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Cloud-Native Databases: A Survey
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Abstract—Cloud databases have been widely accepted and deployed due to their unique advantages, such as high elasticity, high
availability, and low cost. Many new techniques, such as compute-storage disaggregation and the log is the database, have been
proposed recently to seek for higher elasticity and lower cost. To better harness the power of cloud databases, it is crucial to study and
compare the pros and cons of their key techniques. In this paper, we offer a comprehensive survey of cloud-native databases.
Particularly, we investigate and summarize the state-of-the-art cloud-native OLTP and OLAP databases, respectively. In the first part,
we discuss three types of architectures of cloud-native OLTP database. Then we introduce their key techniques including data
placement strategy, storage layer consistency, compute layer consistency, multi-layer recovery, and HTAP optimization. In the second
part, we present two kinds of architectures of cloud-native OLAP databases. Then we take a deep dive into their key techniques
regarding storage management, query processing, serverless computing, data protection, and machine learning in databases. Finally,
we discuss the research challenges and opportunities.

Index Terms—Cloud-Native Databases, Database Architecture, Disaggregation, Log is data, Serverless.
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1 INTRODUCTION

T RADITIONAL database vendors provide service-level
objective (SLO), e.g., 99.99% high availability, and signs

Service Level Agreement (SLA) with database customers.
Nowadays, cloud database vendors [12], [22], [25], [27],
[94] are increasingly proliferating because of their better
SLOs, such as high elasticity, high availability, and cost-
efficient services [1], [50], [75]. As a result, many on-premise
databases are moving toward cloud data service.

Both customers and cloud vendors can benefit from
cloud databases. From the perspective of customers, cloud
databases own four main advantages as follows.

1) Elasticity. The workloads of the cloud customers usu-
ally change periodically (e.g., peaks and valleys), and
the cloud customers do not need to worry about the
computing resources and the cloud databases can dy-
namically schedule the resources by benefiting from the
underlying cloud services.

2) Availability. The cloud customers have high-
availability requirements to tolerate computing-
server failures and data-center failures. Cloud
databases maintain multiple replicas to guarantee
high availability. Besides, the cross-region deployment
of the data center ensures quick recovery from extreme
disasters such as earthquakes and power outages.

3) Flexibility. The cloud customers do not want to main-
tain the hardware and software, and the out-of-box fea-
ture of the cloud databases eases the burden of the com-
plicated deployment process. Moreover, the automated
management service reduces customers’ operation and
maintenance costs.

4) Low Price. The customers only want to pay for the
on-demand resources and service costs rather than the
provisioned cost in a fixed period. Cloud databases
adopt the pay-as-you-go pricing model to enable this.

In terms of cloud vendors, cloud databases also bring
three merits as follows.

1) Expanded Market Scale. Due to high maintenance cost
of on-premise databases, many small businesses and

individuals who lack professional maintenance skills or
teams cannot use databases. Due to the out-of-the-box
flexibility of cloud databases, small companies can use
cloud databases, and thus expand the market scale.

2) Reduced Unit Cost. Thanks to the large-scale data
centers, it realizes the scale effect and reduces the unit
cost by sharing the resources among the users. The op-
eration and maintenance cost is reduced by benefiting
from the scale effect.

3) Improved Resource Utilization. When using on-
premise databases, the hardware resources are bounded
to their customers, leaving the resources to be idle
when it comes to a fluctuating workload. With cloud
databases, the systems will dynamically allocate re-
sources to different users according to their workload
status, which improves resource utilization.

The development of cloud databases can be divided into
two stages: (1) the stage of cloud-hosting databases and (2)
the stage of the cloud-native databases.

At the stage of cloud-hosting databases, customers can
choose the offered data service by the cloud vendors (i.e.,
databases as a service (DBaaS)), then pay for the on-demand
resource fee based on the service level agreement (SLA)
[65], [67]. However, those providers regard the deployed
databases as a general kind of software without any un-
derlying optimizations, and customers must provision the
resources and tune the database performance on their own.
Moreover, the elastic scheduling capability of cloud services
cannot be fully utilized as the resources are scheduled at an
instance level.

