
1

A Novel Cost-Based Model for Data Repairing
Shuang Hao Nan Tang Guoliang Li Jian He Na Ta Jianhua Feng

Abstract—Integrity constraint based data repairing is an iterative process consisting of two parts: detect and group errors that violate
given integrity constraints (ICs); and modify values inside each group such that the modified database satisfies those ICs. However,
most existing automatic solutions treat the process of detecting and grouping errors straightforwardly (e.g., violations of functional
dependencies using string equality), while putting more attention on heuristics of modifying values within each group. In this paper, we
propose a revised semantics of violations and data consistency w.r.t. a set of ICs. The revised semantics relies on string similarities, in
contrast to traditional methods that use syntactic error detection using string equality. Along with the revised semantics, we also
propose a new cost model to quantify the cost of data repair by considering distances between strings. We show that the revised
semantics provides a significant change for better detecting and grouping errors, which in turn improves both precision and recall of the
following data repairing step. We prove that finding minimum-cost repairs in the new model is NP-hard, even for a single FD. We devise
efficient algorithms to find approximate repairs. In addition, we develop indices and optimization techniques to improve the efficiency.
Experiments show that our approach significantly outperforms existing automatic repair algorithms in both precision and recall.

Index Terms—Data Repairing, Functional Dependencies, Fault-Tolerant Violation, Graph Model, Maximal Independent Set

Accept Date: Nov 30, 2016

F

1 INTRODUCTION

DATA cleaning, which is to detect and repair data errors,
has played an important part in the history of data

management, because high-quality business decisions must
be made based on high-quality data, especially in the era of
big data [26], [30], [31].

Although involving users [18], [25], [29], [37] in data
repairing is important in practice, automatic repairing [3],
[6], [11], [13], [34], [38] is still valuable. Because when users
do not have enough capacity to identify and repair data
errors, automatic approaches can help find possible repairs,
which can alleviate the burden of users in data cleaning.

Automatic data repairing typically consists of two parts:
detect and group errors that violate given integrity con-
straints (ICs); and modify values inside each group such
that the modified database satisfies those ICs.

Example 1: Consider a table D for US citizens of schema
Citizens (Name,Education, Level,City,Street,District,State).
A Citizens instance is shown in Table 1. Tuples t1–t5 (resp.
t6–t10) are about citizens in New York (resp. Boston). Both
errors and their correct values are highlighted. For instance,
t4[State] = MA is wrong, whose correct value is NY. 2

These data errors are normally detected by integrity
constraints (ICs) such as functional dependencies (FDs).

• Shuang Hao is with the Department of Computing Science, Tsinghua
University, Beijing, China.haos13@mails.tsinghua.edu.cn.

• Nan Tang is with Qatar Computing Research Institute, Hamad Bin
Khalifa Univeristy, Qatar. ntang@hbku.org.qa.

• Guoliang Li is with the Department of Computer Science, Tsinghua
National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing, China. liguoliang@tsinghua.edu.cn.

• Jian He is with the Department of Computing Science, Tsinghua Univer-
sity, Beijing, China. hej13@mails.tsinghua.edu.cn.

• Na Ta is with the Department of Computing Science, Tsinghua University,
Beijing, China. dan13@mails.tsinghua.edu.cn. Corresponding Author.

• Jianhua Feng is with the Department of Computing Science, Tsinghua
University, Beijing, China. fengjh@tsinghua.edu.cn.

t6 t7 t9

t10t5

C2

t8

t1

t2 t3

t4

C1

Fig. 1. Violations of ϕ2 : [City]→ [State]

Example 2: Consider D in Example 1 and three FDs:
ϕ1: Citizens ([Education]→ [Level])
ϕ2: Citizens ([City]→ [State])
ϕ3: Citizens ([City,Street]→ [District])

ϕ1 denotes that Education uniquely determines educational
Level. The two tuples t1 and t9 violate ϕ1, as they have the
same Education (i.e., Bachelors) but different Level values
(13 for t1 and 10 for t9). It is similar for ϕ2 and ϕ3. Data
repairing using these FDs typically perform the following
two consecutive steps, taking ϕ2 for example.

Error detection. Violations are detected if two tuples having
the same City but different State, which are depicted in
Fig. 1. Each node represents a tuple (e.g., t6) and each edge
represents a violation between two tuples (e.g., (t5, t6) is a
violation w.r.t. ϕ2). Black nodes (resp. red nodes) represent
correct (resp. erroneous) tuples. Circular (resp. rectangular)
nodes are citizens in New York (resp. Boston).

Data repairing. Violation graph is naturally partitioned in
the concept of connected components. Naturally, a data
repairing algorithm will treat each connected component
independently and modify values locally inside each con-
nected component to resolve the inconsistency. Consider C1

in Fig. 1 for example. When considering t5, t6, t7, t9, t10 to-
gether, most algorithms will change t5[State] and t10[State]
from NY to MA to compute a consistent database. The latter
change is correct (for t10[State]), but the former change is
wrong (for t5[State]). 2

2TABLE 1
Example instance of US citizens (ϕ1 : [Education]→ [Level], ϕ2 : [City]→ [State], ϕ3 : [City, Street]→ [District])

Name Education Level City Street District State
t1 : Janaina Bachelors 13 New York Main Manhattan -NY
t2 : Aloke Bachelors 13 New York Main Manhattan -NY
t3 : Jieyu Bachelors 13 New York Western Queens -NY
t4 : Paulo Masters 14 New York Western Queens - MA → NY
t5 : Zoe Masters 14 Boston → New York Main Manhattan -NY
t6 : Gara Masers → Masters 14 Boston Main Financial -MA
t7 : Mitchell HS-grad 9 Boston Main Financial -MA
t8 : Pavol Masters 13 → 14 Boton → Boston Arlingto Brookside -MA
t9 : Thilo Bachelors 10 → 13 Boston Arlingto Brookside -MA
t10 : Nenad Bachelers → Bachelors 13 Boston Arlingto Brookside - NY → MA

Example 2 reveals two shortcomings of existing au-
tomatic data repairing algorithms [5], [6], [11], [13], [19].
(i) Unrobust error detection: Some erroneous tuple value
(e.g., t8[City]) cannot be captured. (ii) Bad error group: When
associating errors with tuples straightforwardly (e.g., t5 in
C1) to reason about, most algorithms will fail to repair t5.

The above observations call for a revision of data re-
pairing problems that improves both (i) and (ii) discussed
above. Intuitively, improving (ii) can increase the precision,
and enhancing (i) will advance recall. Let us consider the
following example that illutrates the benefits of our new
cost-based model.

Example 3: Given the instance D and FD ϕ2 in Table 1,
as t8 is not in conflict with any other tuple, the error in
t8[City] can not be detected in the above example. Thus, our
approach relaxes the conditions of capturing violations, e.g.,
from syntactic equality string matching to more semantic
similarity string matching. Then, since t8[City∪State] is very
similar to t9[City ∪ State], we consider them as a violation
w.r.t. ϕ2 and t8[City] will be modified to Boston.

Besides, we jointly consider multiple constraints to min-
imize the repair cost. When repairing tuple t5, ϕ3 is also
taken into consideration. Through maximal independent
sets, we make sure that (New York, NY), (Boston, MA) are
correct w.r.t. ϕ2 and (New York, Main, Manhattan), (Boston,
Main, Financial) are correct w.r.t. ϕ3. We join them and get
(New York, Main, Manhattan, NY), (Boston, Main, Financial,
MA). Obviously, repairing t5[City] has the minimal repairing
cost and meanwhile eliminates both violations of ϕ2 and ϕ3.

2
Contributions. We make the following contributions.
(1) We propose a novel cost-based model for data repairing.
We show that finding the optimal solution for this problem
is NP-hard (Section 2).
(2) We devise new data repairing algorithms. Specifically, we
present algorithms to handle a single constraint (Section 3)
as well as multiple constraints (Section 4).
(3) We study optimization techniques to improve the effi-
ciency of data repairing (Section 5).
(4) We conduct extensive experiments (Section 6), which
demonstrate that our method outperforms state-of-the-art
automatic data repairing approaches in accuracy.

2 PROBLEM FORMULATION

Consider an instance D of relation R. To simplify the
discussion, we focus on functional dependencies (FDs), and
both theoretical results and algorithms can be applied on its
extension, conditional functional dependencies (CFDs) [15].

2.1 Functional Dependencies and Semantics

We use a standard definition for an FD ϕ: X → Y . We say
that D satisfies ϕ, denoted by D |= ϕ, if for any two tuples
(t1, t2) in D, when t1[X] = t2[X], t1[Y] = t2[Y] holds.
Otherwise, we call (t1, t2) a violation of ϕ, if t1[X] = t2[X]
but t1[Y] 6= t2[Y].

Moreover, we say that D is consistent w.r.t. a set Σ of
FDs, denoted by D |= Σ, if D |= ϕ for each ϕ ∈ Σ.

Example 4: Consider the FD ϕ1 : [Education] → [Level] in
Example 1 and the instance D in Table 1. (t4, t8) 6|= ϕ1, since
t4[Education] = t8[Education] = Masters, but t4[Level] 6=
t8[Level]. Thus, we have D 6|= ϕ1. Note that (t4, t6) |= ϕ1

because t4[Education] 6= t6[Education] 2

To address the two limitations of automatic repairing
algorithms discussed in Section 1, we use a similarity func-
tion to holistically compare both left and right hand side
of constraints. More specifically, given an FD ϕ: X → Y ,
we use a distance function distϕ() to capture violations. We
simply write dist() when ϕ is clear from the context. We also
write tϕ for t[X ∪ Y].
Distance function. For attribute A in R, dist(t1[A], t2[A])
indicates how similar t1[A] and t2[A] are. There are many
known distance functions, e.g., Edit distance, Jaccard dis-
tance, and Euclidean distance. In this paper, by default,
we use edit distance if t1[A] and t2[A] are strings and
Euclidean distance if the values are numeric. Any other
distance function can also be used. Formally, we have:

dist(t1[A], t2[A]) =

{
Edit(t1[A], t2[A]) string
Eucli(t1[A], t2[A]) numeric (1)

where dist(t1[A], t2[A]) is a normalized distance in [0,1].
For tϕ1 and tϕ2 with multiple attributes, their distance is:

dist(tϕ1 , t
ϕ
2) = wl

∑
Al∈X

dist(t1[Al], t2[Al])+

wr

∑
Ar∈Y

dist(t1[Ar], t2[Ar]).
(2)

wherewl, wr are weight coefficients in [0,1] andwl+wr = 1.

Example 5: Consider table D and FD ϕ1 in
Table 1. The distance between t4 and t6 is
dist(tϕ1

4 , tϕ1

6) = 0.5 × dist(t4[Education], t6[Education]) +
0.5× dist(t4[Level], t6[Level]) = 0.5× 0.14 + 0 = 0.07. 2

Fault-tolerant violation. Two tuples (t1, t2) are in a fault-
tolerant (FT-) violation w.r.t. ϕ, if (1) tϕ1 6= tϕ2 ; and (2) the
distance between them is no larger than a given threshold τ ,
i.e., dist(tϕ1 , t

ϕ
2) ≤ τ . We write (t1, t2) 6 |=∗ ϕ if both (1) and (2)

hold (i.e., an FT-violation); otherwise, we write (t1, t2)|=∗ ϕ

3

if dist(tϕ1 , t
ϕ
2) > τ . A possible method of deciding the

threshold τ is as follows. We first calculate the distance
of each pair of tuples (tϕ1 , t

ϕ
2) and sort them in ascend-

ing order. When the difference between the two adjacent
numbers suddenly becomes large, we choose the smaller
value τ as the threshold. Besides, if precision rather than
recall is regarded as the more important criterion, we can
conservatively decrease threshold τ further.

