This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

Bounded Approximate Query Processing

Kaiyu Li

Yong Zhang Guoliang Li

Wenbo Tao  Ying Yan

Abstract—OLAP is a core functionality in database systems and the performance is crucial to enable on-time decisions. However,
OLAP queries are rather time consuming, especially on large datasets, and traditional exact solutions usually cannot meet the
high-performance requirement. Recently, approximate query processing (AQP) has been proposed to enable approximate OLAP.
However, existing AQP methods have some limitations. First, they may involve unacceptable errors on skewed data (e.g., long-tail
distribution). Second, they require to store large amount of data and have no significant performance improvement. Third, they only
support a small subset of SQL aggregation queries. To overcome these limitations, we propose a bounded approximate query
processing framework BAQ. Given a predefined error bound and a set of queries, BAQ judiciously selects high-quality samples from the
data to generate a unified synopsis offline, and then uses the synopsis to answer online queries. Compared with existing methods, BAQ
has the following salient features. (1) BAQ does not need to generate a synopsis for each query while it only generates a unified
synopsis, and thus BAQ has much smaller synopsis. (2) BAQ achieves much smaller error than existing studies. Specifically, BAQ can
provide deterministic approximate results (i.e., the estimated query results must be within the error bound with 100% confidence) for
SQL aggregation queries that do not contain selection conditions on numerical columns. For queries with selection conditions on
numerical columns, we propose effective grouping-based techniques and the estimated results are also within the error bound in
practice. Experimental results on both real and synthetic datasets show that BAQ significantly outperforms state-of-the-art approaches.
For example, on a Microsoft production dataset (a real dataset with synthetic queries), BAQ has 10-100x improvement on synopsis size
and 10-100x improvement on the error compared with state-of-the-art algorithms.

Index Terms—Data Integration, Approximate Query Processing, Synopsis, Sampling, Bounded Error

1 INTRODUCTION

Online analytical processing (OLAP) is an important func-
tionality in database systems. The performance of process-
ing OLAP queries is crucial in many applications, such as
decision-support systems. For example, consider a revenue
table 7 of a fruit company in Table 1. A data analyst
wants to know the average tax in market “US” on category
“apple”, and poses a SQL query “SELECT AVG (Tax)
FROM 7 WHERE Market=US and Fruit=apple”. Nev-
ertheless, executing a SQL query on large datasets is expen-
sive and traditional exact solutions cannot meet the high-
performance requirement. To address this problem, approx-
imate query processing (AQP) [10], [18] has been proposed
to enable interactive OLAP on big data. However, existing
AQP techniques (e.g., sampling-based method (SAQ) [10],
[12] deterministic method (DAQ) [33], Sketch [11], [13], [43],
Histogram [9], [19], [26], [30]-[32], [37], [40] and Wavelet
[7], [14], [15], [25], [39]) have the following limitations.
Firstly, SAQ requires a given query workload, selects a
synopsis of samples for each distinct column set (QCS) of
queries in the workload, and uses the synopsis to answer an
OLAP query whose QCS is a subset of a given query’s QCS. It

e Kaiyu Li is with the Department of Computing Science, Tsinghua Uni-
versity, Beijing, China. liky15@mails.tsinghua.edu.cn.

o Yong Zhang is with the Research Institute of Information Technology at
Tsinghua University, Beijing, China. zhangyong05@tsinghua.edu.cn.

e Guoliang Li is with the Department of Computer Science, Tsinghua
National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing, China. liguoliang@tsinghua.edu.cn.

o Wenbo Tao is with the Computer Science and Artificial Intelli-
gence Laboratory, Massachusetts Institute of technology, Boston, LS.
wenbo@mit.edu.

e Ying Yan is with the Cloud Computing Group, MSRA, Beijing, China.
ying.yan@microsoft.com.

is challenging to select high-quality samples. Random sam-
pling works well on data with normal distribution, but has
large (unacceptable) errors on skewed data [42]. Although
stratified sampling (AQUA [35], START [36], B1inkDB [4]) can
deal with sparse data, SAQ still has some limitations. (1) SAQ
cannot give 100% confidence on the error bound of using
samples to answer queries and may return large errors for
skewed data, and thus SAQ cannot meet the requirement of
many real applications that the error must be within 5% [42].
(2) SAQ requires to generate a sample for each QCS and it may
generate many samples, leading to low performance.

Secondly, DAQ does not require a query workload. It
focuses on numerical data and uses the high-order bits of
a numerical data to approximate the results. It still needs to
consider all the data and the performance improvement is
limited. Moreover, it cannot support some SQL queries, e.g.,
queries with both categorical and numerical columns.

Thirdly, Sketch, Histogram and Wavelet also require a
query workload. However, they cannot answer the queries
that are not in the workload. Moreover, they can only
support a subset of SQL aggregation queries and cannot
support queries with categorical columns.

To address these limitations, we propose a bounded
approximate query processing framework BAQ. Given an
error bound and a query workload, BAQ generates a unified
synopsis and uses the synopsis to answer an online query
whose QCS is a subset of a given query’s QCS. Compared
with existing methods, BAQ has the following salient fea-
tures. (1) BAQ does not need to generate a synopsis for each
query while it only generates a unified synopsis, and thus
BAQ generates much smaller synopsis. (2) BAQ achieves much
smaller error than existing studies. Specifically, BAQ can pro-
vide deterministic approximate results (i.e., the estimated
query results must be within the error bound with 100%

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

confidence) for SQL aggregation queries that do not contain
selection conditions on numerical columns. For queries with
selection conditions on numerical columns, we propose ef-
fective grouping-based techniques and the estimated results
are also within the error bound in practice.

The basic idea of BAQ is that we first judiciously select
a query synopsis for each QCS with 100% confidence within
the error bound, and then generate a unified synopsis by
covering all these query synopses, which is used to answer
online queries. For example, in Table 1, we first generate
a synopsis for each query in Figure 1 and finally merge
them to generate a unified synopsis in Table 2. (We will
introduce more details in Section 3). To summarize, we make
the following contributions.
(1) We propose a bounded approximate query processing
framework BAQ. BAQ can provide deterministic approximate
results for queries that do not contain selection conditions
on the numerical attributes. For queries with selection
conditions on numerical columns, we propose effective
grouping-based techniques and the estimated results are
also within the error bound in practice.
(2) We first select a query synopsis for each QCS (see Sec-
tion 3). We then generate a unified synopsis by covering
the query synopses, prove that the problem is NP-hard, and
propose heuristic solutions (see Section 4).
(3) We extend our method to support big data and devise
efficient algorithms to generate a unified synopsis on dis-
tributed environments (see Section 5).
(4) We implemented our method on Spark and evaluated
our method on both real and synthetic datasets. Experiment
results showed that our method generated much smaller
synopsis and had much better error-bound guarantee com-
pared with state-of-the-art algorithms (see Section 6).

2 PRELIMINARIES

2.1 Problem Definition

Data Model. Given a database relation 7 with N records,
we use A to denote its column set, where each column A €
A is either a categorical column with a limited number of
distinct values or a numerical column with real numbers.

Query Model. Our system can support any SQL aggrega-
tion query, and here we focus on the following query.

SELECT A7, A3, -+, Afjys|, AGG(AY), AGG(AS), - - -, AGG(Afya)

FROM T
WHERE (A}’ VP v;) OP (A3 VP vg) 0P (Afju| VP vjau))
GROUP BY A{, A, A,

where A® = {A}, A3,--- Aj,. |} denotes a set of selected
columns, A® = {Af, A3, -, Af,.,} denotes a set of aggre-
gation columns (AGG can be COUNT, SUM, AVG, MAX, MIN), AY
is a set of selection conditions (VP denotes a value compari-
son operation in {<, <, >, >, =, #}, v; denotes a value, and
OP is either OR or AND), and AY = {A], A,--- A, }isa
set of grouping columns.

Given a relation 7, a set of SQL queries ¢1,2,- - ,¢-,
and a system-defined relative error bound §, we aim to build
a synopsis S, which is a subtable of 7 with selected records,
such that we can use the synopsis to answer any query g;
and the relative error is not larger than the given bound 4.

2

Definition 1 (Relative Error). Given a SQL query with aggre-
gations AGG(AY), AGG(A3), - -, AGG(A[,.|), the relative
error on an aggregation AGG(A?) is

\Tesult—e.ztimatioﬂ Zf result=0
|result—estimation| lf resultyéO 1)
[result|

where result is the true result on AGG(AY), estimation is
the result estimated using the synopsis, and € is a small
number close to 0.

Definition 2 (Bounded Synopsis Construction). Given a rela-
tion 7, SQL queries ¢1, g2, - - - , ¢-, and a system-defined
relative error bound ¢, select a minimal subset S of
records based on which we compute an approximation
answer for ¢; such that the relative error is within 4.
Table 1 shows a table with three categorical attributes

(Market, Fruit and Profitable) and two numerical at-

tributes (Revenue and Tax). Figure 1 illustrates five exam-

ple queries. Suppose the error bound is 0.2. The highlighted
records in Table 1 are selected to construct the synopsis in

Table 2, and we can utilize the synopsis to answer these

queries within the error bound.

Result Model. We compute the deterministic approximate
result where the relative error is within an error bound ¢
with 100% confidence.
Definition 3 (Query Column Set). Given a query g;, the
query column set (QCS) of g; is m; = A® U A® UAY U AY.
m = U7_,m; is the QCS of all queries.
Note that the synopsis we generate not only can answer
the queries ¢1,¢2, -+ ,¢,, but also can answer a query
whose QCS is a subset of m; within the error bound.

Remark. (1) Our techniques can be extended to support the
nest queries and the queries with the Having clause. We
omit the details due to space constraints. (2) We focus on
a single table. Existing techniques for queries with multiple
tables [20], [24] can be easily integrated into our method.

2.2 Workflow

Our method works in two steps: offline synopsis generation
and online query processing. Figure 2 shows the architecture
of our framework. The data can be stored in HDFS, HBase,
and RDBMS. We generate a unified synopsis S, store it in
memory and use it to answer online queries.