Cloud-native databases are proposed to improve the
elasticity and reduce the cost of cloud-hosting databases.
The foremost innovation is the disaggregation of compute
and storage architecture [94], [96], which decouples the stor-
age from the compute nodes, then connects the compute
nodes to shared cloud storage through a high-speed net-
work. On the one hand, the disaggregation architecture
enables customers to scale the compute and storage re-
sources independently, thereby bringing more elasticity for
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Fig. 1: A Comparison of Cloud-Hosting Architecture and
Cloud-Native Architecture.

the customers. On the other hand, providers can alleviate
the write amplification problem by only writing the log
(without writing dirty pages) to the storage layer and the
dirty pages are replayed based on the log in the storage
layer (i.e., the log is the database). As shown in Fig. 1,
compared with cloud-hosting architectures, the computing
and storage resources coupled in the virtual machine can be
split to achieve independent expansion, which improves the
elasticity, availability, and efficiency of the system.

Since cloud applications have different types of work-
loads, e.g., write-heavy or read-heavy, there has emerged
two types of cloud-native databases: (1) cloud-native online
transaction processing (OLTP) databases, and (2) cloud-
native online analytical processing (OLAP) databases. Both
types of databases adopt the disaggregation architecture,
but they own disparate techniques and face different chal-
lenges. In summary, there are five main challenges that
need to address, including log-based transaction processing,
multi-layer data consistency, failure recovery, cache-based
query processing, and serverless computing.

Challenge 1. Log-based Transaction Processing. Since
the storage is disaggregated, it is challenging to support
efficient transaction processing based on the cloud storage.
As the log becomes the first-citizen, it is rather hard to
handle the cache miss when the log has yet to be replayed.

Challenge 2. Multi-Layer Data Consistency. Cloud-
native OLTP databases focus on processing transactions in
the cloud. However, the main challenge is to ensure the data
consistency in the multiple layers, e.g., the compute layer,
the storage layer, or even the memory layer.

Challenge 3. Failure Recovery. For the cloud-native
databases, it is more complex to provide high availability
as each layer may occur exceptions. Thus, a major concern
is how to quickly recover the databases when facing com-
pute/storage node failures.

Challenge 4. Cache-based Query Processing. Cloud-
native OLAP databases target at scalable query processing
with a remote cloud storage. To reduce the network traffic,
they need to design effective caching strategies and compu-
tational pushdown on the storage side. However, finding an
optimal yet cost-efficient query plan is challenging due to
the trade-off between performance and cost.

Challenge 5. Serverless Computing. Many cloud
databases have supported serverless computing that can dy-
namically schedule resources for users’ workloads with
the pause-and-resume policy, but it is still challenging to
adaptively schedule the resources for the workloads in a
query granularity [83] as the resources are provisioned in

Cloud OLTP Techniques

Cloud OLAP Techniques

Strorage 
Consistency

HTAP Optimization

Data 
Placement

Storage 
Management

Cloud OLTP Architectures
Disaggregated Compute-

Storage
Disaggregated Compute-

Log-Storage
Disaggregated Compute-

Buffer-Storage

Cloud OLAP Architectures

Disaggregated
Compute-Memory-Storage

Disaggregated
Compute-Storage

Cloud-Native OLTP Databases

Cloud-Native OLAP Databases

Multi-Layer
Recovery
Compute 

Consistency

Query 
Processing

Serverless 
Computing

Data 
Protection

Machine Learning

Fig. 2: An Overview of Cloud-Native Databases.

the instance level.
Fig. 2 presents an overview of key techniques of cloud-

native databases. In this survey, we introduce the state-
of-the-art techniques of cloud-native OLTP and OLAP
databases, respectively. We introduce each type of cloud-
native database from two aspects. First, we introduce a
taxonomy of their disaggregated architectures. Then we
present the representatives for each category. Second, we
take a deep dive into their key techniques regarding OLTP
and OLAP workloads. We summarize how existing ap-
proaches address the above-mentioned challenges.

1.1 Cloud-Native OLTP Databases

1.1.1 Cloud-Native OLTP Architectures
Cloud-native OLTP databases emphasize concurrency and
low latency in transaction processing. The architecture de-
sign needs to consider the consistency of the primary and
secondary nodes, the durability and availability of the stor-
age layer, and the efficiency of query processing. We classify
the architectures of cloud-native OLTP databases into three
categories as follows:
(1) Disaggregated Compute-Storage OLTP Architecture.
The first category has a two-layer architecture, where the
compute layer processes the transactions on volatile devices,
and the storage layer maintains the data’s durability and
availability based on the cloud storage service.
(2) Disaggregated Compute-Log-Storage OLTP Architec-
ture. The second category separates the data durability
and availability management by physically splitting the log
storage and page storage.
(3) Disaggregated Compute-Buffer-Storage OLTP Archi-
tecture. The third category adds a shared buffer layer, which
aims to improve the efficiency of data synchronization
among computing nodes and reduce the average latency of
reading data from the storage layer.