Remark. The first benefit of using FT-violation is: it captures
errors that cannot be detected by standard FD semantics
using string equalities, e.g., t8[City]. Better still, it can as-
sociate errors with correct tuples. Taking the error t5[City]
and ϕ2 for instance, traditional methods will associate t5
with t6, t7, t9, t10 since they have the same City Boston. In
contrast, we will associate t5 with t1–t4, which will naturally
result in a higher quality repair.

Note that, if we set wl = 1, wr = 0 and threshold τ = 0,
fault-tolerant (FT-) violation degrades to the traditional FD
violation. If we increase threshold τ , we can detect typos in
the left hand. In this case, we cannot ignore the distance in
the right hand of FD. Two tuples that have similar left hand
but very different right hand are not violation. Thus, we
can control the percentage of right hand distance through
weight wr . In this paper, by default, we set wl = wr = 0.5.

Fault-tolerant consistency. A database D is fault-tolerant
(FT-) consistent to an FD ϕ, denoted by D|=∗ ϕ, if there do not
exist two tuples t1, t2 such that (t1, t2) 6 |=∗ ϕ. We say that D
is FT-consistent w.r.t. a set Σ of FDs, denoted by D|=∗ Σ, if
D|=∗ ϕ for each ϕ ∈ Σ.

Example 6: Consider instance D and FD ϕ1 in Table 1. Let
the threshold τ = 0.35. Since dist(tϕ1

4 , tϕ1

6) = 0.07 < τ , we
have (t4, t6) 6 |=∗ ϕ1 and D 6 |=∗ ϕ1. The error in t6[Education]
can be captured and t6[Education] is repaired to Masters. 2
Consistency vs FT-consistency. The FT-consistency seman-
tics means that if two tuples on attributes X ∪ Y are
similar but not identical, they are FT-violated and should
be repaired. It is readily to see that in the case of τ ≥ wr|Y |
(where |Y | is the number of attributes in Y), if a database D
is FT-consistent w.r.t. ϕ, it must be also consistent. Consider-
ing wl = 1, wr = 0, τ = 0, if D is consistent, it must be also
FT-consistent and vice versa.
Theorem 1: Given a database D and an FD ϕ : X → Y , when
τ ≥ wr|Y |, if D|=∗ ϕ, then D |= ϕ. 2

Proof sketch: If (t1, t2) is a violation w.r.t. ϕ, which means
t1[X] = t2[X] but t1[Y] 6= t2[Y], their distance dist(tϕ1 , t

ϕ
2)

cannot be larger than wr|Y |. Thus when τ ≥ wr|Y |, (t1, t2)
is also a FT-violation w.r.t. ϕ. In other words, if D is FT-
consistent when τ ≥ wr|Y |, any two tuples t1, t2 satisfy
dist(tϕ1 , t

ϕ
2) > τ ≥ wr|Y |. So D must be consistent. 2

2.2 Problem Statement
Close-world data repair model. The repaired value for an
attribute A must come from the active domain of A.

Valid tuple repair. Repairing a tuple from t to t′ (t′ may not
be in D originally) is called a valid tuple repair, if for any FD
ϕ, there exists a tuple t′′ in D such that t′ϕ = t′′ϕ. In other
words, the whole tuple t′ may be new to D; however, the
projected values t′ϕ must exist in D originally.

For example, consider tuple t6 and ϕ1 in Table 1. Cur-
rently, tϕ1

6 = {Masers, 14}. A repair to {Masters, 14} is valid

since the values exist in t4. However, a repair to {Bachelors,
14} is not valid, since they are new to the table.

Valid database repair. A databaseD′ is a valid database repair
of D w.r.t. a set Σ of FDs in FT-consistent semantics, if D′ is
FT-consistent w.r.t. Σ only via valid tuple repairs.

Repair cost. For each tuple t in D, suppose t′ is the cor-
responding tuple in the repaired database D′. Obviously, if
t = t′, the repair cost is 0; otherwise we use the distance
functions to quantify the repair cost as below.

cost(t, t′) =
∑
A∈R

dist(t[A], t′[A]). (3)

Naturally, the repair cost of database D is

cost(D,D′) =
∑
t∈D

cost(t, t′). (4)

For example, assume that tuple t10 is re-
paired as illustrated in Table 1, the repair cost
cost(t10, t

′
10) = dist(t10[Education], t′10[Education]) +

dist(t10[State], t′10[State]) = 0.11 + 1 = 1.11.

Problem statement. Given a database D and a set Σ of FDs
defined on D, the data repairing problem is to find a valid
repair D′ of D such that D′ is FT-consistent and cost(D,D′)
is minimum among all valid repaired databases.

2.3 Related Work

Many works use integrity constraints in cleaning data
(e.g., [1], [7], [9], [15], [16], [23]; see [14] for a survey). They
have been revisited to better capture data errors as viola-
tions of these constraints (e.g., CFDs [15] and CINDs [7]). We
categorize related work as follows.

Constraint-based data repairing. Automatic data repairing al-
gorithms based on integrity constraints have been pro-
posed [5], [6], [11], [13], [19]. Heuristic methods are devel-
oped in [4], [6], [19], based on FDs [4], [23], FDs and INDs [6],
CFDs [15], CFDs and MDs [17], and denial constraints [11].
Several algorithms take advantage of confidence values,
which are placed by users, to guide the repairing pro-
cess [12], [17]. The most related studies are metric depen-
dencies [24] and differential dependencies [32], which use
similarity functions in either left or right hand of a constraint
to relax the matching condition. In contrast to these prior art,
we take a more holistic way by considering the similarity
matching combining both left and right hand of attributes
of a constraint, which is discussed in Section 2. We will
demonstrate by experiments (Section 6) that the new way
of reasoning about errors can significantly improve both
precision and recall of data repairing, as observed earlier
in Example 2.

Rule-based data repairing. Rule-based data repairing [18], [28],
[35] differs from the above constraint-based data repairing
in the way to modify a value is explicitly encoded in the
rule, hence is deterministic. However, this requires external
information about the golden standard, which normally
comes from domain experts, or master data.

Of course, rule-based data repairing is preferred. How-
ever, when such external information is not available, or not
enough, constraint-based approaches are needed to (approx-
imately) discover golden standard from the data at hand.

4

t7

(HS-grad,

9)

t6

(Masers,

14)

t8

(Masters,

13)

t4

(Masters,

14)

t9

(Bachelors,

10)

t1

(Bachelors,

13)

t2

(Bachelors,

13)

t3

(Bachelors,

13)

t10

(Bachelers,

13)

t5

(Masters,

14)

0.2 0.14

0.2

0.14

0.34

0.11

0.110.6 0.6 0.6 0.11

0.56
0.56 0.56

0.56

0.7

Fig. 2. Graph model of ϕ1

User guided data repairing. Several studies [10], [18], [21], [27],
[37] have involved (crowd) users to improve the precision of
data repairing. However, involving users is typically painful
and error-prone, and the required domain experts are often
unavailable (for crowd users) or without enough capacity.

As remarked earlier, we target at automatic data repair-
ing in this work, which is complementary to user guided
repairing when users are unavailable to fulfill the work.
Machine learning and statistical cleaning. There are machine
learning based data repairing methods [36], [37], as well
as statistical methods [2], [22]. For ML-based data repairing,
they are typically supervised, which heavily depend on both
the training datasets and the selected features. Hence, it is
hard to have a fair comparison with automatic approaches.
For statistical repairing, they normally assume a desired
data distribution, and update data values to get closer to the
desired distribution. In fact, statistical (or quantitive) data
repairing should be combined with integrity constraint-
based data repairing, since they have various targets.

3 SINGLE CONSTRAINT SOLUTIONS
We first study the single FD repairing problem where only one
FD is present. We prove that it is NP-hard, and propose an
expansion-based algorithm to find the optimal result and a
greedy algorithm to find an approximate result.

Graph model. We introduce a graph model G(V, E). Each
vertex v ∈ V is a tuple, and an undirected edge between
two vertices u and v indicates that (u, v) is an FT-violation
w.r.t. ϕ. Each edge is associated with a weight, denote by
ω(u, v) = cost(uϕ, vϕ). We use vertex and tuple inter-
changeably if the context is clear. Given a database D, we
first transform it to a graph G and then utilize the graph G
to compute a repair database D′.
Independent set, maximal independent set, and maximum
independent set. A subset I ⊆ V is an independent set, if
for any two vertices u, v in I , there is no edge connecting
them, i.e., (u, v) 6∈ E . An independent set I is called a
maximal independent set if (1) I = V or (2) for any vertex
v ∈ V\I (“\” is for set minus), I∪{v} is not an independent
set. A maximal independent set with the largest number of
vertices is called the maximum independent set.

Example 7: Fig. 2 shows a graph G of FD ϕ1. Each
vertex is a tuple in Table 1, and an edge represents an
FT-violation e.g., (t1, t9). The weight of edge (t1, t9) is
ω(t1, t9) = 0 + dist(t1[Level], t9[Level]) = 13−10

14−9 = 0.6. (We
normalize the Euclidean distance by dividing the largest
distance.) The set I1 = {t1, t2, t3, t7} is an independent set,

as there is no edge connecting any two of them in G. I1 is
not maximal because I1 ∪ {t6} is also an independent set.
The set I2 = {t1, t2, t3, t6, t7} is a maximal independent set,
as no vertex v ∈ G can be added to I2 and I2 ∪ {v} is
still an independent set. The set I3 = {t1, t2, t3, t4, t5, t7} is
the maximum independent set because there is no maximal
independent set with more vertices. 2

Repairing based on a maximal independent set. A maximal
independent set I∗ has some salient properties. (1) Tuples in
I∗ have no FT-violations and are thus FT-consistent. (2) Any
tuple that is not in I∗ must have FT-violations with at least
one tuple in I∗. Based on these two features, we can repair
the database using a maximal independent set as follows.
Given a maximal independent set I∗, for any tuple x not in
I∗, let N (x) = {v|v ∈ I∗ and (v, x) ∈ E} denote the neigh-
bor set of x in I∗. We can repair x to any tuple v ∈ N (x) (by
modifying xϕ to vϕ in order to resolve the violation between
them) and the repairing cost is ω(x, v). Naturally we want
to repair x to v with the minimal cost, i.e., ω(x, v)≤ω(x, u)
for any u ∈ N (x), and the cost of repairing x given I∗ is
cost(x|I∗) = ω(x, v). We enumerate every tuple not in I∗,
and iteratively repair all tuples in D using I∗ and get a
repaired database D′. The total cost of repairing D given I∗
is cost(D,D′) = cost(D|I∗) =

∑
x∈(V\I∗) cost(x|I∗).