Offline Synopsis Generation. The synopsis generation
component generates the synopsis offline. For ease of pre-
sentation, we first discuss how to generate the synopsis for
each query (Section 3) and then combine them to generate a
unified synopsis (Section 4). We devise effective algorithms
to generate the unified synopsis (Section 4). To support
large datasets, we develop effective algorithms on Spark to
generate the unified synopsis (Section 5).

Online Query Processing. Given a query ¢ whose QCS is
a subset of m;, the query processing engine rewrites query
g to ¢’ and poses the query ¢’ to synopsis S to compute
the results. We will discuss how to rewrite the queries in
Section 3. As our synopsis S is much smaller than the
original table 7, the online query processing is very fast.

2.3 Related Work

Existing studies on approximate query processing can be
broadly classified into two categories: AQP with known
query workload and AQP without known query workload.
Besides, we discuss the error estimation of AQP.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

A Unified Synopsis for Five Queries.
2.3.1 AQP With Known Query Workload

Given a query workload and a predefined error bound,
existing algorithms aim to generate synopsis offline and use
the synopsis to answer online queries. There are two cases
for the known query workload: query matching and QCS
matching. The former answers online queries which exactly
match a query in the query workload. The latter answers an
online query if there exists a query in the workload whose
QCS contains the online query’s QCS.

(1) Query Matching: Wavelet, Sketch and Histogram use
query matching. For each query, Histogram groups the
numerical values into ‘buckets’. For each bucket, Histogram
computes its summary statistics that can be used to approx-
imately answer a query. Wavelet is conceptually close to
Histogram, and it aims to compress the data by capturing
the most expressive features. However, Wavelet requires
to decompress when answering queries. Sketch models a
numerical column as a vector or matrix and transforms
the data by a fixed matrix (depend on query workload) to
construct the synopsis. Sketch is suit for streaming data but
not for general relational database.

These methods have several limitations. First, they need

3
. ’ S1| Market | SF
Query ¢ Rewrite q; [ Us 3
(1) SELECT COUNT(x) FROM T mmp SELECT SUM(SF) FROM s, o ON | 2
GROUP BY Market GROUP BY Market B] FR 2
S2| Market | Profitable | SF
Query q2 Rewrite g, [é] gg ;cs i
(2) SELECT COUNT(+) FROM 7T m=p SELECT SUM(SF) FROM s, H o~ S
WHERE Market =US and Profitable =Yes WHERE Market =US and Profitable =Yes |4 FR Yes 2
) 83| Tax | SF g%| min | max | SF
Query qs Rewrite q, 1] 133 ] 5 | 1] 120 | 144 | 5
(3) SELECT AVG(Tax) FROM T mmp SELECT SUM(SF <Tax) ppoy g, (2] 152 [ 5 | (2145 [ 161 | 5
SUM(SF) (8] 175 | 2 | [3] 175 | 180 | 2
S4| Revenue | SF sﬁ min | max | SF
Query 0 Rewritc [ mEnfEEnE
(4) SELECT MAX(Revenue) FROM 7T mmp SELECT MAX(Revenue) FROM s, B 1670 |2 |3 1670 | 1820 | 2
4] 2130 T |[4] 2130 | 2130 | 1
) , S5 Market | Fruit | Tax | SF
Query gs Rewrite gy ) Us orange | 120 | 2
SUM(SF * Tax) 2 US apple 150 | 4
(5) SELECT AVG(Tax) FROM T . mmp SELECT ~sum(sr)  FROM ss s US apple | 161 |2
WHERE Market = US and Fruit = apple WHERE Market = US and Fruit = apple 4] CN banana | 152 | 2
Fig. 1. Five Example Queries and Their Synopses. (5]l FR | banana | 144 | 2
Market Fruit Profitable | Revenue | Tax
n US | orange Yes 1100 | 120 . Mg L:l .r_eSILnse.
rs | US | orange No 1250 | 140 vsers | 2 = B
T3 US apple Yes 400 45 _{ |
1 US apple No 1380 | 150 |
Is CN banana Yes 1420 152
To US apple Yes 1670 161 !
17 FR banana Yes 1820 144 Svstem é
TS US apple No 1500 175 ¥ | o synopsis
T9 FR banana Yes 1310 125 Server Memory
r10 US apple Yes 1580 133
11 CN banana Yes 1220 180 ﬁ
r12 US apple No 2130 154 A ——
TABLE 1 Storage =
Table 7. ‘S’dl’.Server M NOSQL
Market Fruit Profitable | Revenue | Tax | SFy | SFy | SF5
US orange Yes 1100 120 4 4 2
US apple No 1380 | 150 | 4 5 4 \,
CN | banana |  Yes 1420 | 152 | 2 | 0 | 2 Input Query Error
oun
Us apple Yes 1670 161 0 2 2 Data £
FR banana Yes 1820 144 2 0 2 Fig. 2. Architecture of BAQ.
US apple No 2130 154] 0 1 U Jto know all the queries in advance. Second, they only focus
TABLE 2

on numerical columns. Third, they take much space to store
the synopses, as they construct a synopsis for each query.

(2) QCS Matching: Sampling-based approximate query
processing (SAQ) is widely used to support QCS matching.
SAQ first selects samples for each QCS and then uses the
samples to answer online queries [10], [27], [41]. It is chal-
lenging to select high-quality samples and many methods
are proposed to generate high-quality samples. A common
method is random sampling [42]. However, this method can
only provide a high confidence (e.g., 95%) that the result of
using the sample to answer a query is within a given error
bound, but it cannot achieve 100% confidence. Moreover, it
performs badly in skewed data, e.g., long-tail distribution.
Besides, the size of groups and the values in each group
may be highly skewed, making many traditional uniform-
sampling-based methods unreliable [42]. Although stratified
sampling (AQUA [35], START [36], B1inkDB [4], Babcock [5],
Sample + seek [12]) can deal with sparse data, SAQ still has
some limitations. (i) They generate samples for each QCS
and cannot share the samples among different QCSs. If we
simply union the independent samples for every attribute,
the overall sampling rate will be prohibitively large. Instead,
our method BAQ shares samples among QCSs and the synop-
sis size is rather small. (4) SAQ ignores the long tails of data

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

distributions, making it hard to effectively answer MAX/MIN
queries while our method can support MAX/MIN very well.
(#91) To provide high confidence, SAQ uses Bootstrap [3],
[17], [29], [44] to diagnose the results by using multiple
samples. This approach can be computationally expensive
and inaccurate for some queries.

2.3.2 AQP Without Query Workload

(1) Deterministic Approximate Query: Deterministic ap-
proximate queries (DAQ) [33] used the high-order bits of
numerical data to do approximation, by borrowing the idea
from probabilistic databases [22], [23], [38]. However, DAQ
cannot support general SQL aggregation queries with Where
and Groupby while BAQ can. Moreover, DAQ maintains all
records and the performance improvement is limited.

(2) Online Aggregation: Online aggregation (OLA) provides
the users with approximate answer with online estimation
based on currently seen data [8], [16], [24], [28], [34]. The
user can stop the query execution if she is satisfied with the
answer. OLA has no guarantee on the performance and error
bound, and it takes long time and returns bad results.

2.3.3 Error Estimation

(1)Error Estimation with Known Distribution. If we have
a-priori knowledge about the data distribution or have
enough samples to get the distribution, then we can regard it
as a parameter estimation problem. For real-world datasets,
many datasets follow the normal distribution and existing
studies assume that the data follows normal distribution [6].

(2)Error Estimation without Known Distribution. If the
distribution is unknown, some resampling methods, e.g.,
Bootstrap, can be used. The key idea of Bootstrap is that
to use sample S to replace original dataset D, one can draw
samples from S instead of D to compose the distribution
of AGG(S) [44]. For each sample S, the estimated values
of AGG(S) can be computed and these values compose a
distribution which can be used to estimate the aggrega-
tion result. Interested readers are referred to [17] for more
details. Closed-form estimation is faster than resampling
in some specific queries. In probability theory, the central
limit theorem (CLT) establishes that, for independent ran-
dom variables, the normalized sum tends toward a normal
distribution (informally a “bell curve”) even if the original
variables themselves are not normally distributed. Thus, the
distribution of AGG (S) can be approximated as N(AGG (S),02),
where o can be computed by the mean squared error Var(S).
Computing Var(S) for a small dataset S will be faster than
the brute-force resampling. However, this method can only
work for COUNT, SUM, AVG but fail to deal with the queries
whose variance is hard to compute such as max, min or
user-defined functions [3]. Large deviation bounds studies
how to compute the confidence interval in the worst case
by estimating the minimal and maximal values meanwhile
keeping the results not dominated by the outliers.

2.4 Comparison with Existing Methods

We compare our method BAQ with existing methods in
Table 3. (1) Supported Queries. Wavelet, Histogram and
Sketch assume the queries are known while BAQ assumes
QCSs are known. In other words, Wavelet, Histogram and
Sketch can only answer queries that appear in the query

4
Error Bound Guarantee

Workloads | Skewed Categoricall No Numerical | Numerical

Data in WHERE in WHERE
SAQ QcCs X not 100% not 100% not 100%
DAQ No not 100% not 100% not 100%
Wavelet Queries [ 4/ X not 100% not 100%
Histogram| Queries X not 100% not 100%
Sketch Queries [ 4/ X not 100% not 100%
BAQ QCs Exact 100% not 100%

TABLE 3

Comparison of BAQ with state-of-the-arts. (x: Not support; 1/: Support
such case; Exact: Exact result; 100%: 100% within §.)
workload, while BAQ and SAQ can answer queries whose
QCSs are contained by the QCS of a query in the workload.
Wavelet, Histogram and Sketch only support numerical
columns while BAQ can support both categorical and nu-
merical columns. (2) Synopsis Size. BAQ generates a smaller
unified synopsis while SAQ generates larger samples. DAQ
provides approximation using high-order bits of attributes
thus needs to store and access all of the tuples while BAQ
just stores a unified synopsis. Thus BAQ has the smallest
synopsis size. (3) Online Efficiency. As BAQ has the smallest
synopsis size, BAQ achieves the highest online efficiency. (4)
Error Bound. BAQ provides exact answer for categorical only
queries and deterministic approximation results for queries
without selection conditions on numerical columns while
other methods cannot. For queries with selection conditions
on numerical columns, none of these methods can provide
deterministic approximation results while BAQ can provide
results within error bounds in practice as verified in our
experiments. Thus, BAQ can provide answers with smaller
errors. SAQ performs bad on skewed data especially MAX and

MIN, while BAQ is not sensitive to the data distribution.

