Dig. Tech. Papers, San
Francisco, CA, USA, pp. 428-625.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

[4] S. Chen, P. Gibbons, and S. Nath, “Rethinking database algo-
rithms for phase change memory,” in Proc. CIDR, Asilomar, CA,
USA, 2011.

[5] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin, “Fractal
prefetching B+-trees: Optimizing both cache and disk perfor-
mance,” in Proc. 2002 ACM SIGMOD Int. Conf. Management Data,
New York, NY, USA, pp. 157-168.

[6] D. Comer, “The ubiquitous B-tree,” ACM Comput. Surv., vol. 11,
no. 2, pp. 121-137, 1979.

[7] B. Cui, B. C. O0j,]J. Su, and K.-L. Tan, “Main memory indexing:
The case for BD-tree,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 7,
pp- 870-874, Jul. 2004.

[8] B.Cui, B. C. O0j, J. Su, and K.-L. Tan, “Indexing high-dimensional
data for efficient in-memory similarity search,” IEEE Trans. Knowl.
Data Eng., vol. 17, no. 3, pp. 339-353, Mar. 2005.

[9] G. Graefe, “Write-optimized B-trees,” in Proc. VLDB, Toronto, ON,
Canada, 2004, pp. 672-683.

[10] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proc. 36th
Annu. ISCA, Austin, TX, USA, 2009, pp. 2-13.

[11] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi, “Tree indexing
on solid state drives,” Proc. VLDB, vol. 3, no. 1, pp. 1195-1206,
2010.

[12] S. Mitra, W. W. Hsu, and M. Winslett, “Trustworthy keyword
search for regulatory-compliant record retention,” in Proc. VLDB,
Seoul, Korea, 2006, pp. 1001-1012.

[13] G. Muller, N. Nagel, C. Pinnow, and T. Rohr, “Emerging non-
volatile memory technologies,” in Proc. 29th ESSCIRC, Estoril,
Portugal, 2003, pp. 37-44.

[14] A. Nadembega, T. Taleb, and A. Hafid, “A destination prediction
model based on historical data, contextual knowledge and spatial
conceptual maps,” in Proc. IEEE ICC, Ottawa, ON, Canada, 2012,
pp. 1416-1420.

[15] S. Nath and A. Kansal, “Flashdb: Dynamic self-tuning database
for NAND flash,” in Proc. 6th Int. Conf. IPSN Cambridge, MA,
USA, 2007, pp. 410-419.

[16] P. O'Neil, E. Cheng, D. Gawlick, and E. O’'Neil, “The log-
structured merge-tree (LSM-tree),” Acta Inform., vol. 33, no. 4,
pp- 351-385, 1996.

[17] J. Pei, M. K. M. Lau, and P. S. Yu, “TS-trees: A non-alterable search
tree index for trustworthy databases on write-once-read-many
(WORM) storage,” in Proc. AINA, Niagara Falls, ON, Canada,
2007, pp. 54-61.

[18] M. K. Qureshi et al., “Enhancing lifetime and security of PCM-
based main memory with start-gap wear leveling,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. MICRO, New York, NY, USA, 2009,
pp- 14-23.

[19] M. K. Qureshi, V. Srinivasan, and]. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” in Proc. 36th Annu. ISCA, Austin, TX, USA, 2009,
pp- 24-33.

[20] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in
hybrid memory systems,” in Proc. ICS, 2011, pp. 85-95.

[21] J. Rao and K. A. Ross, “Making B+- Trees cache conscious in main
memory,” in Proc. 2000 ACM SIGMOD Int. Conf. Management Data,
New York, NY, USA, pp. 475-486.

[22] S. Raoux et al., “Phase-change random access memory: A scalable
technology,” IBM]. Res. Develop., vol. 52, no. 4.5, pp. 465-479,
2008.

[23] M. Rosenblum and J. K. Ousterhout, “The design and implemen-
tation of a log-structured file system,” in Proc. 13th ACM SOSP,
1991, pp. 1-15.

[24] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” in Proc. 37th Annui.
ISCA, Saint-Malo, France, 2010, pp. 141-152.

[25] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh:
Prevent malicious wear-out and increase durability for phase-
change memory with dynamically randomized address map-
ping,” in Proc. 37th Annu. ISCA, 2010, pp. 383-394.

[26] C-H. Wu, T-W. Kuo, and L. P. Chang, “An efficient B-
tree layer implementation for flash-memory storage systems,”
ACM Trans. Embedded Comput. Syst., vol. 6, no. 3, Article 19,
Jul. 2007.

[27] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,”
in Proc. 36th Annu. ISCA, 2009, pp. 14-23.

HU ET AL.: BP-TREE: A PREDICTIVE B*-TREE FOR REDUCING WRITES ON PHASE CHANGE MEMORY

Weiwei Hu is a master’s student at the National
University of Singapore, Singapore. He received
the bachelor's degree in computer engineering
from Tsinghua University, Beijing, China, in 2010.
His current research interests include index-
ing and query processing algorithms design of
database systems.

Guoliang Li received the Ph.D. degree in
computer science from Tsinghua University,
Beijing, China, in 2009. Currently, he is an
associate professor with the Department of
Computer Science, Tsinghua University. His cur-
rent research interests include data cleaning and
integration, spatial databases, and crowdsourc-
ing. He is a member of the IEEE.

dJiacai Ni is currently a Ph.D. candidate with
the Department of Computer Science, Tsinghua
University, Beijing, China. His current research
interests include multi-tenant data management,
schema mapping, and index techniques for new
hardware database.

2381

Dalie Sun is an associate professor with the
Harbin Institute of Technology (HIT), Harbin,
China. He received the bachelor's degree in
mathematics from Northeast Normal University,
Changchun, China, in 1987, the master’s degree
in computer application from HIT in 1996, and the
Ph.D. degree in computer theory and software
from HIT in 2012. His current research interests
include peer-to-peer computing and distributed
query, databases, and data mining.

Kian-Lee Tan received the B.Sc. (Hons.) and
Ph.D. degrees in computer science from the
National University of Singapore, Singapore, in
1989 and 1994, respectively. Currently, he is
a professor with the Department of Computer
Science, National University of Singapore. His
current research interests include query pro-
cessing and optimization, database security, and
database performance. He is a member of the
IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