Optimal Repairing. There may be multiple maximal inde-
pendent sets. We enumerate every maximal independent
set, select the independent set (IB) with the minimal re-
pairing cost, i.e., cost(D|IB) ≤ cost(D|I∗), which is called
the best maximal independent set, and use IB to repair the
database. We prove that using the best maximal indepen-
dent set IB to repair D is optimal as stated in Theorem 2.

Theorem 2: Repairing database D using the best maximal
independent IB is optimal. 2

Proof sketch: First, we prove that the repaired database
D′ using IB is FT-consistent. IB is an independent set
in the graph model of ϕ. Thus, for any two vertices u, v
in IB , there is no edge connecting them, which means
that the corresponding tuples have no FT-violation w.r.t. ϕ.
Furthermore, as IB is maximal, any tuple that is not in
IB must have FT-violations with some tuples in IB and
be modified to one of them. So D′ is FT-consistent.

Next, we prove that the cost of using IB for repairing D
is smallest. Obviously, the optimal repair must correspond
to a maximal independent set in the graph model of ϕ.
Given a maximal independent set I∗ and a tuple x /∈ I∗,
cost(x|I∗) = {ω(x, v)|∀u ∈ N (x), ω(x, v) ≤ ω(x, u)} and
cost(D|I∗) =

∑
x/∈I∗ cost(x|I∗). Thus, cost(D|I∗) is the

smallest repair cost of using I∗ to repair D. For each
maximal independent set I∗, cost(D|IB) ≤ cost(D|I∗). So
the cost of using IB for repairing D is smallest. 2

We can prove that the single FD repairing problem is
NP-hard as formalized in Theorem 3.

Theorem 3: Single FD repairing problem is NP-hard. 2

Proof sketch: Consider a special case of the single FD repair-
ing problem: the weight of each edge is equal in the graph
model. In this situation, the best maximal independent set
is exactly the maximum independent set. This is because
the repair cost is proportional to the number of vertices

5

that do not belong to the independent set. Since finding
the maximum independent set is NP-hard, the single FD
repairing problem is also NP-hard. 2

Repairing Algorithms. Note that existing optimal and ap-
proximation algorithms to the maximum independent set
problem cannot be used in our problem, as we need to
consider the repairing weight. Thus in the following of this
section, we will first present an expansion-based algorithm
to compute the optimal solution (Section 3.1), and then de-
scribe a heuristic but more efficient algorithm (Section 3.2).

3.1 Optimal: Expansion-based Algorithm
To find the optimal solution, we need to compute the best
maximal independent set IB . We propose an expansion-
based method with pruning ability to efficiently identify IB .

Expansion-based algorithm. Obviously, the independent
sets satisfy the a-priori property, i.e., any subset of an in-
dependent set must be an independent set. We access tuples
in order, e.g., t1, · · · , t|D|. For tuple ti, we generate all
the maximal independent sets of Di = {t1, · · · , ti}. When
visiting ti+1, we utilize the maximal independent sets of Di
to generate those of Di+1. For any maximal independent set
I ofDi, we check if ti+1 is FT-consistent with I , i.e., whether
ti+1 is FT-consistent with every tuple in I . If so, I∪{ti+1} is
a maximal independent set of Di+1; otherwise, we identify
the tuples in I that are FT-consistent with ti+1, denoted by
FTC(ti+1, I), and FTC(ti+1, I) ∪ {ti+1} is an independent
set. Note that if ti+1 is not FT-consistent with I , we still
need to keep I , as it is also a maximal independent set of
Di+1. FTC(ti+1, I) ∪ {ti+1} may be not maximal, as it may
be a subset of FTC(ti+1, I ′) ∪ {ti+1} where I ′ is a maximal
independent set of Di. Thus we need to remove the non-
maximal independent sets after expanding every maximal
independent set I of Di and then generate the maximal
independent sets of Di+1. Iteratively we can generate the
maximal independent sets of D|D| = D.

Pruning techniques. We discuss the ways to prune some
maximal independent sets of Di that cannot be expanded to
the best independent set. To this end, we estimate a lower
bound of using an independent set I to repairD, denoted by
LB(I), and an upper bound UB(I). Given two independent
sets I and I ′, if LB(I) > UB(I ′), we prune I and do not
expand it, since using I ′ has a smaller repairing cost.

Lower bound. Given an independent set I of Di, if we
use I to repair D, the tuples in Di \ I must be repaired
as they have FT-violations with I (and other tuples may
be FT-consistent with I and do not need repair), and thus
the minimal repairing cost is

∑
v∈Di\I minu6∈Di\I ω(u, v).

If we use another independent set Ie expanded from I to
repair D, the tuples in Di \I must be repaired, because they
have FT-violations with I (and also Ie), and the minimal
repairing cost is still

∑
v∈Di\I minu6∈Di\I ω(u, v). Thus we

can estimate a lower bound of the repairing cost of using I
or independent sets expanded from I to repair D, i.e.,

LB(I) =
∑

v∈Di\I

min(ω(v, u)|u 6∈ Di \ I). (5)

Upper bound. The upper bound of using I to repair D is to
repair every tuple not in I to a tuple in I (even though the
tuple is FT-consistent with I). It is easy to prove that using

Ie ⊃ I to repair D has smaller cost than using I . Thus we
can estimate an upper bound of the repairing cost of using
I or its super independent sets to repair D, i.e.,

UB(I) =
∑

v∈D\I

min(ω(v, u)|u ∈ I). (6)

We can leverage the lower bound and upper bound
between two independent sets for pruning.

Theorem 4: Given two independent sets I and I ′, if LB(I ′)>
UB(I), I ′ can be pruned and need not to be expanded. 2

Proof sketch: The repairing cost of using I ′ or its descen-
dants in the tree to repair D cannot be smaller than LB(I ′).
Meanwhile, UB(I) is the largest repairing cost of using I or
the independent sets contain I to repair D. LB(I ′) > UB(I)
means that the independent sets in the subtree rooted at
I ′ corresponding to larger repairing cost than the maximal
independent sets contain I . So I ′ can be pruned and does
not need not to be expanded. 2

Tree-based index. We propose a tree-based algorithm to
expand independent sets. The tree has |D| levels. Each level
i corresponds to a tuple ti. Each node in level i corresponds
to a maximal independent set ofDi. The tuple set of the root
is {t1}. Each node has one or two children.

Tree-based algorithm. Algorithm 1 gives the algorithm
using the tree-index. We initialize the tree index with only a
root node {t1} (line 1) and the upper bound UB(T) is first
assigned to +∞ (line 2). We then visit the tree-index level
by level (lines 3-13). For each level, we compute and update
the upper bound of the tree (lines 4-5). We also compute
the lower bound of each visited node I (line 7), based on
its lower bound and the case of consistency, we decide
how to generate the children of the visited node (lines 7-
13). If I ∪ {ti+1} is also an independent set, node I has
only one child (lines 8-9). Otherwise, we copy this node I
as its left child (line 11). Besides, if FTC(ti+1, I) ∪ {ti+1}
is a maximal independent set w.r.t. {t1, ..., ti+1} and has
not appeared in the tree, FTC(ti+1, I) ∪ {ti+1} will be the
right child of I (lines 12-13). For the computed maximal
independent set (line 14), we repair tuples by using the one
with the minimum cost (lines 15-16). The repaired database
D′ is returned (line 17).

Accessing order. Note that the order of accessing tuples has
no impact on the repair quality, as the best independent set
can be enumerated in any order. But the order affects the
performance. We can access tuples sorted by their frequen-
cies in the descending order. This is because the maximal
independent set with the highest frequent tuples is likely to
have small repair cost and thus we generate it earlier and
use it to prune other maximal independent sets.

Example 8: Consider the FD ϕ1 : [Education] → [Level] and
D in Table 1. Some tuples have the same values in both
Education and Level (such as t1, t2 and t3), so we just show
how the algorithm works on {t1, t4, t6, t7, t8, t9, t10}. The
tree is built as shown in Fig. 3. Some nodes are duplicates
and should be removed such as node n10. Node n21 is
not a maximal independent set and will not be generated
actually. After generating node n5, D \ I = {t6, t8, t9, t10},
so UB(n5) = 1.05 (t6, t8 are modified to t4 and t9, t10

are modified to t1). UB(T) will also be updated to 1.05.

6

Algorithm 1: Expansion-based Algorithm for Single FD

Input: A database D, an FD ϕ : X → Y and a
tree-index

Output: The FT-consistent database D′ with the
minimum cost

1 T ← {t1};
2 UB(T) = +∞;
3 for level i← 1 to |D| do
4 for each node I in level i do
5 UB(T)← min(UB(T),UB(I));
6 for each node I in level i do
7 if LB (I) ≤ UB(T) then
8 if ti+1 is FT-consistent with I then
9 Add I ∪ {ti+1} as a child of I;

10 else
11 Add I as the left child of I;
12 if FTC(ti+1, I) ∪ {ti+1} is maximal and not

reduplicate then
13 Add FTC(ti+1, I) ∪ {ti+1} as the right

child of I;

14 IB ← the maximal independent set with cost UB(T);
15 for each tuple t1 ∈ D \ IB do
16 modify tϕ1 to its closest value tϕ2 ∈ IB ;
17 return D′;

t1

t4

t6

t7

t8

t9

n1

n2

n3

n5

n7

n11

n16 n17

n12

n18

n8

n13

n19 n20

t10

n14

n21 n22

n4

n6

n9

n15

n23

{t1,t4}

{t1}

{t1,t4}

{t1,t4,t7} {t1,t6,t7}

{t1,t4,t7}

{t1,t4,t7}

{t7,t8} {t1,t6,t7}

{t1,t6,t7}{t4,t7,t9} {t6,t7,t9}

{t1,t6}

{t1,t4,t7} {t4,t7,t10} {t4,t7,t9} {t6,t7,t10}{t1,t6,t7}

{t7,t8}

{t6,t7,t10}

{t7,t8,t9}

{t7,t10}{t7,t8,t9}

n24 n25

n10

duplicate

not maximal

pruning

UB(T)=1.05

LB(n8)=1.07

LB(n14)=1.22

{t4,t7,t10} {t6,t7,t9}

Fig. 3. Expansion-based algorithm

When generating the children of n8, we already know that
Di \ I = {t1, t4, t6} must be repaired. The minimum repair
cost is 1.07 (t1, t2, t3 are modified to t10 and t4, t5, t6 are
modified to t8). It is greater than the upper bound UB(T), so
this branch can be pruned. Finally, IB = {t1, t4, t7}. Tuples
t6, t8 are modified to t4, and t9, t10 are modified to t1. 2

Tuple grouping. Some tuples may have the same value on
attributes in ϕ, e.g., tϕ1 = tϕ2 = tϕ3 . As these tuples must have
the same neighbors, we group them together and treat them
as a single vertex. However, the edge weight associated with
the vertex will be counted multiple times. For example, m
tuples are grouped as a vertex t and n tuples are grouped
as a vertex t′, then the cost of repairing t to t′ should be
m · dist(t, t′) and the cost of repairing t′ to t should be n ·
dist(t, t′). To this end, we can construct a directed graph
G′(V ′, E ′), where V ′ is the set of tuples with the same value
on ϕ and E ′ is the set of directed edges. There is an edge
from t to t′ if they are not FT-consistent and the weight
is m · dist(t, t′) where m is the number of tuples with the
same tϕ. We can prove that using G′(V ′, E ′) to repair D is
equivalent to using G(V, E) to repair D. Since G′(V ′, E ′) has
a smaller number of vertices, using G′(V ′, E ′) to repair D is
more efficient.