3 SINGLE QUERY

We study how to build a synopsis for a single query. Given
a query g¢; and its QCS m;, we first study the case that
m; only contains categorical columns in Section 3.1. Then
we discuss the case that m; contains both categorical and
numerical columns but the where clause does not contain
the numerical columns in Section 3.2. Next we consider that
the where clause contains numerical columns in Section 3.3.

3.1 Categorical Columns Only

Synopsis Definition. For simplicity, we first consider a

simple case that the QCS of g; contains only one column, i.e.,

|m;] = 1. In this case, suppose the attribute is A. Let D[A]

denote the set of distinct values in column A. For each value

v € D[A], we compute its frequency in table T, denoted by

f[v]- We call f[v] the scale factor (SF) of v. We select (v, f[v])

for every v € D[A] as synopsis. For example, consider query

g1 in Figure 1. There are 3 distinct values and the scale factor

of “Us” is 8. Then we consider that |m;| > 1. Let T [m]

denote the subtable of 7 that only keeps the columns in

7;, and D[m;] denote the set of distinct tuples in T [m;]. For

each tuple V' € Dim;|, we compute the frequency of tuple

V in D[n;], denoted by f[V]. We call f[V] the scale factor of

V. We select (V, f[V]) for every V' € D[m;] as synopsis. For

example, consider the SQL query g¢. in the Figure 1. There

are 4 distinct tuples of (Market, Profitable) and the scale

factor of “(US, Yes)” is 4.

Definition 4. (SYNOPSIS OF ¢; WITH CATEGORICAL
COLUMNS ONLY) The synopsis of ¢; is a table with |m;|+1
columns, including |7;| columns in 7; and a column SF.
Each row contains tuple V €D[r;] and its frequency f[V].

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.




This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

For example, ¢; and g2 in Figure 1 only contain categori-
cal columns and the synopses s1, s3 are shown in the figure.

Synopsis Construction. We can easily generate synopsis by
scanning the records in 7 once. We scan the records in T
and keep a hash table to keep the tuples in 7 [r;]. If a tuple
in T[m;] appears in the hash table, we increase the frequency
by 1; otherwise we add the tuple into the hash table and
set the frequency as 1. After accessing all records in 7, we
generate the synopsis. The time complexity is O(N).

Query Rewriting. If ¢; contains categorical columns only,
AGG can only be COUNT, because it does not make sense for
SUM, MIN, AVG, MAX on categorical columns. For any column
A, we have COUNT(.A)=SUM(SF). Thus, we can rewrite g; by
replacing each COUNT(.A) with SUM(SF). For example, we
show the rewritten queries in Figure 1.

Error Analysis. For a query ¢; with only categorical

columns, we can use the synopsis s; to exactly answer the

queries with the same QCS as ¢; (no error) as stated in

Lemma 1.

Lemma 1. For each query ¢; with only categorical columns,
the result of using the synopsis s; to answer the queries
with the same QCS as g; is exactly the same as the result
of using the original data to answer the queries.

Proof 1. Due to space constraints, we put all proofs in our
technical report’.

3.2 No Numerical Columns in The Where Clause

We first consider that 7; only contains numerical columns in
Section 3.2.1 and then discuss the case that 7; contains both
numerical and categorical columns in Section 3.2.2.

3.2.1 Numerical Columns Only

Obviously, the groupby clause does not have numerical
columns, and thus in this case, the where clause is empty
and the select clause has only numerical columns.

(1) Only One Numerical Column. Values in numerical
columns are usually continuous and it is expensive and
not practical to select distinct values for numerical columns.
For example, considering the Tax column, the number of
distinct values is the same as the number of records in the
table. To address this issue, we propose to partition the
numerical values in column A into a set of disjoint groups.
Suppose the values in column A are vy, v, - - - , vy. Without
loss of generality, we assume that the values are sorted (if
not sorted, we first sort the values), i.e., v; < vy, for j < k.
Next we discuss how to generate the groups.

Definition 5 (Numerical Value Grouping). We partition the
values into x groups, G[1] = {vi,---,v;}, G[2] =
[Uj1s o 0} -1 Gla] = {oy 41, on} where
the relative error between the smallest value and the
largest value in each group is not larger than §, ie.,

DUt < sfor1 <t <z, Jo=0,jJz41 = N.

Vjp_q1+1

As the relative error between any two values in each
group is not larger than J, we can select any value as a
pivot to represent the values, and the relative error of other
non-selected values to the pivot is not larger than 6.

1. http:/ /dbgroup.cs.tsinghua.edu.cn/ligl/baq.pdf

5

Grouping Strategy. We first argue that we can find a
strategy to generate the groups. A trivial case is that each
value forms a group and there are N groups. However, this
method will involve a huge number of groups. For example,
if we use each of the distinct values in Tax column as
a group, there will be 12 groups. Thus, we aim to find a
grouping strategy to minimize the number of groups.

Minimizing The Number of Groups. We propose a scan-
based algorithm to minimize the number of groups. Firstly,
we initialize the first group and add the first value v;
into the group. Then, we consider the next value vy. If
vy < vy % (1 4+ J), we add v, into the first group; otherwise
we generate a new group and put vy into the new group.
Iteratively we can generate all the groups. For example,
consider the column Tax. We first sort the values in Tax.
Suppose the relative error is § = 0.2. We add the first value
120 into the first group and then insert 125, 133, 140, 144 into
the first group. We find that 145 > (1 + 0.2) % 120 = 144,
so we generate a new group and put 145 into the second
group. Iteratively we can partition the values into 3 groups.
Lemma 2. The scan-based algorithm can minimize the num-
ber of groups.

Synopsis Definition. We partition the numerical values into
groups G[1],G[2],--- , G[z]. For each group G[p|(p€[l,z]),
we select a pivot v € G[p| and take the size of G[p] as the
scale factor of v. We select (v, |G[p]|) as the synopsis.
Synopsis Construction. Given a query with numerical col-
umn A, we first sort the values and generate groups for the
column. Then we select a pivot from each group to generate
the synopsis. The complexity is O(N log N).

Query Rewriting. If g; contains numerical columns only,
AGG can be COUNT, MIN, MAX, SUM, AVG. We can rewrite query
¢; by replacing AGG(.A) as below:

e COUNT(A) —> SUM (SF)

e MAX(A) — MAX(A)

o MIN(A) — MIN(A)

e SUM(A) — SUM (A«SF)
o AVG(A) — 75‘;%*(‘;?)”

Error Analysis. We discuss errors for different functions.

(1) COUNT(.A). There is no error because we can use the
scale factor to exactly count the number.

(2) MAX(A) and MIN(.A). The pivot and the correct answer
must be in the same group. According to Definition 5, the
error of computing MAX(A) and MIN(A) is within é.

(3) SUM. Let v; denote a value and v} is the pivot that is
used to represent v;. The relative error of SUM is

Z{y:1 Ui*Z{cvzl v Z{c\lzl(viiv;) Zk 1|ViT Y |
Zk 1 Vi Zk 1 Vi - Ek 1lvil
Z Oxlvg| 5*2 lvi|
< k=1 _ k=1 _
- Zk 1lvil Zk 1lvil 0
(4) AVG. The relative error of AVG is:
‘(Zk LU=y ;)/N‘_‘Zkl MR <6
(Ek L vi)/N k 1 Vi -

Thus the relative errors for all functions are within ¢

For example, consider g3 in Figure 1. The rewritten query
¢4 and synopsis s are shown in the figure. We partition the
numbers in Tax and add the scale factor. We answer ¢4 by

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

us o i Rl
CN X apple X b, [145,161] TS Tapple | 133
FR banana b3 [175,180] | TS applé 145

¥ ' US | apple | 150 bs
US, orange, {b1} v US | apple | 154
US, orange, {ba,bs} US | apple | 161 b
US, apple, {bl,bg,bg} e US | apple | 175 6
US. baana, (1. 1 o [,
CN, apple, {b1,b2,bs} FR | banana | 125
CN, orange, {b1,b2, b3} FR | banana | 144 bs
CN, banana, {bo, b3} v
CN, banana, {b;} [ US, orange, {bs} |}
FR, apple, {b1,bo,b3} US, apple, {bs5}
FR, orange, {by,bs, b3} US, apple, {bs}
FR, banana, {by, b3} CN, banana, {b;}
FR, banana, {b;} v FR, banana, {bg}

(a) Method 1
Fig. 3. Examples of Two Grouping Methods.

(b) Method 2

computing 133*5+152x5:8175+2 — 147 92, The real answer is

148.25, and the relative error is W = 0.00223.

(2) Multiple Numerical Columns. We partition each nu-
merical column into groups and store them independently.
The query rewriting is the same as the queries with a single
numerical column. The relative errors are still within J.

3.2.2 Both Numerical and Categorical Columns

For simplicity, we first introduce some notations. Let 7§
denote the set of categorical columns in 7; and 7}* denote
the set of numerical columns in 7;. Let D[r¢] denote the set
of distinct tuples in 7T [r{] and G[r}*] denote the set of group
combination for numerical columns in 7.

We propose two methods to generate the synopsis. The
first is a combination method that conducts a Cartesian
product on D[7¢] and G[7}] as follows. For each tuple V in
D[r¢], for each group G in G[r?], it generates a pair (V, Q)
and counts the number of records in 7 whose 7§ tuple is V'
and whose 7! value is in group G, denoted by f(V,G). If
f(V,G) > 0, we add (V, G, f(V,G)) into the synopsis. For
example, consider the SQL query g5 in Figure 1 with two
categorical columns and a numerical column. Considering
the 3 columns. Suppose we group the numerical column
with § = 0.2. It can be divided into 3 groups b1, b2 and bs.
There are 3 distinct values in each categorical column. Thus
there are 27 combinations. Since there are no tuples in some
of the combinations, we generate 7 tuples in the synopsis as
shown in Figure 3(a).