1.1.2 Cloud-Native OLTP Techniques
According to the functional modules of the OLTP tech-
niques, we categorize them into five types:
(1) Data Placement Strategy. Data placement strategy con-
siders organization of logs and data in the disaggregated
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architecture. We introduce two types of data placement
strategies that organize the logs and pages in the cloud. The
first type is (i) coupled log-page strategy [94]. The second
type is (ii) disaggregated log-page strategy [12].
(2) Storage Layer Consistency. The storage layer needs to
maintain multiple data replicas to ensure high availability,
which requires the consistency of these replicas. We intro-
duce two types of storage layer consistency. The first type is
(i) quorum-based consistency protocol [94]. The second type
is (ii) Paxos-based consistency protocol [22].
(3) Compute Layer Consistency. Computing layer consis-
tency refers to the method of updates synchronization from
the primary nodes to secondary nodes. We introduce three
ways to maintain consistency among all compute nodes. The
first type is (i) sync based on persistent storage [94]. The
second type is (ii) sync based on local cache status [27]. The
third type is (iii) sync based on the shared remote buffer [22].
(4) Multi-layer Recovery. According to the hierarchical
division in the architecture, fault recovery techniques can
be divided into three levels. The first level is (i) No-Redo
Recovery in the Compute Layer [94]. The second type is (ii)
Two-Tier ARIES based on Buffer Layer [115]. The third type
is (iii) Optimizations in the Storage Layer [95].
(5) HTAP Optimization. We discuss HTAP optimizations
in cloud-native databases, which include three types. The
first type is (i) dynamic storage format transformation [35].
The second type is (ii) heterogeneous data replicas [38]. The
third type is (iii) unified table storage design [78].

1.2 Cloud-Native OLAP Databases
1.2.1 Cloud-Native OLAP Architectures
Cloud-native OLAP databases emphasize efficiency and
throughput in analytical query processing. The architecture
design needs to consider the elasticity of computation to
support fluctuating workloads, as well as the local cache
and shared memory for efficient query processing. The
architectures of cloud-native OLAP databases are classified
into two categories as follows:
(1) Disaggregated Compute-Storage OLAP Architecture.
The first category has a two-layer architecture, where the
compute layer executes the queries with the local SSDs, and
the storage layer persists the entire data with the computa-
tional pushdown.
(2) Disaggregated Compute-Memory-Storage OLAP Ar-
chitecture. The second category owns a three-layer archi-
tecture, where a shuffle memory pool is disaggregated to
process the distributed joins more efficiently.

1.2.2 Cloud-Native OLAP Techniques
We present five types of cloud-native OLAP techniques.
(1) Storage Management. The disaggregation of functional
modules in the cloud-native environment results in differ-
ences in data management methods. We introduce three
types of storage management techniques. The first type is
(i) Metadata storage management [25], the second type is
(ii) Data partitioning [15], [37], and the third type is (iii)
Semi-structured data management [25], [59], [111].
(2) Query Processing. Compute nodes read data from re-
mote storage services, which drives the query processing
optimizations to reduce network transmission. We introduce

three types of query processing techniques. The first type is
(i) Columnar scan with pushdown [70], [96], [103], which
aims to push the computation into the storage side. The
second type is (ii) Columnar scan with caching and push-
down [102]. The third type is (iii) Columnar scan with the
shuffle memory pool [59].
(3) Serverless Computing. Serverless computing intends to
make customers use the data analytical services without
considering the server deployment and configuration. We
introduce two types of serverless computing methods in
cloud databases. The first type is (i) Serverless with func-
tions as a service [73], where queries are adaptively executed
based on the cloud function services. The second type is (ii)
Serverless with the elastic query engine [16], which enables
to perform the queries by dynamically provisioning the
query engine.
(4) Data Protection. Protecting user data privacy and se-
curity is the basis for customers to use cloud services. We
present two types of techniques: (i) Software-based data
protection [25] and (ii) Hardware-based data protection, e.g.,
the enclave in Intel SGX [11].
(5) Machine Learning. We will look at emerging
cloud database techniques for machine learning, such
as Sagemaker [55]. Moreover, we will introduce how
cloud databases can benefit from machine learning tech-
niques [52], [53], [93].