Complexity. Given a graph model G(V, E) with |V| vertices,
|E| edges, and µ maximal independent sets of the graph,
it has been proven in [33] that the algorithm requires pro-
cessing time and memory space bounded by O(µ|V||E|)
and O(|V| + |E|) respectively. (This also proves that using
G′(V ′, E ′) to repair D can improve the complexity.)

3.2 Heuristic: Greedy Algorithm

Due to the high computational complexity of the expansion-
based algorithm, we propose a heuristic algorithm that gen-
erates an expected best independent set, Î , to approximate
the best independent set IB . Initially Î = ∅ and we greedily
add a tuple with the smallest repairing cost into Î , until Î
becomes a maximal independent set.

Initial cost. It first sorts the tuples in order. Given a tuple ti,
if it is added into the independent set, its neighbors will be
repaired to ti, and the initial cost of each tuple ti is

S(ti|∅) =
∑

v∈N (ti)

ω(v, ti). (7)

Initially, we add the tuple with the smallest cost into Î .

Incremental cost. Given the current independent set Î and
a tuple ti 6∈ Î , we need to compute the cost of adding ti into
Î by considering the following types of tuples.
(1) Consider ti. As ti is FT-consistent with Î , the repairing
cost on ti, whatever ti is, being added into Î is 0.
(2) Consider ti’s neighbor v ∈ N (ti). We consider two cases.
(2.1) v is a neighbor of a vertex in Î , i.e., v ∈ N (ti) ∩ N (Î),
where N (Î) = ∪u∈ÎN (u). Now, if ti is added into Î ,
the repair cost of v may be updated, because the repair
cost of v given Î is minu∈Î ω(v, u), and the new repair
cost is minu∈Î∪{ti} ω(v, u), and thus the increased cost is
minu∈Î∪{ti} ω(v, u)−minu∈Î ω(v, u). (2.2) v is not a neigh-
bor of a vertex in Î , i.e., v ∈ N (ti) \ N (Î). In this case, if
ti is added into Î , the repair cost of v given Î is 0, and the
new repair cost is ω(v, ti), and the increased cost is ω(v, ti).
(3) Consider v 6= ti is not a neighbor of v. The repair cost is
still 0 which is not changed.

Therefore, we can compute the incremental cost as.

S(ti|Î) =
∑

v∈N (ti)∩N (Î)

min
u∈Î∪{ti}

ω(v, u)−min
u∈Î

ω(v, u)+

∑
v∈N (ti)\N (Î)

ω(v, ti).
(8)

We add the tuple with the largest cost into the indepen-
dent set Î . Iteratively, we find the expected best set Î .
Algorithm. The greedy algorithm is given in Algorithm 2.
We first calculate the initial cost of each tuple in D based on
Equation 7 (lines 1-2), and Î is an empty set ∅ by default. We
then initialize independent set Î by adding the tuple with
the smallest initial cost (line 3). Given an independent set Î ,
we calculate the incremental cost of each tuple in D \ Î that
is FT-consistent with Î based on Equation 8 and add the
tuple t with the smallest incremental cost into Î (lines 4-7).
Finally we utilize Î to repair D (lines 8-9).

Example 9: Consider D and ϕ1 in Table 1. We illustrate
this algorithm with tuples {t1, t4, t6, t7, t8, t9, t10}. At first,
t7 has the smallest initial cost S(t7|∅) = 0. So tuple t7 is first

7

Algorithm 2: Greedy Algorithm for Single FD

Input: a database D, an FD ϕ
Output: a FT-consistent database D′

1 for each t ∈ D do
2 Compute S(t|∅);

3 Î ← add the tuple with the smallest initial cost;
4 while ∃t ∈ D \ Î s.t. t is FT-consistent with Î do
5 T ← {t ∈ D \ Î s.t. t is FT-consistent with Î};
6 t← the tuple in T with the smallest incremental cost;
7 Î ← Î ∪ {t};
8 for each tuple t1 ∈ D \ Î do
9 modify tϕ1 to its closest value tϕ2 ∈ Î;

10 return D′;

added to Î and T = {t1, t4, t6, t8, t9, t10}. Then we calculate
the incremental cost of each tuple in T . The neighbor of
t1 is N (t1) = {t8, t9, t10} and N (Î) ∩ N (t1) = ∅. Thus,
the incremental cost S(t1|Î) = 0.56 + 0.11 + 0.6 = 1.27.
Similarly, we compute the incremental cost of other tu-
ples. Tuple t4 has the smallest incremental cost which is
S(t4|Î) = 0.2 + 1.14 = 0.34. So Î = Î ∪ {t4} = {t4, t7}
and T = {t1, t9, t10}. Now, N (Î) ∩ N (t1) = {t8} and
N (t1)\N (Î) = {t9, t10}. The addition of t1 cannot decrease
the repair cost of t8, so S(t1|Î) = 0.6 + 0.11 = 0.71 which is
smallest. Î = Î∪{t1} = {t1, t4, t7} and T = ∅. It terminates.
Tuples t9, t10 (resp. t6, t8) are modified to t1 (resp. t4). 2

Complexity. In each iteration, the algorithm chooses a tuple
by computing the cost with a complexity of O(|V|). It ter-
minates in |Î| iterations. Thus the complexity is O(|Î||V|).
Besides, after tuple grouping, |V| is much smaller than the
number of tuples.

4 MULTIPLE CONSTRAINTS SOLUTIONS

We study the multiple FDs repairing problem where multiple
FDs are given. We prove that this problem is NP-hard. We
also propose an algorithm to find the optimal result and two
heuristic algorithms to find approximate results.

4.1 Single FD vs Multiple FDs

We discuss the difference between single FD and multiple
FDs in repairing a database.

Repairing target. Given an FD ϕ : (X → Y), for any tuple
t, tϕ could be a target that other tuples can be repaired to.
For multiple FDs, we need to revisit the target semantics.

Consider two FDs ϕ1 : X1 → Y1 and ϕ2 : X2 → Y2.
If ϕ1 and ϕ2 have no common attributes, for any two
tuples t and t′, (tϕ1 , tϕ2), (tϕ1 , t′ϕ2), (t′ϕ1 , tϕ2), (t′ϕ1 , t′ϕ2)
are targets. Any tuple can be repaired to one of them. So
we independently repair the database on the two FDs, i.e.,
first repairing D using one FD and then using another FD to
repair. The main reason is that the two FDs have no common
attributes and repairing one FD will not affect the other.
Theorem 5: Given multiple FDs without common attributes,
the single FD repairing algorithm can find the optimal repair by
independently using the FDs to repair. 2

Proof sketch: If two FDs do not share common attributes,
repairing one FD has no influence on the other. So if the

repairing cost of each FD is smallest, the total cost of
repairing D is smallest. Thus, the single FD repair algorithm
can find the optimal solution by independently using the
FDs to repair. 2

If ϕ1 and ϕ2 have a set of overlapping attributes, denoted
by Z = (X1 ∪Y1)∩ (X2 ∪Y2), for any two tuples t and t′, if
tZ = t′Z , tϕ1 1Z t

′ϕ2 is a target, as any tuple can be repaired
to the target; otherwise tϕ1 cannot join with t′ϕ2 and the
two tuples cannot generate a target. Moreover, if ϕ1 and ϕ2

have overlapping attributes, we cannot repair them inde-
pendently. For example, consider FDs ϕ2 and ϕ3, and tuple
t5 in Table 1. tϕ3

5 = (Boston, Main, Manhattan) FT-violates
with both (New York, Main, Manhattan) (from t1, t2) and
(Boston, Main, Financial) (from t6, t7). If we only consider
ϕ3, we repair t5[District] to Financial with lower cost. Then
when considering ϕ2, we will modify t5[State] to MA, and
thus repair t5 to (Boston, Main, Financial, MA). However,
if we consider the two FDs jointly, we need to repair t5 to
(New York, Main, Manhattan, NY) whose repairing cost is
smallest. Thus, for FDs with common attributes, we need to
repair them jointly.
FD graph. We can construct a graph on FDs, where vertices
are FDs and if two FDs have common attributes, there is
an edge between them. If the graph is not connected, we
only consider its connected subgraphs and repair different
subgraphs independently. For example, ϕ1 and (ϕ2, ϕ3) are
independent. Thus we only need to consider connected FDs.

Valid target. Given n connected FDs, ϕi ∈ Σ : (Xi → Yi),
tϕ1

j1
1 tϕ2

j2
1 · · · 1 tϕn

jn
are targets, where 1 ≤ ji ≤ |D| and

tϕs

js
and tϕt

jt
have the same value on their common attributes.

Repairing based on maximal independent sets. For each
FD ϕi : Xi → Yi in Σ, we generate a graph Gi(Vi, Ei)
with vertex set Vi and edge set Ei. We find every maxi-
mal independent set I∗ϕi

for Gi. Let Si denote the set of
maximal independent sets for ϕi and S = S1 × S2 ×
· · · × S|Σ|. Given a group of maximal independent sets
I∗Σ = {I∗ϕ1

, I∗ϕ2
, ..., I∗ϕ|Σ|} in S, we join them to generate

the targets. For each tuple x, we use the targets to repair
x with the cost of cost(x|I∗Σ) which is the sum of repairing
cost on each attribute. We can iteratively repair all the tuples
in D using I∗Σ and get a repaired database D′. The total
cost of repairing D given I∗Σ is cost(D,D′) = cost(D|I∗Σ) =∑
x∈D cost(x|I∗Σ).

Optimal Repairing. We enumerate every I∗Σ ∈ S, compute
cost(D|I∗Σ), select the group IBΣ with the minimal cost, and
use the best group IBΣ to repair the database.
Theorem 6: Multiple-FD repair problem is NP-hard. 2

Proof sketch: Consider a special case of the multiple FDs
repairing problem: the FDs have no common attributes. In
this situation, we can repair D using the FDs independently.
Since the single FD repairing problem is NP-hard, the mul-
tiple FDs repairing problem is also NP-hard. 2

Next, we will present an expansion-based algorithm for
the optimal repair (Section 4.2), and two greedy algorithms
for approximate results (Sections 4.3 and 4.4).

4.2 Optimal: Expansion-based Algorithm
We first use the expansion-based algorithm to generate the
maximal independent sets on every FD, and then conduct

8

a Cartesian product on them to generate S. For each group
I∗Σ ∈ S, we generate the targets and compute the repair cost
cost(D|I∗Σ). Next we select the group IBΣ with the minimal
cost, and use the best group IBΣ to repair the database. (We
study how to utilize a group I∗Σ to repair D in Section 5.)
As there are large number of groups, we propose effective
pruning techniques to prune unnecessary groups.