The second method first enumerates all the distinct
tuples of D[n{]. Then for each tuple V' in D[r§], we consider
the subtable of 7 whose 7§ tuple is V, ie., T[n{ = V].
Then we group these tuples based on the numerical values
on 7}'. We still generate the minimum number of groups.
For each group G, we take the size of the groups on
T[r¢ = V] as the scale factor, denoted by f(G,7¢ = V). We
add (V,G, f(G,n¢ = V)) into the synopsis. For example,
in Figure 3(b), if we group it according to the categorical
columns, it will be divided into to (US,orange), (US,apple),
(CN,banana), (FR,banana) groups. We set § = 0.2. The
tuples in the group (US,apple) will be divided into bs, be.
This method generates 5 groups, which has less groups than
the first method.

6

Lemma 3. With the same relative error bound, the second
method generates no larger synopsis than the first.

In this case, the query rewriting is the same as the pre-
vious sections. The complexity of generating the synopsis
is O(|77"|N log N), where |7}*| is the number of numerical
columns in the query.

3.3 The Where Clause Has Numerical Columns

In this section, we focus on the case that the where clause
contains numerical columns, e.g., A > 100. We still use
the above methods to generate the synopsis but the way
of using synopsis to answer a query is different.

3.3.1  Only One Numerical Column in Where Clauses

We consider the case that there is only one numerical
column in the where clause, e.g.,, A > v, and our method
can be easily extended to support other cases, e.g., A < v.
Suppose there are x groups for A, G[1],G[2], -, G[z].
We consider the following cases.
(1) There is no group satisfying A > wv, ie., the maximal
value of G[z] is smaller than v. Then there is no tuple
satisfying the query, and our method can exactly answer
the query.
(2) There is only one group satisfying A > v, ie., the
maximal value of G[z] is larger than v but the minimal
value of G[z] is smaller than v. In this case, some tuples
in the group satisfy the query, and G|z] is called a partially
satisfied group.
(3) There are more than one groups satisfying A > v, i.e., the
maximal value of G[j] is larger than v and the minimal value
of G[j] is smaller than v. Then G[j] is a partially satisfied
group and G[k > j] is a fully satisfied group (as all tuples
in G[k] satisfy the query condition).
(4) All groups satisfy A > v, i.e., the minimal value of G[1]
is larger than v. Our method can exactly answer the query.
For (1) and (4), we just use the same rewritten query and
synopsis to answer a query. For (2) and (3), we process the
fully satisfied group and partially satisfied group separately
and then sum up the results of the two cases.

Partially Satisfied Group. For the partially satisfied group
(there is at most one partially satisfied group), we need to
estimate how many tuples in the group satisfy the query
condition. Suppose G is the partially satisfied group with
a scale factor G.f. Let G.min and G.max denote the min-
imal and maximal values in the group. Then the number
of tuples satisfying the query condition is estimated as
|G.f * %J To this end, we maintain a table
s;r, which keeps three columns A,,, Ay, Ay to store each
group’s minimum/maximum value and the scale factor.

Fully Satisfied Group. For fully satisfied group, we still use
the rewritten query to get the answer, and the error bound
is also within §. For example, consider the following query:

SELECT AGG(Tax) FROM 7 WHERE Tax > 134

We can also use the table s in Figure 1 to answer this
query. Groups (145, 150, 152, 154, 161), (175, 180) are fully
satisfied, (120, 125, 133, 140, 144) is partially satisfied. We
store the minimal number and maximal number in si as

[120,144], [145,161], [175,180] and the scale factors are 5, 5

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

and 2 respectively. In the partially covered group, the scale
factor is 5. Then the number of tuples satisfied the query is
estimated as |5 * 15115 ] =2

Next we give the details on how to utilize this technique

to rewrite a query.

(1) MAX and MIN:

Query Rewritting. When AGG is MAX or MIN and the result
is in a partially satisfied group, we directly use MAX(.A) and
MIN(A) to rewrite the query without any change.

o MAX(A) — MAX(A), MIN(A) — MIN(A)

Error Analysis. It is obvious that the result is within 6.

(2) COUNT:

Query Rewriting. The rewritten query contains two parts.
Firstly, we compute the value G.max in the partially satis-
fied group and estimated number of tuples satisfying A > v
in the partially satisfied group by

A _
SELECT Ay, |SF * —2

Secondly, we compute the number of tuples satisfying
A > v in fully satisfied groups by:

SELECT SUM(SF) FROM st WHERE A,, > G.max

Then the sum of results from these two SQLs is the answer
of the count query. In above example query, we have esti-
mated 2 tuples in the partially satisfied group and we know
that there are 5+2=7 tuples in the fully satisfied group. Then
the answer is 7+2=9. It is the same to the exact answer.

Error Analysis. There is no error in the fully satisfied group.

The error in the partially satisfied group is small. Fortu-
nately, the partially satisfied group is always much smaller
than the fully satisfied groups, so the answer is reliable.

(3)SUM:
Query Rewriting. The rewritten query contains two parts.

We compute the maximum value G.max and the SUM in the
partially satisfied group by
Ay —wv
Ap — A
FROM s* WHERE A, <v < Ay

SELECT Ay, Ay * LSF *

We compute the result in the fully satisfied part as:

An + Ay

SELECT SUM( * SF) FROM st WHERE A, > G.max

Then we can add them up. In above example query, the
summation of partially satisfied group is 144*2=288 and
the summation in fully satisfied groups is 145“61 * 5 +
175“‘180 * 2 = 1120. The final result is 1120+288 1408. The
exact answer is 1401.0 and the relative error is only 0.0049.

Error Analysis. The error in fully satisfied groups is within

d. The error in the partially satisfied group is small.

@AVG:
Query Rewriting. We can compute the answer by dividing

the result in (3) by the result in (2). For example, If the
aggregation function is AVG, we can just use % = 156.44.
The exact answer is 155.67 and the relative error is 0.0050.

Error Analysis. The AVG in the fully satisfied groups will

7

be within error bound. The additional error is caused by
the partially satisfied groups when counting the number of
satisfying records, and the error is very small.

3.3.2 Multiple Numerical Columns in Where Clauses

When the where clause contains multiple numerical
columns, e.g., Ay > wv; and A > vy, there may be
many fully satisfied groups and one partially satisfied group
for each predicate. We first identify the partially satisfied
group and fully satisfied group. Then we consider the
four combinations of the two columns (and the method
can be easily extended to support more than 2 pred-
icates): partially/partially, partially/fully, fully/partially,
and fully/fully. For fully/fully, we use the rewritten query
and the error is within the bound. For partially/fully or
fully/partially, we use methods in Section 3.3.1 to esti-
mate the results. For partially/partially, we assume the two
columns are independent and estimate the answer.

Remark. Even there are additional errors caused by partially

mJ FROM s WHERE A,,, < v < Awsatisfied groups in where clause according to theoretical

analysis, but the experimental results indicate that these
errors are very small. We show the details in Section 6.

4 MULTIPLE QUERIES

In this section, we study how to build synopsis for multiple
queries. A straightforward method builds a synopsis for
each QCS and then uses multiple synopses to answer queries.
Obviously this method generates many synopses and incurs
high space and time cost. We find that some synopses are
redundant, and we discuss how to detect and eliminate
the redundant synopses in Section 4.1. Then we propose
to combine the multiple synopses and generate a unified
synopsis to answer multiple queries. We discuss how to
minimize the synopsis size for multiple queries in Section
4.2. Since the problem of minimizing the synopsis size is NP-
hard, we propose two approximate algorithms in Section
4.3. We discuss how to answer newly coming queries and
incrementally update the synopsis in Section 4.4.

4.1 Redundant Synopsis Detection

Consider two queries g;, ¢; and their QCS ;, 7;. If m; C 7},
g; has more attributes than ¢; and generates finer granu-
larity synopsis than g;. We find that the synopsis s; of g;
can be used to answer ¢; as follows. We still use the same
method to rewrite query ¢; as ¢;. Then we pose query ¢; to
synopsis s;, and get a result A(s;, ¢;). We can prove that the
error bound of result A(s;,q;) is also within J as stated in
Lemma 4, because if there is a tuple in the synopsis of g;,
then there must be one or more corresponding tuples in the
synopsis of g;.

Lemma 4. Given two queries g;, ¢; and their QCS 7;, 7;, if

m; C m;, the error of using s; to answer g; is within 6.

For example, considering ¢; and g2 in the Figure 1. m; =
{Market} C {Market,Profitable} = my. sy can be used to
answer ¢, and ¢; in Figure 1 is equivalent to

SELECT COUNT(*) FROM 7 GROUP BY Market
WHERE Profitable = Yes OR Profitable = No

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Transactions on Knowledge and Data Engineering

The scale factor of ‘US’ is 8 in s7. It is 4+4=8 in s5.

Lemma 5. Given a query g¢; in the query workload, and
online query ¢, if ¢’s QCS is a subset of 7;, the error of
using s; to answer ¢ is within 4.

Definition 6. Given a set of queries, if m; C 7;, the synopsis
of m; is redundant.

We aim to eliminate all redundant synopses. To this end,
we enumerate every pair of queries (g;, g;). If the QCS of ¢;
is the subset of the QCS of g;, we do not keep the synopsis
of ¢;. For example, consider the five queries ¢; to g5 in
Figure 1. The QCSs are {Market, (Market, Profitable),
Tax, Revenue, (Market, Fruit, Tax)}. We can eliminate
Tax and Market because Market C (Market,Profitable)
and Tax C (Market,Fruit, Tax).

4.2 Constructing A Unified Synopsis
We aim to generate a single synopsis and utilize the synopsis
to answer online queries within the threshold 4.