1.3 Contributions
Differences with existing surveys. In this paper, we
focus on the fundamental techniques of cloud-native
databases [50]. We also summarize the pros and cons of
various architectures and techniques. Before the emergence
of cloud-native databases, Sakr [81] reviewed cloud-hosting
databases. Mansouri et al. [58] surveyed the key techniques
of cloud storage management. Narasayya et al. [65], [66]
discussed various cloud data services. Unfortunately, ex-
isting works neglected many fundamental techniques of
cloud-native databases, such as data consistency, data syn-
chronization, and failure recovery. Last but not least, we
review newly-emerged techniques, such as the cloud-native
HTAP techniques, pushdown-based query processing, and
machine learning-based optimization.

To summarize, we make the following contributions:
1) We survey cloud-native databases from the perspective

of system architectures. We introduce a taxonomy of
cloud-native OLTP and OLAP databases, respectively.
We also discuss their pros and cons.

2) We summarize the key techniques of cloud-native
databases concerning the OLTP and OLAP workload.
We take a deep dive into the key techniques concerning
transaction processing, data replication, database recov-
ery, storage management, query processing, serverless
computing, data protection, and machine learning.

3) We provide new research challenges and discuss fu-
ture directions, including multi-writer architecture, fine-
grained serverless, SLA-aware cloud-native HTAP tech-
niques, and multi-cloud data service.

2 CLOUD-NATIVE OLTP ARCHITECTURES

OLTP database systems are designed for transaction pro-
cessing scenarios, which means they should guarantee
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Fig. 3: Architectures of Cloud-Native OLTP Databases

ACID properties during query processing [36]. However,
the coupled compute-storage architecture in cloud-hosting
databases suffers from write amplification due to coupled
resource scheduling [48], [94]. The disaggregated architec-
ture designs in cloud-native databases are introduced to
solve the above problems. According to the degree of sepa-
ration management of storage services and the use of remote
memory services, the architectures of cloud-native OLTP
databases can be classified into three categories (shown
in Fig. 3): (1) Disaggregated Compute-Storage OLTP Ar-
chitecture, (2) Disaggregated Compute-Log-Storage OLTP
Architecture and (3) Disaggregated Compute-Buffer-Storage
OLTP Architecture.

2.1 Disaggregated Compute-Storage OLTP
(1) Design Motivation. This category of databases adopts
a disaggregation architecture that separates the compute
and storage modules in the cloud. The design motivation
of this architecture can be concluded as the following three
aspects. (i) Elasticity. it aims to schedule the computing
and storage resources independently, which could avoid
the waste of resources caused by resource coupling in
cloud-hosting databases. (ii) Efficiency. Dirty page flushing
is eliminated under this architecture, which significantly
reduces the write amplification. (iii) Availability. Because
of the multiple disaggregated modules, it must provides a
multi-level failure tolerance to reduce the average recovery
time compared to instance-level recovery.
(2) Data Access Path. The data access path is different
from the cloud-hosting databases. The primary node will
only transfer redo logs and metadata to the storage layer
during the data writing process. The storage nodes will
asynchronously replay the logs in the background to up-
date records, avoid dirty page transmission, and relieve the
network bottleneck in the cloud environment. Nevertheless,
reading data from pages without the dirty page flush-back
may suffer from the update delay caused by the asyn-
chronous log replaying. Therefore, the databases organize
the redo logs into the linked list structure in the order of
log serial number (LSN), which allows the storage nodes to
read the records by directly analyzing the redo logs.
(3) Pros and Cons. Compared with cloud-hosting databases,
cloud-native databases have the following advantages. (i)
Low Write Latency. The write operation can commit once
the redo logs are persistent without waiting for the updates
of record pages. (ii) Reduced Write Amplification. Since the

data update is pushed down to the storage layer, which
avoids the dirty page transmission and relieves the network
pressure. (iii) Improved Elasticity. Computing and storage
are supported by different cloud services. The independent
scheduling process improves the system’s elasticity. The lim-
itation of this architecture is the read latency. The compute
nodes send read requests to the storage layer when the cache
misses, which may suffer extra log chain analyzing latency.
(4) Representatives. The representative databases with the
disaggregated compute-storage architecture include Aurora
[94] and AlloyDB [35]. These two systems use a similar sys-
tem architecture design but with different technique imple-
mentations. For the common part, they implement the same
log processing techniques, like ”the log is the database”
in Aurora and ”Log Processing Service” in AlloyDB. For
the difference, Aurora optimizes storage management based
on Quorum mechanisms by extending data replicas; it also
implements non-blocking failure recovery. While AlloyDB
optimizes the HTAP workload via dynamic data format
transformation in the compute nodes.