Pruning techniques. Similar to the single FD repair algo-
rithm, we build tree-based index for each FD. When we
build the index for each constraint, we utilize an effec-
tive pruning technique to prune some maximal indepen-
dent sets that cannot be combined into IBΣ . We estimate
a lower bound of using an independent set Iϕj

or its
expansion to repair D, denoted by LB(Iϕj

), and an upper
bound UB(Iϕj

). Given two independent sets Iϕj
and I ′ϕj

, if
LB(Iϕj

) > UB(I ′ϕj
), we prune Iϕj

without expanding it.
Lower bound. Given Di = {t1, ..., ti} and an independent
set Iϕj of Di, if we use Iϕj to repair Dϕj , the tuples in
Di \ Iϕj must be repaired. We can estimate a lower bound
of the repair cost of Iϕj :

LB(Iϕj |D
ϕj) =

∑
v∈Di\Iϕj

min(ω(vϕj , uϕj)|u 6∈ Di \ Iϕj). (9)

For each ϕk, we keep a lower bound LBϕk
which is the

smallest lower bound of all the independent sets stored in
the leaves of the current tree.

A natural idea is to get a lower bound using Iϕj
to

repair D by summing up the minimal cost from each ϕj .
However, different FDs may have overlapping attributes. To
avoid counting them duplicately, we select a set of disjoint
FDs, which have no overlap with ϕj , denoted by F (ϕj), and
get a lower bound,

LB(Iϕj) = LB(Iϕj |D
ϕi) +

∑
ϕk∈F (ϕj)

LBϕk . (10)

Upper bound. Given an independent set Iϕj , we first find
a set of tuples I ′ϕj

from Iϕj
that have no FT-violation for all

FDs. Then the upper bound of Iϕj
is:

UB(Iϕj) =
∑

v∈D\IΣ

min(ω(v, u)|u ∈ I′ϕj
). (11)

The upper bound UB is the smallest upper bound of all
the independent sets. Therefore, an independent set can be
safely pruned if LB(Iϕj

) > UB = minIϕj
UB(Iϕj

).

Tree-based Indexing. We build the tree index Ti for FD
ϕi. We first generate the root with tuple set {t1} for each
tree index Ti, compute the lower bound LB({t1}) and the
upper bound UB({t1}), and compute the upper bound
UB. If LB({t1}) ≤ UB, we generate the children of the
root. Iteratively for any child of the root with tuple set
Iϕi

, we estimate LB(Iϕi
) and UB(Iϕi

) and update UB. If
LB(Iϕi

) ≤ UB, we generate the children of Iϕi
. Iteratively,

we can find all the maximal independent sets.

Example 10: Consider D and Σ = {ϕ2, ϕ3} in Table 1.
We can enumerate four maximal independent sets of
Dϕ2 : S2 = {{tϕ2

1 , tϕ2

6 }, {t
ϕ2

1 , tϕ2

8 }, {t
ϕ2

4 , tϕ2

5 }, {t
ϕ2

5 , tϕ2

8 }}
and four maximal independent sets of Dϕ3 :
S3 = {{tϕ3

1 , tϕ3

3 , tϕ3

6 , tϕ3

8 }, {t
ϕ3

1 , tϕ3

3 , tϕ3

6 , tϕ3

9 }, {t
ϕ3

3 , tϕ3

5 , tϕ3

8 },
{tϕ3

3 , tϕ3

5 , tϕ3

9 }}. We join {tϕ2

1 , tϕ2

6 } and {tϕ3

1 , tϕ3

3 , tϕ3

6 , tϕ3

9 },
and get four targets IΣ = {(New York, Main, Manhattan,
NY), (New York, Western, Queens, NY), (Boston, Main,
Financial, MA), (Boston, Arlingto, Brookside, MA)}. It is

Algorithm 3: Expansion Algorithm for Multiple FDs

Input: a database D, a set of FDs Σ
Output: a FT-consistent database D′

1 UB← +∞;
2 for each constraint ϕi ∈ Σ do
3 Ti ← {t1} and compute LB({t1}),UB({t1});
4 UB← min(UB,UB({t1}));
5 while exist some independent sets can be expanded do
6 Iϕi ← the one with lowest upper bound; expand Iϕi ;
7 for each child of Iϕi do
8 compute lower/upper bound, and update UB;

9 for each constraint ϕi ∈ Σ do
10 Si ← maximal consistent sets for ϕi in Ti;
11 S ← S1 × S2 × ...× S|Σ|;
12 minCost← +∞;
13 for each combination I∗Σ = {I∗ϕ1

, I∗ϕ2
, ..., I∗ϕ|Σ|} in S do

14 P ← join the target values of I∗ϕ1
, I∗ϕ2

, ..., I∗ϕ|Σ| ;
15 cost← 0;
16 for each tuple t contains unresolved values do
17 p← the most simiar one to tΣ in P ;
18 cost← cost + distΣ(p, tΣ);
19 if cost < minCost then
20 minCost← cost; bestRepair← I∗Σ;

21 repair database D utilizing bestRepair;
22 return D′;

the best group to repair the database. Actually, {tϕ2

4 , tϕ2

5 }
and {tϕ2

5 , tϕ2

8 } are not expanded. Their father node is I
= {tϕ2

4 , tϕ2

5 } and at that time we know that tϕ2

1 , tϕ2

6 must
be repaired and UB =3.04. The lower bound LB (I) =
3×dist(tϕ2

1 , tϕ2

5) + 3×dist(tϕ2

6 , tϕ2

8) = 3.135> UB. Thus it can
be safely pruned. 2

Theorem 7: The expansion-based algorithm finds the optimal
repair. 2

Proof sketch: We need first prove that given the maximal
independent set I∗ϕ of each constraint ϕ, the join results P
construct the solution space to repair each tuple. Obviously,
it is always true. Let us consider a certain databaseD′ which
is FT-consistent, and for each tuple t′ ∈ D′ and each FD
ϕ ∈ Σ, t′ϕ ∈ Iϕ. Then t′Σ must belong to IΣ. Thus, P
contains all possible solution and we only need to choose
the one whose repair cost is the smallest for each tuple.
Then, since we enumerate the maximal independent sets
for each constraint (only safely prune some of them that
cannot lead to the optimal repair) and construct all possible
combinations to join them. The expansion-based algorithm
can find the optimal repair. 2

Complexity. Enumerating all maximal independent sets of
Σ requires O(|V|2|Σ|). The complexity of joining maximal
independent sets is O(

∏
i |Si|) = O(|V||Σ|). Thus the com-

plexity of multiple FDs repairing is O(|V||Σ|+1).

4.3 Heuristic: Extension of Single FD Greedy Algorithm
Enumerating all maximal consistent sets for each constraint
is time-consuming. Actually, we can find the expected opti-
mal independent set of each FD whose corresponding repair
cost is the minimum by utilizing the greedy algorithms for
single FD. Then we join the target values and repairD based
on the join result. The complexity is O(|V|2|Σ|).

9

Algorithm 4: Greedy Algorithm for Multiple FDs

Input: a database D, a set Σ of FDs
Output: a FT-consistent database D′

1 while ∃tϕ ∈ D \ ÎΣ s.t. tϕ is FT-consistent with Îϕ do
2 C ← {tϕ ∈ D \ ÎΣ s.t. tϕ is FT-consistent with Îϕ};
3 tϕ ← the one in C with the smallest tuple cost;
4 ϕ← the FD s.t. tϕ is FT-consistent with Îϕ;
5 Îϕ ← Îϕ ∪ {tϕ};
6 update t′ϕ ∈ N (tϕ) to t′

ϕ
b ;

7 join I∗Σ to get the targets;
8 for each tuple t ∈ D do
9 modify t to its closest target;

10 return D′;

Example 11: Consider D and Σ = {ϕ2, ϕ3} in Table 1.
Utilizing the algorithms for single constraint, {tϕ2

1 , tϕ2

6 } and
{tϕ3

1 , tϕ3

3 , tϕ3

6 , tϕ3

9 } are the corresponding consistent sets of
ϕ2 and ϕ3 in the optimal repair. We join them and get the
repair result of Σ without enumerating all combinations. 2

4.4 Heuristic: Joint Greedy Algorithm
The single FD greedy algorithm does not consider the re-
lationships between FDs and thus may not generate high
quality repairs. To address this problem, we propose a joint
greedy algorithm that generates Îϕi for each graph Gi.
Tuple cost. If we choose a tuple t and add it to Îϕi

, each
tuple t′ that is in conflict with t w.r.t. ϕi cannot be added
to Îϕi any more and must be repaired. We should measure
the repair cost of t′ϕi as the cost of adding t to Îϕi

. Unlike
handling single constraint, we cannot group the tuples
that have the same value on attributes in ϕi, because the
same value in different tuples might have different repair
strategies, e.g., (Boston, NY) in tuple t5 should be modified
to (New York, NY), but repaired to (Boston, MA) in tuple
t10. So we need to find the best modification for each tuple.

The tuple t′ϕi can be modified to t′ϕi

c ∈ N (t′ϕi). Mean-
while, t′ϕi

c cannot be in conflict with any tuple in Îϕi∪{tϕi}.
When we decide how to modify t′ϕi , we are aware of the
synchronization across multiple constraints. Assume ϕi is
connected to ϕj in FD graph, the impact of modifying t′ϕi on
FD ϕj includes two aspects: (1) eliminate some FT-violations
for FD ϕj and decrease the repair cost of ϕj , (2) trigger
new violations for FD ϕj and increase the repair cost of ϕj .
We choose the best one t′ϕi

b from N (t′ϕi) for tuple t′ that
eliminates more violations for FD ϕi and FD ϕj and trigger
less violations for ϕj . Thus the cost of adding t to Îϕi

is
S(tϕi |Îϕi) =

∑
v∈N (tϕi)

cost(vϕi , vϕi
b). (12)

Algorithm: The greedy algorithm is shown in Algorithm 4.
After computing the repair cost of each tuple, we choose
the one whose value is the smallest to add into the inde-
pendent set (lines 1-6). The tuple that is in conflict with
it will be modified to its best choice computed from the
above step temporarily. After all tuples in D are consid-
ered, we get a group of maximal independent sets I∗Σ =
{I∗ϕ1

, I∗ϕ2
, ..., I∗ϕ|Σ|}. We use them to generate all the targets

(line 7) and repair D (lines 8-9).

Complexity. The time complexity is O(|Σ||V|2).