Synopsis Definition. Without loss of generality, suppose
q1,92, - ,q, are the queries after removing the redundant
ones. We use 7 to denote the set of distinct columns of
these queries. The synopsis has || + 7 columns, including
columns in 7 and the scale factor for each query. For each
synopsis s; of query ¢;, consider the j-th tuple s;[j] and its
corresponding scale factor f} in its synopsis. A k-th record
r[k] in original table T covers s;[j], if (1) s;[j] and r[k] have
the same value on categorical columns in g;, and (2) s;[j]
and r[k] are in the same group in each numerical column. If
there are multiple records covering s; [7], we assign the scale
factor SF, of one tuple as f/ and those of others as 0.

We use “record” to refer to data in the table 7 and
“tuple” to refer to the data in a synopsis for ease of pre-
sentation.

For example, consider the 3 queries g2, g3, g5 after re-
moving the redundancy. 7 = moUmsUms =(Market, Fruit,
Profitable, Revenue, Tax). We use columns in 7 and 3
scale factor columns for the three queries to construct the
unified synopsis as shown in Table 2. Considering the first
tuple s5[1] in s5 in Figure 1, the first record ry in Table 2
covers s5[1] because they have the same value in categorical
columns {Market, Fruit}, and in numerical column Tax,
the two values (120 and 120) are in the same group.

Synopsis Construction. We want to select the minimum
number of records in the unified synopsis S to cover all
tuples in each query synopsis such that we can utilize S to
answer every query. However, this problem is NP-hard by
a reduction from the minimum cover problem [21] as stated
in Lemma 6.

Lemma 6. Selecting a unified synopsis to cover all the query
synopses with the minimum size is NP-Hard.

Lemma 6 implies that we need to find effective ap-
proximation algorithms. We will introduce two heuristic
algorithms in the following subsection.

Query Processing with the Unified Synopsis. Given a
query g, if its columns are contained by a QCS m;, we use
S to answer the query using the same rewritten query ¢
within the bound §; otherwise, we use the original data to
answer the query.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Records Tuples Records Tuples
ry s2[1] ry s2[1]
Tro $2[2] 20 $2[2]
T3 $2[3] r30) s2[3]
40 s2[4] ry s2[4]
rs s4[1] rs sa]
re sfi [2] re 5)4[2]
r7 s [i] Ty 54[2]
70 im0 i
790 ss[2] 790 s5(2]
100 55[3] 7100 s5(3]
110 s5[4] 7110 s5(4]
r1z s3[5] r12 s3/5)
(a) Scan (b) Greedy

Fig. 4. Unified Synopsis Generation Algorithms.

Lemma 7. The answer of the rewritten query ¢ of ¢; on the
unified synopsis S is the same as the answer of ¢, on
synopsis s; (within error threshold 6).

For example, consider g5 in Figure 1. The exact result of
g5 on T is 153.0. When we use g5 or ¢; on the synopsis s,
the result is 153.67 and the error is w = 0.0044.
Remark. We cannot construct a synopsis for 7 = Uj_;m;
which is a superset of each ;. In real workload, the queries
may be related to many columns, and if we enumerate all
the possible values of , there will be a large number of
groups and the size of synopsis will be close to the original
table 7. Moreover, it is unnecessary to construct a synopsis
for m because if there does not exist a query that contains
two columns in 7, we do not need to combine them. For
example, if we use the method in Section 3.2.2 to construct
a synopsis for m = U?Zlﬂ'i:(Market, Fruit, Profitable,
Revenue, Tax), we first partition the table into 6 categories
according to the 3 categorical columns and finally get a
synopsis with 9 tuples after grouping each of the category.
Additionally, we should add 3 columns for scale factors. It
is close to the size of the original table 7 (12 records). So we
cannot use this strategy to construct a synopsis.

4.3 Synopsis Finding Algorithms

We propose approximate algorithms to generate the synop-
sis. We first introduce a scan-based algorithm which is very
fast but has large synopsis size. We then introduce a greedy
algorithm which is slower but has small synopsis size.

4.3.1 Scan-based Algorithm

We first generate the query synopsis for each query. Then we
propose a scan-based method to find a number of records
to cover each tuple in query synopses. We use a flag to
keep the status of tuple s;[j] of synopsis s;. Initially all of
the flags are set false. We scan the table 7 and for each
record 7, we enumerate each synopsis s;. If r, covers a
tuple s;[j] in s; with the false flag, we add rj into the
synopsis S and set the flag of each s;[j] covered by ry as
true, where 1 < j < |s;]. (Note if 7, covers multiple tuples
for different queries, we only add r; into S once.) If all
the flags are true, the algorithm terminates. Note that this
algorithm must terminate because for each tuple s;[j] in a
synopsis, we can select the corresponding record (the tuple
is generated from) which must cover this tuple.

For example, considering the table 7 in Table 1, we
set all the tuples in s2,s4,55 in Figure 1 as false. The

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

first record = {’US’,’orange’,"Yes’,’1100’,°120"} in T
covers so[l] ={"US’, ‘Yes’} in sg, s4[1] ={"1250"} in s4 and
ss[1] ={'Us’, ‘orange’, 120’} in s5. We set the flags of
the 3 tuples as true and select r; into the unified synopsis.
Iteratively, we select 7 records that can cover all tuples of all
the query synopsis as shown in Figure 4(a).

Suppose there are N records in 7, and M tuples in all
the synopses of 7 queries, i.e, M = Y 7, |s;|. Since the
algorithm needs to enumerate each record in 7 and for
each record checks each tuple in the query synopsis, the
complexity of this algorithm is O(M N).

4.3.2 Greedy Algorithm

The scan-based method may select many unnecessary
records in the unified synopsis. To address this problem, we
propose a greedy method to reduce the synopsis size. For
each record 7, in T, it may cover multiple tuples in different
queries. We call the number of tuples that 7, covers as the
coverage of r;,. We compute the coverage of each record, and
greedily select the records with the largest coverage until
all the flags are set as true. Note that a record 7}, exactly
covers one tuple s;[j] for each synopsis s;. In other words,
there is a many-to-one mapping from a record to a synopsis
tuple. Thus the coverage of a record is among 7, 7—1,--- , 1.
So in the first step, we scan the records in 7T, identify the
records with the coverage of 7, and put them into the unified
synopsis, and update the flags of tuples in query synopses.
In next step, we scan the records in 7 again and identify
the tuples with the coverage of 7 — 1, and put them into the
unified synopsis. Iteratively, we generate the synopsis.

For example, consider the example in Table 1. We
scan the table 3 times. In the first iteration, we com-
pute the coverage of each record. The first record m =
{'Us’,’orange’, ‘Yes’,’1100’,°120"} in T covers {‘US’,
‘Yes’} of g2, {"1250'} of g4 and {‘US’, ‘orange’, ‘120"} of
gs, and the coverage is 3. The coverage of 72 is 1 and that
of r3 is 2. We find 71,74 and r7 with coverage 3 in the first
iteration. Thus we first select them. Iteratively, we select 6
records, which has the same size as the optimal synopsis as
shown in Figure 4(b).

The algorithm iterates at most 7 times. For each iteration,
we will scan the table to find the records with the most
uncovered tuples in different queries. For each record, we
should test how many tuples it covers. So the complexity of
the greedy algorithm is O(TMN).

4.4 Answer New Queries and Update the Synopsis
Considering a new query g, if its columns are contained
by a QCS m;, we use S to answer the query using the same
rewritten query ¢; within the bound ¢; otherwise, we cannot
use the synopsis S to answer the query and instead we use
the original data to answer the query.

If there are some QCSs that cannot be answered by the
synopsis, we need to update the synopsis S. However, it
is expensive to update S online. To address this issue, we
update the synopsis in a delay manner, for example, when
the server is not busy, we update all QCSs that cannot be
answered by the synopsis. Formally, for each such QCS 7,
we generate its synopsis S;, merge S; with the synopsis
S, and update S using the merged results as discussed in
Section 4.3.

9
Table T~ 4 @ s cov:e;age covi:;age covjiage
» 000 005 000 6ag @
. D00 U6 800 By 6 | O
r, OB OB EEO ONB O |
66 OO HOG BOD O 6
&
{ Synopses % N S5
(a) Repartition —
{US, apple, Tax} E% P %
2 [160,175] @_»@
——>06w 6| @
o @)
->
[133,159] Py
. J| (o] @EG 6 o
...... S @O 0
Groups Generation @
(b) Merge

Fig. 5. Distributed Algorithms.

5 DISTRIBUTED ALGORITHMS

We study how to extend our method to support big data.
We first study how to generate the same unified synopsis as
the greedy algorithm in Section 5.1. As the method is rather
expensive, we propose an efficient merge-based algorithm
to generate the unified synopsis in Section 5.2.

5.1 Repartition-based Method

We first generate query synopsis s; for each query ¢; and
then combine them to generate the unified synopsis.
Generating Query Synopsis s;. (1) For the query with
categorical columns only, we first select the distinct tuples
on these categorical columns in each partition and then
merge them together. We can prove that this method can
correctly generate the query synopsis. (2) For the query
with numerical columns only, we need to sort the numerical
values. To sort the values, we need to repartition the records
to put the close numerical values into the same partition,
generate the numerical groups in each partition and then
collect them together. (3) For the query with both numerical
and categorical columns, we need to reparation the records
based on the distinct tuples on the categorical columns, and
put the records with the same distinct tuple into the same
partition. Then we generate the synopsis in each partition
and collect them together. For cases (2) and (3), we need to
repartition the records, which is rather expensive.

Generating Unified Synopsis S. We distribute the query
synopsis s; to each partition. Then, we select the records
from each partition with the largest coverage 7 and merge
them together. We update the tuple flag in the query syn-
opsis if the tuple is covered by the selected records and
distribute the updated information to each partition. Next
we select the record from each partition with the coverage
7 — 1 and merge them together. We repeat the above steps
until all the tuples in each query synopsis are covered.