Ø

(Boston,
Arlingto,Brookside)

Ø

(Boston,
Main,Financial)

RDIST(n4) = 1

Ø

(New York,
Western, Queens)

n6

Ø

(New York,
Main,Manhattan)

n5

Main Financial
Arlington Brookside

(Boston,MA)

n4

RDIST(n3) = 2.86

Main Manhattan
Western Queens

(New York,NY)

n3

RDIST(n2) = 0.875
EDIST(n2) = 1.73

n2

RDIST(n1) = 1
EDIST(n1) = 0

n1

root

n0

l2

l1

l0

t = {New York, Western, Queens, MA}

Fig. 4. Target tree

Example 12: ConsiderD, ϕ2 and ϕ3 in Table 1. There are five
different tuple values w.r.t. ϕ2 and six different tuple values
w.r.t. ϕ3. We show how to compute the tuple cost for tϕ2

1 . If
we add tϕ2

1 (New York, NY) to Îϕ2
, tuples t4, t5 and t10 must

be repaired. (New York, MA) in t4 can be modified to (New
York, NY), (Boston, MA) and (Boton, MA). We choose (New
York, NY) as it can eliminate three violations w.r.t. ϕ2 and
does not trigger new violations w.r.t. ϕ3. (Boston, NY) in t5
and t10 can be modified to (New York, NY) and (Boston,
MA). (New York, NY) is the best choice for t5 as it can
eliminate four violations w.r.t. ϕ2 and other four violations
w.r.t. ϕ3. (Boston, NY) in t10 should be modified to (Boston,
MA) since it does not trigger new violations w.r.t. ϕ3. 2

5 OPTIMIZING MULTI-FD REPAIRING

When joining the maximal independent sets and finding the
most similar target for each tuple, it is rather expensive
to generate all targets, which may be exponential to the
number of tuples. In this section, we describe how to build
a tree index to make the above process much faster.

5.1 Target Tree

Target tree. Given a group of maximal independent sets
I∗Σ = {I∗ϕ1

, I∗ϕ2
, ..., I∗ϕ|Σ|}, a target tree T is defined as

follows: (1) the root is a dummy node; (2) each node
corresponds to an element in each maximal independent
set I∗ϕi

except the root; (3) the nodes on a path from the
root to a leaf correspond to a target (i.e., if the nodes have
common attributes, they must have the same values on these
attributes); (4) the nodes in the same level come from the
same group I∗ϕi

; (5) each node stores a set of attribute values
that appear in the subtree rooted at this node.

Example 13: Consider the database D in Table 1 and a set
of FDs Σ = {ϕ2, ϕ3}. The maximal independent sets are
I∗ϕ2

= {(New York, NY), (Boston,MA)}, I∗ϕ3
= {(New York,

Main, Manhattan), (New York, Western, Queens), (Boston,
Main, Financial), (Boston, Arlingto, Brookside)}. The target
tree is shown in Fig. 4. The elements in I∗ϕ2

and I∗ϕ3
are dis-

tributed in level l1 and l2 respectively. Node n1 stores (New
York, NY) and an attribute-value set {Main, Manhattan,
Western, Queens} that contains its descendants’ attribute
values. Node n3 is its child node, as node n3 has the same
value “New York” with node n1 in the common attribute
City. The path from the root to node n3 contains (New York,
NY) and (New York, Main, Manhattan). They can be joined
into a target (New York, Main, Manhattan, NY). 2

10

Target tree construction. Consider a set Σ of FDs and
their corresponding maximal independent sets. Level l0 is
the root which is an empty node. To reduce the size of
tree T and improve the efficiency of searching the tree,
the maximal independent sets with fewer elements will be
closer to the root, making the root have small fan-outs. To
this end, we sort I∗ϕi

based on its size in an ascending order,
and suppose the sorted sets are I∗ϕ1

, I∗ϕ2
, · · · , I∗ϕ|Σ| . Thus

the elements in I∗ϕi
correspond to nodes in level i. When

inserting an element from the independent set into the tree
in level li (2 ≤ i ≤ |Σ|), we first detect whether ϕ1 to ϕi−1

share common attributes with ϕi. We keep a set A which
stores the ancestors of the current node. Since the root is not
related to any FD, all elements in I∗1 are put into A. If ϕ1

does not share common attribute with ϕi, the node in A is
replaced by all of its children; otherwise, only the children of
the nodes which have same values in the shared attributes
are put into A. After inserting all independent sets, we keep
the paths from the root to leaf with |Σ|+1 nodes, because if
a path has less than |Σ|+1 nodes, this path is not a target.

Complexity. Although the worse-case space complexity is
O(

∏
i I∗ϕi

), the actual space is much smaller as many targets
share common prefixes.

5.2 Search Target Tree

We discuss how to utilize the target tree to find the best
target that has the smallest repairing cost to a given tuple.

We use the best-first search to traverse the target tree to
find the best target. After visiting node u, we pick the most
promising child v of u with the smallest expected repairing
cost f(v) (which will be discussed later) and recursively
visit v’s children. When we reach a leaf node, we get the
real repairing cost between the tuple and the corresponding
target. We keep the minimum cost among all the visited
targets to the tuple in the process, denoted by Cmin, and the
value Cmin can be utilized to prune other nodes (and the
subtrees rooted at them). When we visit node u and if f(u)
is greater than the minimum cost Cmin, there is no need to
traverse the subtree rooted at u, because f(u) is the smallest
cost of modifying tuple t to the targets that are related to the
paths from the root to leaf passing node u. After finishing
traversing the whole target tree, we can find the best target
that has the smallest cost to repair the tuple.

To facilitate the process, we utilize a priority queue to
keep the nodes. We first put the root into the queue. Then
we pop the node v with the smallest value f(v). We traverse
each of v’s children, u, compute f(u), and if f(u) < Cmin,
we push u into the queue (prune it otherwise). When we
reach a leaf node, we compute the real repairing cost, and
if the cost is smaller than Cmin, we use it to update Cmin.
When the queue is empty, the algorithm terminates.

Computing f(v). For each node v, we compute the lower
bound of the repairing costs under v. We consider two types
of attribute values.
(1) The attribute values in ancestors of v. As the attribute
values are known, we can compute the real repairing cost of
the attributes on the nodes from the root to v. Let RDIST(v)
denote this real cost.
(2) The attribute values under v. As there may be more than
one leaf node (target) under v and we do not know the

Algorithm 5: Search Target Tree
Input: A tuple t, a target tree T
Output: The most similar target p for tuple t

1 Cmin ← +∞;
2 minNode← ∅;
3 Q← 〈T .root, 0〉;
4 while Q is not empty do
5 u← Q.dequeue();
6 if f(u) < Cmin then
7 if u is a leaf node then
8 Cmin ← f(u);
9 minNode← u;

10 else
11 for each child v of u do
12 if f(v)<Cmin then Q.enqueue(〈v, f(v)〉) ;

13 p← the target in the path from root to minNode;
14 return p;

exact attribute values, we need to estimate a lower bound.
Since we store an attribute-value set in node v that contains
all the attribute values in its descendants, we can utilize
them to estimate the value. For each attribute in the tuple
(not including the attributes corresponding to the ancestors
of the node since they have been computed), we find its
most similar attribute values in the set and utilize them to
estimate the lower bound. Then we sum up the lower bound
of every attribute and get an estimated bound EDIST(v).

Then we can estimate the lower bound of node v:

f(v) = RDIST(v) + EDIST(v). (13)

Example 14: Consider the target tree in Fig. 4 and tuple
t4: (New York, Western, Queens, MA). The priority queue
is initialized as Q = {〈n0, 0〉} and Cmin = +∞. The root
n0 has two child nodes n1 and n2. Node n1 is (New
York, NY) and tϕ2

4 = (New York, MA), so RDIST(n1) = dist
(’NY’,’MA’) = 1. We can find the value of t4[Street] and
t4[Distric] in the attribute set stored in n1, so EDIST(n1)
= 0. f(n1) = RDIST(n1) + EDIST(n1) = 1. In the same
way, RDIST(n2) = 0.875. The attribute set stored in n2

is {Main, Financial, Arlington, Brookside}, so EDIST(n2)
= dist (’Western’,’Main’) + dist (’Queens’,’Brookside’) =
1.73. f(n2) = RDIST(n2) + EDIST(n2) = 2.605. Thus Q =
{〈n1, 1〉, 〈n2, 2.605〉}. We pop n1 and calculate f(n3) and
f(n4). Q = {〈n4, 1〉, 〈n2, 2.605〉, 〈n3, 2.86〉}. Then we pop
n4. Because n4 is a leaf node and f(n4) = 1 < Cmin. We
update Cmin to 1. Node n2 and n3 are popped in turn.
f(n3) > f(n2) > Cmin so they should be pruned. Finally, t4
is modified to (New York, Western, Queens, NY). 2

6 EXPERIMENTAL STUDY

We conducted experiments using real-life and synthetic data
for both effectiveness and efficiency study.

6.1 Experimental Settings
Datasets. (1) HOSP was taken from the US Department
of Health Services (http://www.hospitalcompare.hhs.gov/).
We used 20k records with 19 attributes and 9 FDs. (2) Tax
was generated by a generator 1. Each record represented an
individual’s address and tax information. It had 9 FDs.

1. http://www.cs.utexas.edu/users/ml/riddle/data.html

11

 0.8

 0.85

 0.9

 0.95

 1

 4 8 12 16 20

P
re

c
is

io
n

of Tuples (*1000)

Expan-S
Greedy-S
Expan-M
Appro-M

Greedy-M

(a) Precision (HOSP)

 0.8

 0.85

 0.9

 0.95

 1

 4 8 12 16 20

R
e
c
a
ll

of Tuples (*1000)

Expan-S
Greedy-S
Expan-M
Appro-M

Greedy-M

(b) Recall (HOSP)

 0.8

 0.85

 0.9

 0.95

 1

 200 400 600 800 1000

P
re

c
is

io
n

of Tuples (*1000)

Expan-S
Greedy-S
Appro-M

Greedy-M

(c) Precision (Tax)

 0.8

 0.85

 0.9

 0.95

 1

 200 400 600 800 1000

R
e
c
a
ll

of Tuples (*1000)

Expan-S
Greedy-S
Appro-M

Greedy-M

(d) Recall (Tax)
Fig. 5. Effectiveness (varying #-tuples N)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

P
re

c
is

io
n

of FDs

Expan-M
Appro-M

Greedy-M

(a) Precision (HOSP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9
R

e
c
a
ll

of FDs

Expan-M
Appro-M

Greedy-M

(b) Recall (HOSP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

P
re

c
is

io
n

of FDs

Expan-M
Appro-M

Greedy-M

(c) Precision (Tax)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

R
e
c
a
ll

of FDs

Expan-M
Appro-M

Greedy-M

(d) Recall (Tax)
Fig. 6. Effectiveness (varying #-FDs |Σ|)

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10

P
re

c
is

io
n

Error Rate(%)

Expan-S
Greedy-S
Expan-M
Appro-M

Greedy-M

(a) Precision (HOSP)

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10

R
e
c
a
ll

Error Rate(%)

Expan-S
Greedy-S
Expan-M
Appro-M

Greedy-M

(b) Recall (HOSP)

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10

P
re

c
is

io
n

Error Rate(%)

Expan-S
Greedy-S
Appro-M

Greedy-M

(c) Precision (Tax)

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10

R
e
c
a
ll

Error Rate(%)

Expan-S
Greedy-S
Appro-M

Greedy-M

(d) Recall (Tax)
Fig. 7. Effectiveness (varying error rates e%)

Noise. Errors were produced by adding noises with a cer-
tain rate e%, i.e., the percentage of dirty cells over all data
cells w.r.t. all FDs. Errors appeared in both left-hand side
(LHS) and right-hand side (RHS) of FDs by replacing the
attribute values with the values in other tuples. In particular,
we randomly added some typos. The rates of RHS errors,
LHS errors and typos were equal, i.e., 33.3%.

We used normalized edit distance for string similarity,
and normalized Euclidean distance for numeric values and
set different distance thresholds τ for different constraints.

Algorithms. We implemented two algorithms for single FD
as discussed in Section 3: the expansion algorithm Expan-S
and the greedy algorithm Greedy-S; and three algorithms
for multiple FDs described in Section 4: the expansion
algorithm Expan-M, the extension of single FD greedy al-
gorithm Appro-M, and the greedy algorithm Greedy-M. The
algorithm descriptions are shown in Table 2.
Measuring quality. We used precision and recall to evaluate
the repairing quality: precision is the ratio of correctly re-
paired attribute values to the number of all the repaired at-
tributes; and recall is the ratio of correctly repaired attribute
values to the number of all erroneous values.
Factors. We evaluated three important factors: #-tuples N ,
#-FDs |Σ|, and error rate e%.
#-Tuples: For HOSP, we varied N from 4k to 20k and fixed
e% = 4%. For Tax, we varied N from 200k to 1000k and
fixed e% = 4%. We utilized all FDs for multiple constraints
repair.
#-FDs: We varied #-FDs from 1 to all FDs. We fixed e% = 4%,
N = 8k for HOSP and e% = 4%, N = 400k for Tax.
Error Rate: We varied e% from 2% to 10%. For HOSP, we
fixed N = 8k and for Tax, we fixed N = 400k. We utilized
all FDs for multiple constraints repair.
Experimental Environment. All methods were written in
Java and all tests were conducted on a PC with a 2.60GHz
Intel CPU and 64GB RAM, running Ubuntu 12.4. For effi-

Abbr. Full Name Position Complexity
Expan-S Expansion-based Algorithm for Single FD Sec 3.1 O(µ|V||E|)
Greedy-S Greedy Algorithm for Single FD Sec 3.2 O(|V||Î|)
Expan-M Expansion Algorithm for Multiple FDs Sec 4.2 O(|V||Σ|+1)

Appro-M Extension of Greedy-S for Multiple FDs Sec 4.3 O(|V|2|Σ|)
Greedy-M Greedy Algorithm for Multiple FDs Sec 4.4 O(|V|2|Σ|)

TABLE 2
Algorithm Information

ciency, each experiment was run six times, and the average
results were reported.

6.2 Effectiveness
Figures 5-7 report the effectiveness study by varying #-
tuples N , #-FDs |Σ|, and error rate e%. Note Tax is too
large for Expan-M to find the optimal solution, and it
could only support less than 5 FDs. In all figures, when
utilizing all constraints, the precision and recall of our al-
gorithms were stable within [0.8,0.95]. It tells us that we
were able to capture the majority of the true errors in the
data within a small number of repairs. The results show
that the expansion-based approaches Expan-S and Expan-M
had better precision and recall values than the approximate
solutions Greedy-S, Appro-M and Greedy-M as expected.
Greedy-M outperformed Appro-M because it considered the
synchronization across multiple constraints. Since Greedy-
S and Greedy-M had limited quality loss, we could utilize
them to repair the databases approximately.
#-Tuples. Figure 5 shows that as N increased, the precision
and recall of all algorithms remained stable. This tells us
that our algorithms could work well with larger data.
#-FDs. Figure 6 shows that as #-FDs increased, the recall
of our methods increased. This is because more constraints
can be utilized to detect errors. Appro-M did not consider
the impact between constraints but only find the approx-
imate optimal solution in each of them. Instead, Greedy-
M measured the change of violations with respect to the
connected FDs. That is why the effectiveness of Greedy-M is
higher than Appro-M. When handling a single FD, Appro-
M outperformed Greedy-M. Like Greedy-S, Appro-M had
incremental cost for each tuple when the independent set

12

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 4 8 12 16 20

T
im

e
 (

s
e
c
.)

of Tuples (*1000)

Expan-S
Greedy-S

Expan-M-Tree
Appro-M

Appro-M-Tree
Greedy-M

Greedy-M-Tree

(a) Time (HOSP)

 1

 1000

 1e+006

 1e+009

 200 400 600 800 1000

T
im

e
 (

s
e
c
.)

of Tuples (*1000)

Expan-S
Greedy-S
Appro-M

Appro-M-Tree
Greedy-M

Greedy-M-Tree

(b) Time (Tax)
Fig. 8. Efficiency (varing #-tuples N)

 1

 100

 10000

 1e+006

 1 3 5 7 9

T
im

e
 (

s
e
c
.)

of FDs

Expan-M-Tree
Appro-M

Appro-M-Tree
Greedy-M

Greedy-M-Tree

(a) Time (HOSP)

 1

 100

 10000

 1e+006

 1e+008

 1 3 5 7 9

T
im

e
 (

s
e
c
.)

of FDs

Expan-M-Tree
Appro-M

Appro-M-Tree
Greedy-M

Greedy-M-Tree

(b) Time (Tax)
Fig. 9. Efficiency (varying #-FDs)

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 2 4 6 8 10

T
im

e
 (

s
e
c
.)

Error Rate (%)

Expan-S
Greedy-S

Expan-M-Tree
Appro-M

Appro-M-Tree
Greedy-M

Greedy-M-Tree

(a) Time (HOSP)

 1

 1000

 1e+006

 1e+009

 2 4 6 8 10

T
im

e
 (

s
e
c
.)

Error Rate (%)

Expan-S
Greedy-S
Appro-M

Appro-M-Tree
Greedy-M

Greedy-M-Tree

(b) Time (Tax)
Fig. 10. Efficiency (varying error rates e%)
was not empty. On the contrary, without connected FDs,
Greedy-M only had initial cost for each tuple. Expan-M had
the best precision and recall, as expected. Note that as #-
FDs increased, the quality sacrifice was not signifiant as our
methods found high-quality repairs.
Error Rate. Figure 7 shows that when e% increased, the
precision and recall moderately decreased, because a larger
error rate made more noise and the problem became harder.

6.3 Efficiency
We evaluated the efficiency of Expan-S, Greedy-S, Expan-M,
Greedy-M, Appro-M. For Expan-M, Greedy-M, Appro-M, we
could utilize the target tree index to improve efficiency (but
cannot improve quality), and thus we compared them with
those with the target tree (Expan-M-Tree, Greedy-M-Tree,
Appro-M-Tree). As Expan-M was too slow, we only showed
the results with tree index Expan-M-Tree.

Impact of Target Tree Pruning. With the join target tree,
the efficiency was significantly improved. As shown in
Fig. 8, Appro-M-Tree outperformed Appro-M, and Greedy-
M-Tree was much better than Greedy-M. As shown in
Fig. 9, when varying #-FDs, if there was a single FD, the
runtime of Appro-M and Appro-M-Tree were the same. As
#-FDs increased, however, the pruning technique can signif-
icantly improve the efficiency. For HOSP, when N = 8k,
e% = 4% and #-FDs = 9, the runtime of Appro-M was 372
seconds but 17 seconds for Appro-M-Tree. For Tax, when
N = 400k, e% = 4% and #-FDs =9, the runtime of Appro-M
was 8380 seconds but only 450 seconds for Appro-M-Tree.
The results show the superiority of our pruning techniques.
#-Tuples. Figure 8 shows the runtime as #-tuples increases.
Comparing with all other algorithms, it shows that the
runtime of Greedy-M grew aggressively. It is because the
greedy algorithm for multiple FDs needed to compute the

HOSP Tax
Precision Recall Time(s) Precision Recall Time(s)

Greedy-S 0.93 0.93 0.8 0.94 0.94 23
URM-S 0.86 0.85 0.3 0.91 0.89 12

Nadeef-S 0.58 0.62 2 0.77 0.80 14388
Llunatic-S 0.75 0.68 2 0.72 0.77 438

HOSP Tax
Precision Recall Time(s) Precision Recall Time(s)

Appro-M-Tree 0.90 0.92 17 0.92 0.91 450
Greedy-M-Tree 0.94 0.94 194 0.92 0.93 2467

URM-M 0.85 0.85 20 0.86 0.84 3520
Nadeef-M 0.56 0.61 358 N.A. N.A. N.A.
Llunatic-M 0.67 0.70 24 0.71 0.75 3750

TABLE 3
Algorithm Comparison

best repair for every tuple. The running time of Appro-M
also increased evidently, since there were more target values
to join and the algorithm computed the nearest pattern from
the join result for each tuple.
#-FDs. Figure 9 shows the runtime by varying #-FDs. As |Σ|
increased, the synchronization across multiple constraints
was dominating the time so the calculation in Greedy-M
became slower. The runtime of Appro-M increased as the tar-
gets of more constraints needed to be joined. We also added
two more FDs on HOSP. Appro-M and Greedy-M took 455s
and 1088s respectively. The efficiency was linear with the
number of FDs and increasing FDs lowered down efficiency,
which is consistent with the complexity in Section 5.
Error Rate. Figure 10 shows the runtime by varying e% from
2% to 10%. When e% increased, the runtime of Greedy-M
for large datasets increased evidently. This is because more
patterns tϕ were generated with high error rate and needed
to be considered whether to be added into the independent
set. Moreover, more tuples were injected as errors and
needed to find the best way of repair. The runtime of Appro-
M grew slowly. This is because even though e% increased,
the target values of each constraint did not change, and the
join time did not increase. The runtime of Appro-M was
more stable when varying e%, as expected.

6.4 Comparison with Existing Methods
We compared with NADEEF [13], Unified Repair Model
(URM) [8] and Llunatic [20] for FD repairs. For URM, to
ensure a fair comparison, we implemented it with only data
repair option without constraint repair. For Llunatic, we
chose the frequency cost-manager and Metric 0.5 was used
to measure the repair quality (for each cell repaired to a
variable, it was counted as a partially correct change).
Effectiveness. Figures 11-13 show the quality result. For
better presentation, the result of comparisons is also shown
in Table 3 (N = 8k, |Σ| = 9 and e% = 4% for HOSP
and N = 400k, |Σ| = 9 and e% = 4% for Tax). Note
NADEEF-M could not support the larger dataset Tax. Our
algorithms outperformed other methods. We injected the
following errors: LHS/RHS active domain errors and typos.
NADEEF was the algorithm that only repairs RHS errors.
It could modify LHS values only when these attributes also
appear on RHS of other FDs. URM was the algorithm that
handled all types of errors. It defined core pattern (whose
frequency is larger than the threshold), deviant pattern
(whose frequency is smaller than the threshold) and always
modifies deviant pattern to core pattern to minimize the
description length. However, (1) frequency threshold is not
enough to measure whether a pattern is correct value. That
is why the Greedy-S outperforms URM. (2) URM orders FDs

13

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

P
re

c
is

io
n

of Tuples (*1000)

(a) Precision(HOSP)

Greedy-S URM-S Nadeef-S Llunatic-S Appro-M-Tree Greedy-M-Tree URM-M Nadeef-M Llunatic-M

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

R
e
c
a
ll

of Tuples (*1000)

(b) Recall(HOSP)

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

P
re

c
is

io
n

of Tuples (*1000)

(c) Precision(Tax)

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

R
e
c
a
ll

of Tuples (*1000)