For example, in Figure 5(a), suppose that the table T is
stored on two partitions P; and P». P; stores records r; to g
and P, stores records r7 to r12. We only consider queries go,
g4 and g5 after eliminating redundant synopses. For g with
categorical columns only, we generate local synopsis on P;
and P, as {{('0s’,'Yes’), 3}, {('Us’,/No’), 2}, {(‘CN','Yes’),

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

1}, and {'FR’,/Yes’), 2}, {('Us’,'Yes’), 1}, {('US’,'No"), 2},
{(‘cN’,’Yes’), 1}}. Then we merge them to generate synopsis
s9. Consider a more general case g5 with both categorical
and numerical columns. We repartition the records in T
based on the categorical values in the Figure 3(b). We store
6 records with {‘US’, ‘apple’} on P;. We store the other
6 records on P,. Then we sort the numerical values and
generate 2 groups on P; and 3 groups on P. in Figure 5(a).
We distribute s, s4 and s5 to each of the partitions. We
select r1 and update (‘US’,Yes’) in sg, (1250) in s4 and
(‘us’,/orange’,120) in s5 as ‘covered’. Then we find the next
record with the maximum coverage. Iteratively, we select 6
records which has the same size as the optimal synopsis.

5.2 Merge-Based Method

The repartition-based method is rather expensive because
(1) it requires to repartition the data, leading to huge num-
bers of data transmission, and (2) it needs to generate the
query synopsis and distributes them to every partition. To
address these issues, we propose a merge-based algorithm,
which generates the local synopsis on each partition and
then merges them to generate the global synopsis.

We first consider the queries with categorical columns
only. We use the greedy algorithm to generate the local
synopsis on each partition. Then we collect the local syn-
opses and merge them by running the greedy algorithm
to generate the global synopsis. However, for queries with
numerical columns, it is hard to merge the local queries,
because different partitions may generate different groups.
Considering the example in Section 5.1, when we group the
values in Tax for category {‘US’, ‘apple’} for gs, if one
partition has one group [145,161] while another partition
has two groups [133, 154] and [175, 175], they cannot be
merged because [133, 154] and [145, 161] have overlap but
combing them, i.e., [133, 161], is invalid as 161153133 > 0.2.So
it is hard to merge the numerical groups.

To merge the groups, we need to use the same grouping
strategy for different partitions. To achieve this goal, for a
query with numerical columns, we first generate the local
groups on each partition, and then refine them to generate
the global groups and ask each partition to generate query
synopsis based on the groups. Note each partition generates
a set of groups, which must contain the minimum and
maximum value. Thus we can get the global minimum
value vy and maximum value vy from these groups. Then
we generate the global groups as follows. First, we initialize
an empty global group set ® = @. We initially add a group
as [vo, (140)vo] and check that if there exists a local group g
such that g;N[vo, (1+0)ve] # @. If yes, we add [vg, (1+0)vo]
to ®; otherwise we discard [vg, (1 + §)vg]. Then we add a
group [(140)vo + 1, ((14+0)vo+1)(1+40) + 1] and check if it
overlaps with local groups. Iteratively we generate all global
groups. We prove that the number of groups generated is at
most twice of the optimal group number.

Lemma 8. The number of groups found by the merge-based
method is at most twice of the optimal group number.

Based on the groups, we can generate the local synopsis
for each query. Then we collect the local synopses and merge
them by the greedy algorithm. As the local synopsis uses the
same group, we can easily merge them.

10

Considering the above example, in Figure 5(b), we group
the values in Tax on category {‘US’, ‘apple’} for ¢s. P;
has one group [133,145] while P, has two groups [140, 161]
and [175, 175]. We can generate groups between minimum
133 and maximum 175. First, we generate [133,159] and
find [133,159] N [133,145] = [133,145] # @. Then we find
[160,175] N [140,161] # @. So we finally get two groups
[133,159] and [160,175]. Next we generate local synopsis on
Py, ie., r1, ra, 75, 76 and local synopsis on P»., ie., 7,
T8, 79,710, 11, T12. We use the greedy method on them to
generate a unified synopsis with 1,74, 75,76, 77,712 Which
has the same size as the optimal synopsis.

6 EXPERIMENTAL EVALUATION

We compared our method BAQ with state-of-the-art SAQ
(we implemented B1inkDB with stratified sampling [1] and
Seek [12] using sample and index), DAQ [33], and Histogram
[31]. As BlinkDB had verified that SAQ was better than
Sketch, Wavelet, we did not evaluate them.

6.1 Setting

Datasets. We used two datasets. The first is Microsoft real-
life production workload dataset MS with 30 columns (20
categorical columns and 10 numerical columns) [2]. The
dataset contained the statistics of Bing search and was
used for query analysis. 77.5% of queries accessed 7 to 20
columns, and there were less than 5% queries change within
a month. The second is the well-known TPC-H dataset and
we use the table of orders with 4 columns (3 categorical and
1 numerical). The statistics were shown in Table 4.

Queries. In MS dataset, we generated 1000 queries with 100
QCSs, including 200 queries with only 1 categorical column,
200 queries with 2 categorical columns, 100 queries with 3
categorical columns, 10 queries with 1 numerical columns,
10 queries with 2 numerical columns, 200 queries with 1
category + 1 numerical columns, 200 queries with 2 category
+ 1 numerical columns, and 80 queries with 3 categorical +
1 numerical columns. In TPC-H dataset, we generated 250
queries with 6 QCSs, including 100 queries with 1 categorical
column, 15 queries with 2 categorical columns, 120 queries
with 1 categorical + 1 numerical columns, and 15 queries
with 2 categorical+ 1 numerical columns.

Metrics. We compared three methods (DAQ, BAQ, SAQ) from
four aspects. (1) Answer Error. (2) Synopsis Size (#Samples).
(3) Online Query Processing Time (in milliseconds). (4)
Offline Synopsis Generation Time (in seconds). We ran each
method 20 times and reported the average results.

Setting. We also evaluated our method on Spark. We used
a cluster with 20 nodes. Each node had a memory of 112GB
and the cluster had totally 2TB memory and 152 cores. All
the dataset was resident in main memory.

6.2 BAQvs SAQ
6.2.1 \Varying Error Bound

We compared SAQ and BAQ by varying the error bounds. For
SAQ, we implemented two variants B1inkDB and Seek. For
B1inkDB, we set its confidence as 99.9%. For Seek, we set the
sample size as g. We used SAQ to denote B1inkDB/Seek.
For BAQ, we used the greedy algorithm to generate synopsis.
Figure 6 showed the results.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

Dataset oW column size average distinct value | min/max numerical Description 11
MS-Dataset 23M 30 125.75G 417 0/14399999 Microsoft Product
TPC-H order.tbl | 150M 4 15G 20 811.73/568754.48 Standard TPC
TABLE 4
Two Datasets.
g 7 g
S T1° g, SEEK
L0 N )
o (%) =
> 0, ==
= @10 o 2
o) Q =
o 8 [
B2 . S R )
005 010 015 020 025 005 0.10 0145 020 025 005 040 015 020 025 005 0.10 015 020 025
Error Bound Error Bound Error Bound Error Bound
(a) MS Error (b) MS Synopsis Size (c) MS Online Time (d) MS Offline Time
10° [__BAQ == o 7 10° “BAQ ===m
BlinkDB eze=m S ¢ BIinkDB eze=m
SEEK F 7 SEEK

S

Z
?
.
.
.
%
é
.05

Relative Error
3 3
S

Synopses Size

. 15 0.
Error Bound
(f) TPC Synopsis Size

05 0. 15 0
Error Bound

(e) TPC Error
Fig. 6. BAQ vs SAQ: Varying Error Bound.

ZzZZ77)

.
.
%
.0001

Relative Error
Relative Error

.0002 0.0003 0. 4 0.0005
Sampling Rate

(b) TPC Error

0.001 .
Sampling Rate
(a) MS Error

Fig. 7. BAQ vs SAQ: Varying Sampling Rate.

o
5 =3
= D1
i} N
° n
2 @
k5 Q!
[0
o 2
>
N1
100 200 300 400 500 100 200 300 400 500
#Distinct Value #Distinct Value
(a) Error (b) Synopsis Size

Fig. 9. BAQ vs SAQ: Varying Distinct Values on Ms.

(1) Error Analysis. BAQ had much smaller relative error,
even 10-100x better than SAQ. For example, with different
error bounds, BAQ had 0.1%-1% error while SAQ had 10%
error. The reasons were two-fold. First, BAQ had a confidence
of 100% for most cases. Second, B1inkDB worked well
for normal distribution but cannot for other distributions.
BlinkDB and BAQ had smaller error on TPC-H than MS,
because TPC-H followed the uniform distribution and it
was easy to meet the error bounds but MS did not follow
the uniform distribution. With the increase of error bounds,
the error also increased but the error was always smaller
than the given bound, because the bound was estimated for
worst cases, and in real cases, the error was much smaller.
Seek had smaller errors than B1inkDB as it used indexes to
support the queries with fewer answers.

(2) Synopsis Size. BAQ had much smaller synopsis size than
SAQ, even 100-1000x smaller than SAQ. For example, with
different error bounds, the synopsis sizes of BAQ were less
than 1GB while those of SAQ were more than 100GB. The
main reasons were two-fold. First, SAQ generated a synop-

Online Time(ms)

Offline Time(s)

10 045 0.
Error Bound
(h) TPC Offline Time

10 015 020
Error Bound
(g) TPC Online Time

o BAQ
= = ¢ |BlinkDB &=z
o 20 SEEK
L N
o n
2 @\ 4
= @10
> Q
o 2
> 2
Dio -
80
#QCS #QCS
(a) Error (b) Synopsis Size
Fig. 8. BAQ vs SAQ: Varying QCS on Ms.
10°
L 10° AR =
e e
w o’
) )
=102 =
s 102
o) )
o o
104 L0 % 2 103 0 é % 7
Categorical Numerical WHERE Categorical Numerical WHERE
Query Type Query Type

(a) MS Error
Fig. 10. BAQ vs SAQ: Different Type of Queries.

(b) TPC Error

sis for each QCS while BAQ generated a unified synopsis.
Second, BAQ judiciously selected the synopsis to cover the
queries while SAQ used sampling-based methods and cannot
select high-quality samples. In addition, with the increase
of the error bounds, the synopsis size decreased, as they
could select fewer samples to meet the error bound. The
downward trend on TPC—-H was faster than that on MS, as
TPC-H had fewer columns and they selected fewer samples.
Seek had larger sizes than BlinkDB as it selected more
samples to generate the synopsis.

(3) Online Query Time. BAQ was faster than SAQ, as BAQ had
smaller synopsis size than SAQ. BAQ was rather efficient and
could answer a query within 1ms. With the increase of the
error bounds, the online query time decreased, because they
used smaller synopses to answer a query. They have better
performance on TPC-H because TPC-H only had 4 columns.
Seek had longer latency than B1inkDB, as Seek separately
answered different queries and used more samples.

(4) Offline Synopsis Generation Time. BAQ took more time
than SAQ to generate the synopsis because BAQ needed

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

to select high-quality samples while SAQ used sampling
methods and might not select high-quality samples. As the
synopsis generation was offline, it was acceptable.

Summary. BAQ outperformed SAQ in terms of both error
bounds, synopsis sizes and online query time.

Due to the space constraints, we focused on error bounds
and synopsis size in the following experiments.

6.2.2 Varying Sampling Rate

We compared SAQ and BAQ by varying the same sampling
rate from 0.001 to 0.005. For each sampling rate, we found
an appropriate error bound for BAQ by binary searching the
error bounds between 0.01 and 0.5 to meet the sampling
rate. We used the greedy algorithm to generate the synopsis.
Figure 7 showed the results. As the sampling rates were the
same, they had similar synopsis size. So we only showed
the results on relative error. Firstly, BAQ still significantly
outperformed SAQ in each sampling rate. Secondly, with
increase of sampling rates, the relative errors decreased
because more synopsis could be used to answer queries.
BAQ had much better result quality because it had 100%
confidence on the error bounds.

6.2.3 Varying #qCS

We set the error bound as 0.1 and compared SAQ and BAQ
by varying the number of QCSs from 20 to 100. We used
the greedy algorithm to generate synopses offline. Figure
8 showed the result. We had the following observations.
Firstly, when the number of QCS increased, the error of
BAQ and SAQ increased a little. Thus BAQ and SAQ were
not sensitive on the number of QCSs in terms of errors,
because both of them generated synopsis for all the QCS
within the error bound. Secondly, the synopsis size of BAQ
increased slower than that of SAQ with the increase of QCS.
Thus SAQ was more sensitive on the number of QCSs in
terms of synopsis size; however the number of QCSs had no
significant effect on BAQ, as BAQ generated a unified synopsis
rather than generated synopses for all QCSs in SAQ.

6.2.4 Varying #Distinct Values in Columns

We set the error bound as 0.1 and compared SAQ and BAQ
by varying the number of average distinct values from
100 to 500. We used the greedy algorithm to generate a
synopsis offline. Figure 9 showed the result. Firstly, with
the increase of distinct values, both BAQ and SAQ generated
larger synopsis because they depended on the number of
distinct values. However, the synopsis size of BAQ and
SAQ linearly increased when the number of distinct value
increased. This was because when the number of distinct
value increased, BAQ should select more tuples in the unified
synopsis while SAQ should consider more groups. Thus BAQ
and SAQ worked very well for large numbers of distinct
values. Secondly, with the increased number of distinct
values, the errors decreased because they selected larger
synopsis to answer queries. BAQ was more sensitive on error
than SAQ when the number of distinct values varied, because
BAQ generated smaller synopsis while SAQ selected more
samples to support the confidence within the error bound.

6.2.5 Varying Query Type

We compared SAQ and BAQ on different types of queries:
categorical only, queries without numerical columns in the

12

where clause, and queries with numerical columns in where
clause. We used the greedy algorithm to generate a syn-
opsis offline. Figure 10 showed the results. (1) BAQ could
exactly answer categorical only queries with no error but
SAQ always had a large error, because BAQ used scale factor
to keep the frequencies of all categories but SAQ failed to
get the exact number. (2) BAQ got smaller error than SAQ on
queries with numerical columns, because BAQ could achieve
a higher quality using the scale factor with 100% confidence.
Thus, BAQ had much higher quality than SAQ on all queries.
(3) Both of BAQ and SAQ had a higher error when there
existed numerical columns in the where clause, because
BAQ and SAQ could not accurately estimate the number of
records that satisfied the selection conditions of the queries.
Fortunately, the result indicated that the additional error
caused by partially satisfied groups was small.

6.3 BAQvs DAQ

Both BAQ and DAQ gave an approximate result within a given
error bound with a 100% confidence. We compared BAQ and
DAQ by varying error bounds. As DAQ used the absolute error,
we varied the error bounds from 219 to 230, As DAQ cannot
support WHERE and GROUPBY, we compared BAQ and DAQ for
queries with numerical columns only.

6.3.1 Real Dataset

Figure 11 showed the result on the two real datasets. We had
the following observations. (1) BAQ ran 100 faster than DAQ
for larger error bounds. This was because BAQ used a small-
size synopsis while DAQ should compute the high-order
bits of all the records. Thus DAQ had limited performance
improvement compared with the exact algorithms. (2) BAQ
had smaller errors than DAQ. This was because DAQ ignored
the impact of the low-order bits so that it would get a higher
error than BAQ, especially for larger error bounds. (3) DAQ
had smaller errors on MAX than on AVG because it captured
the maximal values using the high-order bits.

6.3.2 Zipf Distribution

As DAQ was better than SAQ and here we only compared
with DAQ. To compare the error bounds of BAQ and DAQ
on data with heavily skewed distribution, we generated
datasets with Zipf distribution by setting the parameter of
Zipf as 1.5. Figure 12 showed the results. We had following
observations. (1) BAQ and DAQ had smaller errors for MAX,
since both of them could support maximum values well.
BAQ used the samples in a tight range to support maximum
value, while DAQ used the high-order bits to find the max-
imum value. Thus both of the two methods could support
heavily skewed data. (2) BAQ had smaller errors than DAQ
and the reason was similar to the case on real datasets. (3)
BAQ was faster than DAQ as DAQ needed to use all records.

6.4 BAQ vs Histogram

Both BAQ and Histogram could divide the numerical values
into buckets within bounded error. We set the error bound
as 0.1 and compared BAQ and state-of-the-art Histogram
by varying the number of QCSs from 20 to 100. BAQ and
Histogram had the same relative error but BAQ used less
storage than Histogram, because BAQ constructed a unified
synopsis for all the QCSs while Histogram should construct

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

Transactions on Knowledge and Data Engineering

BAQ-AVG ===

@ 10° BAQ-MAX =
£ DAQ-AVG &z O
g |
£

= 10 _02-)
g T
% 10" E
(@)

18 18 22

2 2 2

Error Bound Error Bound

(a) MS Online Time (b) MS Relative Error
Fig. 11. BAQ vs DAQ: Varying Error Bounds.

BAQ-AVG ==
DAQ-AVG =2z

Relative Error
Relative Error

Error Bound
(b) Zipf 1.5 TPC-H

Error Bound

(a) Zipf 1.5 MS
Fig. 12. BAQ vs DAQ: Zipf Distributions.
one synopsis for each of the QCSs. Table 5 showed the result.
With the increase of QCSs, the size of BAQ synopsis increased
slowly while the size of Histogram synopsis increased
quickly. Further, Histogram could not support categorical
query well comparing with BAQ.

6.5 Evaluating Synopsis Generation in BAQ

6.5.1 Synopsis Generation: Scan vs Greedy

We evaluated the synopsis generation algorithms, i.e., scan-
based algorithm and greedy algorithm. We varied the error
bound from 0.05 to 0.25 to evaluate the synopsis size, the of-
fline synopsis generation time, and the error bounds. Figure
13 showed the results. We had the following observations.
Firstly, the scan-based algorithm always took less time than
the greedy algorithm, because the scan-based algorithm
scanned the table once to generate the unified synopsis
while the greedy algorithm needed to scan the table mul-
tiple times. Secondly, the greedy algorithm generated much
smaller synopsis than the scan-based algorithm because
the greedy algorithm aimed to select synopsis with the
minimum number of records to cover the query synopses.
Thirdly, the error bounds of the scan-based algorithm and
the greedy algorithm were similar, because the scan-based
algorithm selected more tuples while the greedy algorithm
covered more query synopses.

6.5.2 Distributed Algorithms: Repartition vs Merge

We evaluated the repartition-based and merge-based meth-
ods on Spark to evaluate the offline synopsis generation
time and synopsis size. The result was shown in Figure 14.
We had following observations. Firstly, our two algorithms
were very fast on Spark. Secondly, the merge-based algo-
rithm performed faster than the repartition-based algorithm
on Spark, because the repartition-based algorithm took
much time to shuffle the data but the merge-based algo-
rithm just needed to generate synopsis on each node and
combined them together. Thirdly, the size of synopsis gen-
erated by the merge-based algorithm was a little bigger than
the repartition-based algorithm, because the merge-based
algorithm generated more groups on numerical columns.
Fourthly, the error bounds of the merge-based algorithm
was a bit larger than the repartition-based algorithm, as the
merge-based algorithm only found local optimal results but
did not find the global optimal results.

10° BAQ-AVG "' BAQ-AVG m=m 13
» BAQ-MAX &= . »|BAQ-MAX
" DAQ-AVG &zl & " [DAQ-AVG mzm
DAQ-MAX — A - DAQ-MAX —
2
= 10°
©
0C 408
'073 10 14 18 l\‘ l\‘ 30 10"0 10 14 18 22 26 30
2 2 2 2 2 2 2 2 2 2 2 2
Error Bound Error Bound
(c) TPC-H Online Time (d) TPC-H Relative Error
#QCS 20 40 60 80 100
BAQ 491.3M | 554.8M | 6582M | 718.7M | 790.5M
Histogram 1.3G 3.4G 5.9G 10.6G 14.9G
TABLE 5
Synopsis Size of BAQ and Histogram.
#Columns 6 12 18 24 30
Synopsis Size(MB) 392.6 | 548.2 | 650.0 | 730.5 | 790.5
Construction Time(s) 196 235 262 285 300
TABLE 6

Varying Column Number.
6.5.3 \Varying Number of Columns

We evaluated the performance on the MS dataset by varying
the number of columns from 6 columns (4 categorical and 2
numerical) to 30 columns (20 categorical and 10 numerical).
We reported the results of the merge-based algorithm in
Section 5.2 and set the error bound as 0.1. Table 6 showed the
construction time and synopsis size. We had the following
observations. (1) The construction time increased slowly
as the column number increased, because the time cost
depended on the number of tuples but was not sensitive to
column numbers. (2) The synopsis size increased with the
increasing of column numbers, because it required to cover
more tuples of more columns. But the increasing rate was
small and our method still worked well for many columns,
e.g., 30. Thus even though there were multiple columns, our
method could still generate high-quality synopsis.