(d) Recall(Tax)

Fig. 11. Quality Comparison (varying #-tuples N)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

P
re

c
is

io
n

of FDs

(a) Precision(HOSP)

Appro-M Greedy-M URM-M Nadeef-M Llunatic-M

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

R
e
c
a
ll

of FDs

(b) Recall(HOSP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

P
re

c
is

io
n

of FDs

(c) Precision(Tax)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9

R
e
c
a
ll

of FDs

(d) Recall(Tax)

Fig. 12. Quality Comparison (varying #-FDs |Σ|)

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

P
re

c
is

io
n

Error Rate (%)

(a) Precision(HOSP)

Greedy-S URM-S Nadeef-S Llunatic-S Appro-M-Tree Greedy-M-Tree URM-M Nadeef-M Llunatic-M

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

R
e
c
a
ll

Error Rate (%)

(b) Recall(HOSP)

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10

P
re

c
is

io
n

Error Rate (%)

(c) Precision(Tax)

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10

R
e
c
a
ll

Error Rate (%)

(d) Recall(Tax)

Fig. 13. Quality Comparison (varying error rates e%)

and handles them one by one. But obviously, to get the
optimal repair of each tuple, different tuples should have
different repair orders of FDs. (3) in URM, the same deviant
pattern in different tuples are modified to the same core
pattern. And if this modification of deviant pattern cannot
decrease the description length, the algorithm cannot touch
them. However, the same pattern in different tuples should
have different ways of repairs as discussed in Section 4.4.
Naturally, the precision and recall of URM were lower than
our algorithms. Llunatic handled all types of errors. How-
ever, it modified a cell to variable to indicate such value was
currently unknown and might be resolved into a constant by
asking users. The cell can only be partially repaired.

Efficiency. Figures 14-16 show that Greedy-S ran faster than
NADEEF and Llunatic but slower than URM, as URM only
computed core patterns based on the frequency but Greedy-
S calculated the cost by adding a tuple into the independent
set. NADEEF and Llunatic were slow as they were DBMS-
based algorithms. NADEEF was a generalized data cleaning
system as a tradeoff of sacrificing some efficiency [13] for
generalization. When handling multiple FDs, Appro-M with
pruning ran fastest. After getting the repair targets in each
constraint, Appro-M joined them and computed the best
repair for each tuple utilizing an effective tree index. Even
though URM can get the targets much faster, it needed a
lot of calculations to decide how to repair every deviant
tuple and maintain the changes of core and deviant patterns.
On the larger dataset Tax, Greedy-M ran faster than other
algorithms except in high error rate. This is because Greedy-
M chose a pattern to add into the independent set from

 0.1

 1

 10

 100

 1000

 4 8 12 16 20

T
im

e
 (

s
e
c
.)

of Tuples (*1000)

(a) Time(HOSP)

Greedy-S
URM-S

Nadeef-S

Llunatic-S
Appro-M-Tree

Greedy-M-Tree

URM-M
Nadeef-M
Llunatic-M

 1

 100

 10000

 200 400 600 800 1000

T
im

e
 (

s
e
c
.)

of Tuples (*1000)

(b) Time(Tax)

Fig. 14. Efficiency Comparison (varying #-tuples N)

 0

 100

 200

 300

 400

 1 3 5 7 9

T
im

e
 (

s
e
c
.)

of FDs

(a) Time(HOSP)

Appro-M-Tree
Greedy-M-Tree

URM-M
Nadeef-M

Llunatic-M

 1

 100

 10000

 1 3 5 7 9

T
im

e
 (

s
e
c
.)

of FDs

(b) Time(Tax)

Fig. 15. Efficiency Comparison (varying #-FDs |Σ|)

 0.1

 1

 10

 100

 1000

 2 4 6 8 10

T
im

e
 (

s
e
c
.)

Error Rate (%)

(a) Time(HOSP)

Greedy-S
URM-S

Nadeef-S

Llunatic-S
Appro-M-Tree

Greedy-M-Tree

URM-M
Nadeef-M
Llunatic-M

 1

 100

 10000

 2 4 6 8 10

T
im

e
 (

s
e
c
.)

Error Rate (%)

(b) Time(Tax)

Fig. 16. Efficiency Comparison (varying error rates e%)

14

all patterns of all constraints and computed the best repair
for each related tuple. The increase of error rate made the
decision harder especially in Greedy-M.

7 CONCLUSION
We have proposed a revised automatic data repairing prob-
lem, using distance-based metrics for error detection and
data repairing. We have devised a fault-tolerant data re-
pairing framework. We have identified the complexity of
the revised problem, and presented effective exact and
approximate data repairing algorithms to compute repairs.
Our experimental results with real-life and synthetic data
have verified effectiveness and efficiency of our algorithms.
Acknowledgement. Guoliang Li was supported by 973
Program of China (2015CB358700), NSF of China (61373024,
61632016, 61422205, 61521002), Shenzhou, Tencent, Tsinghua
TNList, FDCT/116/2013/A3, MYRG105 (Y1-L3)-FST13-GZ.

REFERENCES

[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. TPLP, 3(4-5), 2003.

[2] L. Berti-Equille, T. Dasu, and D. Srivastava. Discovery of complex
glitch patterns: A novel approach to quantitative data cleaning. In
ICDE, pages 733–744, 2011.

[3] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning
and query answering with matching dependencies and matching
functions. In ICDT, 2011.

[4] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of
functional dependency violations under hard constraints. PVLDB,
3(1), 2010.

[5] G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David. Modeling
and querying possible repairs in duplicate detection. In VLDB,
2009.

[6] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based
model and effective heuristic for repairing constraints by value
modification. In SIGMOD, 2005.

[7] L. Bravo, W. Fan, and S. Ma. Extending dependencies with
conditions. In VLDB, 2007.

[8] F. Chiang and R. J. Miller. A unified model for data and constraint
repair. In ICDE, 2011.

[9] J. Chomicki and J. Marcinkowski. Minimal-change integrity main-
tenance using tuple deletions. Inf. Comput., 197(1-2), 2005.

[10] X. Chu, M. Ouzzani, J. Morcos, I. F. Ilyas, P. Papotti, N. Tang, and
Y. Ye. KATARA: reliable data cleaning with knowledge bases and
crowdsourcing. PVLDB, 8(12), 2015.

[11] X. Chu, P. Papotti, and I. Ilyas. Holistic data cleaning: Put
violations into context. In ICDE, 2013.

[12] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data
quality: Consistency and accuracy. In VLDB, 2007.

[13] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang. NADEEF: a commodity data cleaning
system. In SIGMOD, 2013.

[14] W. Fan. Dependencies revisited for improving data quality. In
PODS, 2008.

[15] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for capturing data inconsistencies. TODS,
33(2), 2008.

[16] W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data currency and
consistency for conflict resolution. In ICDE, 2013.

[17] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between
record matching and data repairing. In SIGMOD, 2011.

[18] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes
with editing rules and master data. VLDB J., 21(2), 2012.

[19] I. Fellegi and D. Holt. A systematic approach to automatic edit
and imputation. J. American Statistical Association, 71(353), 1976.

[20] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The llunatic data-
cleaning framework. PVLDB, 6(9), 2013.

[21] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive interaction for
data transformation. In CIDR, 2015.

[22] J. Hellerstein. Quantitative data cleaning for large databases. In
Technical report, UC Berkeley, 2008.

[23] S. Kolahi and L. Lakshmanan. On approximating optimum repairs
for functional dependency violations. In ICDT, 2009.

[24] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian.
Metric functional dependencies. In ICDE, 2009.

[25] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data
management: A survey. IEEE Trans. Knowl. Data Eng., 28(9):2296–
2319, 2016.

[26] R. Mao, H. Xu, W. Wu, J. Li, Y. Li, and M. Lu. Overcoming
the challenge of variety: big data abstraction, the next evolution
of data management for AAL communication systems. IEEE
Communications Magazine, 53(1):42–47, 2015.

[27] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a database
approach for statistical inference and data cleaning. In SIGMOD,
2010.

[28] F. Naumann, A. Bilke, J. Bleiholder, and M. Weis. Data fusion in
three steps: Resolving schema, tuple, and value inconsistencies.
IEEE Data Eng. Bull., 29(2), 2006.

[29] V. Raman and J. M. Hellerstein. Potter’s Wheel: An interactive
data cleaning system. In VLDB, 2001.

[30] B. Saha and D. Srivastava. Data quality: The other face of big data.
In ICDE, 2014.

[31] Z. Shang, Y. Liu, G. Li, and J. Feng. K-join: Knowledge-aware
similarity join. IEEE Trans. Knowl. Data Eng., 28(12):3293–3308,
2016.

[32] S. Song and L. Chen. Differential dependencies: Reasoning and
discovery. ACM Trans. Database Syst., 36(3):16, 2011.

[33] A. H. e. a. Tsukiyama S, Ide M. A new algorithm for generating all
the maximal independent sets. SIAM Journal on Computing, 1977.

[34] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching: How similar
is similar. PVLDB, 4(10):622–633, 2011.

[35] J. Wang and N. Tang. Towards dependable data repairing with
fixing rules. In SIGMOD, pages 457–468, 2014.

[36] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t be
scared: use scalable automatic repairing with maximal likelihood
and bounded changes. In SIGMOD, pages 553–564, 2013.

[37] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F.
Ilyas. Guided data repair. PVLDB, 4(5), 2011.

[38] M. Yu, G. Li, D. Deng, and J. Feng. String similarity search and
join: a survey. Frontiers of Computer Science, 10(3):399–417, 2016.

Shuang Hao received the bachelor’s degree
from the Institute of Software Engineering, Shan-
dong University, China. She is currently work-
ing toward the PhD degree in the Department
of Computer Science, Tsinghua University, Bei-
jing, China. Her research interests include data
cleaning and data integration.

Nan Tang is a senior scientist at Qatar Comput-
ing Research Institute, HBKU, Qatar Foundation,
Qatar. He received the PhD degree from the
Chinese University of Hong Kong in 2007. He
has worked as a research staff member at CWI,
the Netherlands, from 2008 to 2010. He was a
research fellow at University of Edinburgh, from
2010 to 2012. His current research interests in-
clude data curation and data streams.
Guoliang Li is currently working as an asso-
ciate professor in the Department of Computer
Science, Tsinghua University, Beijing, China.
He received his PhD degree in Computer Sci-
ence from Tsinghua University, Beijing, China in
2009. His research interests mainly include data
cleaning and integration, spatial databases and
crowdsourcing.

Jian He received the bachelor’s degree from the
Department of Computer Science, Huazhong
University of Science and Technology, China.
He is currently a post graduate student at the
Department of Computer Science in Tsinghua
University. His research interests mainly include
data cleaning and data integration.

Na Ta received her M.S. degree in Computer
Science from Tsinghua University in 2007. She
is currently a PhD student at the Department of
Computer Science in Tsinghua University. Her
main research interests include urban computing
and spatial databases.

Jianhua Feng received his B.S., M.S. and PhD
degrees in Computer Science from Tsinghua
University. He is currently working as a professor
of Department Computer Science in Tsinghua
University. His main research interests include
large-scale data management and analysis and
spatial database.