7 CONCLUSION

We proposed a bounded approximate query processing
framework, which supported most SQL aggregation queries
with lower error bounds. BAQ first selected high-quality syn-
opsis for each query and then constructed a unified synopsis
by covering each query synopsis. We proved that selecting
the optimal unified synopsis was NP-hard and devised ef-
fective algorithms. We developed distributed algorithms to
generate the unified synopsis in distributed environments.
Experimental results showed that BAQ had lower errors and
smaller synopsis size compared with state-of-the-arts.
Acknowledgement. This paper was supported by 973 Pro-
gram of China (2015CB358700), NSF of China (61632016,
61521002, 61472198, 61661166012), BHJ14L010, Huawei, and
TAL education. Yong Zhang and Guoliang Li are corre-
sponding authors.

REFERENCES

[1] Blinkdb homepage. http://blinkdb.org/.

[2] Taming big wide tables. http://acmsocc.github.io/2015/posters/
soccl5posters-final24.pdf.

[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan,
S. Madden, B. Mozafari, and 1. Stoica. Knowing when you're
wrong: building fast and reliable approximate query processing
systems. In SIGMOD, pages 481-492, 2014.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: queries with bounded errors and bounded
response times on very large data. In Eurosys, pages 29-42, 2013.

[5] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection
for approximate query processing. In SIGMOD, pages 539-550,
2003.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877362, IEEE

o o o
® ©

Synopsis Size

Transactions on Knowledge and Data Engineering

N

Scan-Size 107
Greedy-Size —

Scan-Time —*— 106 &
Greedy-Time —e—

Relative Error

0.05 0.10 0.15 0.20 0.25
Error Bound

0.05

0.10 0.15 0.20
Error Bound

(b) Error

0.25

(a) Time and Size

Fig. 13. Scan vs Greedy.

(6]
(7]

(8]
Bl

[10]

(1]
(12]

[13]
[14]
[15]
[16]
[17]

(18]
[19]
[20]

[21]
(22]

[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]
[31]

(32]

[33]
[34]

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

D. P. Bertsekas and ]J. N. Tsitsiklis. Introduction to probability :
Problem solutions. 2008.

K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Ap-
proximate query processing using wavelets. VLDB J., 10(2-3):199-
223, 2001.

T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. Mapreduce online. In NSDI, pages 313-328, 2010.
G. Cormode, A. Deligiannakis, M. N. Garofalakis, and A. Mc-
Gregor. Probabilistic %ﬁstograms for probabilistic data. PVLDB,
2(1):526-537, 2009.

G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Syn-
opses for massive data: Samples, histograms, wavelets, sketches.
Foundations and Trends in Databases, 4(1-3):1-294, 2012.

G. Cormode and M. Hadjieleftheriou. Methods for finding fre-
quent items in data streams. VLDB J., 19(1):3-20, 2010.

B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang.
Sample + seek: Approximating aggregates with distribution preci-
sion guarantee. In SIGMOD, pages 679-694, 2016.

M. N. Garofalakis and J. Gehrke. Querying and mining data
streams: You only get one look. In VLDB, 2002.

M. N. Garofalakis and P. B. Gibbons. Wavelet synopses with error
guarantees. In SIGMOD, pages 476-487, 2002.

S. Guha and B. Harb. Wavelet synopsis for data streams: minimiz-
ing non-euclidean error. In SIGKDD, pages 88-97, 2005.

J. M. Hellerstein, P. J. Haas, and H. ]J. Wang. Online aggregation.
In SIGMOD, pages 171-182, 1997.

T. Hesterberg. What teachers should know about the bootstrap:
Resampling in the undergraduate statistics curriculum. In The
American Statistician, volume 69, pages 371-386, 2015.

Y. E. Ioannidis. Approximations in database systems. In ICDT,
page 1630, 2003.

Y. E. Ioannidis. The history of histograms (abridged). In VLDB,
pages 19-30, 2003.

S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl,
S. Chaudhuri, and B. Ding. Quickr: Lazily approximating complex
adhoc queries in bigdata clusters. In SIGMOD, pages 631-646,
2016.

R. M. Karp. Reducibility among combinatorial problems.
Complexity of Computer Computations, pages 85-103, 1972.

L. V.S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Subrahmanian.
Probview: A flexible probabilistic database system. ACM Trans.
Database Syst., 22(3):419-469, 1997.

L. V. S. Lakshmanan and F. Sadri. Uncertain deductive databases:
A hybrid approach. Inf. Syst., 22(8):483-508, 1997.

F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation
for joins. In SIGMOD, pages 2121-2124, 2016.

Y. Matias, ]. S. Vitter, and M. Wang. Dynamic maintenance of
wavelet-based histograms. In VLDB, pages 101-110, 2000.

M. Muralikrishna and D. ]J. DeWitt. Equi-depth histograms for
estimating selectivity factors for multi-dimensional queries. In
SIGMOD, pages 28-36, 1988.

F. Olken and D. Rotem. Simple random sampling from relational
databases. In VLDB, pages 160-169, 1986.

N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
aggregation for large mapreduce jobs. PVLDB, 4(11):1135-1145,
2011.

A. Pol and C. Jermaine. Relational confidence bounds are easy
with the bootstrap. In SIGMOD, pages 587-598, 2005.

V. Poosala and V. Ganti. Fast approximate answers to aggregate
queries on a data cube. In SSDBM, pages 24-33, 1999.

V. Poosala, Y. E. Ioannidis, P. ]. Haas, and E. J. Shekita. Improved
histograms for selectivity estimation of range predicates. In
SIGMOD, pages 294-305, 1996.

V. Poosala, Y. E. Ioannidis, P. . Haas, and E. J. Shekita. Improved
histograms for selectivity estimation of range predicates. In
SIGMOD, pages 294-305, 1996.

N. Potti and J. M. Patel. DAQ: A new paradigm for approximate
query processing. PVLDB, 8(9):898-909, 2015.

C. Qin and F. Rusu. PF-OLA: a high—performance framework
for parallel online aggregation. Distributed and Parallel Databases,
32(3):337-375, 2014.

In

=) =)
w ©

2

Synopsis Size

o
o

Merge-Size Exza

Repartition-Size 10°
Merge-Time —— 2 o
Repartition-Time —e— 4 © =
L;\‘*‘e\e__,, 10 £ w
[ [0

5 2

=

£ ©

E o

o o

0.05 0.10 0.15 0.20 0.25
Error Bound

0.05

0.10 0.15 0.20
Error Bound

(b) Error

0.25

(a) Time and Size

Fig. 14. Repartition vs Merge.

[35]

(36]
[37]

[38]

[39]

[40]
[41]

[42]
[43]

[44]

V. P. S. Acharya, P. B. Gibbons and S. Ramaswamy. The aqua
approximate query answering system. In SIGMOD, page 28(}2)
1999.

G. D. S. Chaudhuri and V. Narasayya. Optimized stratified
sampling for approximate query processing. In TODS, 2007.

M. Shekelyan, A. Dignos, and J. Gamper. Digithist: a histogram-
based data summary with tight error bounds. PVLDB,
10(11):1514-1525, 2017.

D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2011.

J. S. Vitter and M. Wang. Approximate computation of multidi-
mensional aggregates of sparse data using wavelets. In SIGMOD,
pages 193-204, 1999.

H. Wang and K. C. Sevcik. Utilizing histogram information. In
Centre for Advanced Studies on Collaborative Research, page 16, 2001.
J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo. A sample-and-clean framework for fast and accurate
query processing on dirty data. In SIGMOD, pages 469-480, 2014.
Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded sampling for
analytics on big sparse data. PVLDB, 7(13):1508-1519, 2014.

K. Yi, E Li, M. Hadjieleftheriou, G. Kollios, and D. Srivastava.
Randomized synopses for query assurance on data streams. In
ICDE, pages 416425, 2008.

K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical
bootstrap: a new method for fast error estimation in approximate
query processing. In SIGMOD, pages 277-288, 2014.

Kaiyu Li received the bachelor’s degree from the
Department of Computer Science and Technol-
ogy, Harbin Institute of Technology, China. He is
currently working toward the Master degree in
the Department of Computer Science, Tsinghua
University, Beijing, China. His research interests
include approximate query processing, data in-
tegration and crowdsourcing.

Yong Zhang is an associate professor of Re-
search Institute of Information Technology at Ts-
inghua University. He received his BSc degree in
Computer Science and Technology in 1997, and
PhD degree in Computer Software and Theory
in 2002 from Tsinghua University. From 2002 to
2005, he did his Postdoc at Cambridge Univer-
sity, UK. His research interests are data man-
agement and data analysis.

Guoliang Li is currently working as an asso-
ciate professor in the Department of Computer
Science, Tsinghua University, Beijing, China.
He received his PhD degree in Computer Sci-
ence from Tsinghua University, Beijing, China in
2009. His research interests mainly include data
cleaning and integration, spatial databases and
crowdsourcing.

Wenbo Tao received the bachelor’s degree from
the Department of Computer Science, Tsinghua
University, Beijing, China. He is currently a PHD
student in MIT, Boston, U.S. His research inter-
ests include approximate query processing, data
visualization, data integration.

Ying Yan is currently working as a Lead Re-
searcher in Cloud Computing Group, MSRA.
She got her PhD degree in computer science
from Fudan University. Her current research in-
terest includes big data analytic, database opti-
mization and Blockchain technology.