2.2 Disaggregated Compute-Log-Storage OLTP
(1) Design Motivation. This category of databases extra
separates the storage service for logs and pages based on
the first category of databases. Logs guarantee the persis-
tence of updates, while pages provide high-efficiency query
processing. The design motivations can be concluded as two
aspects. (i) Efficiency. First, a fast cloud storage service for
logs can significantly reduce the write commit latency. Sec-
ond, standard cloud storage service for pages can avoid high
costs. (ii) Elasticity. It can improve the systems’ elasticity if
these two storage services are scheduled independently.
(2) Data Access Path. The disaggregation of log and page
storage influences the data access path. This architecture
separates the data read and write path. Compute nodes only
write to log storage and read from page storage. The storage
layer handles the synchronizations of log and page storage
internally. However, due to the asynchronous updates and
the network latency across different storage services, the
page updates could lag in storage nodes.
(3) Pros and Cons. Compared with the first category of
databases, the disaggregated compute-log-storage architec-
ture has the following advantages. (i) Low Write Latency.
The write commits latency further declines with the help
of the fast cloud storage service for logs. (ii) Improved
Elasticity. The databases’ elasticity is improved with the
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disaggregation of different storage services. Standard stor-
age for pages has a relatively-low cost, and fast storage for
logs improves the transaction processing performance. The
limitation of this architecture is the synchronize latency. The
compute nodes could be blocked and continue to wait for
the synchronization in storage nodes when data lags.
(4) Representatives. The representative databases with
the disaggregated compute-log-storage architecture include
Azure HyperScale [12] and Huawei Taurus Database [27].
The main differences between these two systems are the
storage management method. Taurus adds Storage Abstract
Layer (SAL) [27] in each compute node to handle the data
access on the storage layer. While HyperScale implements
XLOG [12] service to take responsibility for similar func-
tions. The difference is that the XLOG service is separated
from compute layer as an independent layer, which achieves
further independence on manageability and fault tolerance.

2.3 Disaggregated Compute-Buffer-Storage OLTP

(1) Design Motivation. This category of databases expands
the shared buffer for databases. The buffer is supported by
remote shared memory service [98], which provides much
lower latency data access than the persistent storage service.
The design motivation can be concluded in three aspects.
(i) Efficiency. The read latency can be significantly reduced
with the remote memory. (ii) Throughput. If all the compute
nodes share the remote buffer, it could reduce the duplicate
read requests from different compute nodes. (iii) Elasticity.
Since the memory resource allocation is independent of per-
sistent storage service, it could further improve the elasticity
of databases.
(2) Date Access Path. The shared buffer provides an ad-
ditional layer of buffer on top of the local cache in each
compute node. Unlike the local cache, the buffer is shared
by all compute nodes, which allows the primary node to
transfer the updates to secondary nodes. Besides, since the
buffer is shared by multiple nodes, it could become the
bottleneck of the network. Hence, the shared buffer will not
flush back dirty pages, and the redo logs still guarantee the
update’s durability.
(3) Pros and Cons. Compared with the first two categories
of databases, the disaggregated compute-buffer-storage ar-
chitecture has the following advantages. (i) Low Read La-
tency. The read latency is significantly reduced when data
is cached in the remote buffer. (ii) Improved Read Through-
put. The number of duplicate read from different compute
nodes is reduced since all nodes share the buffer. (iii) Im-
proved Elasticity. Memory disaggregation enables the elastic
scheduling of memory resources, hence the higher elasticity.
The limitation of this architecture is the high network cost.
Fully utilizing the performance of remote memory requires
an expensive RDMA network for low network latency.
Besides, it has a high requirement of network bandwidth
since all the compute nodes need to share the same buffer.
(4) Representatives. The representative databases with the
disaggregated compute-buffer architecture include Alibaba
PolarDB Serverless [22], which builds a shared buffer for all
compute nodes based on the remote memory service. The
data updates from the primary node can be written to the
shared buffer layer and can be synchronized to secondary
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Fig. 4: An Overview of Cloud-Native OLTP Techniques

nodes, which improves data synchronization performance.
The main challenge is to keep the data consistent between
the primary node and shared buffer, which will be discussed
in the next section.

2.4 Summary of the Cloud-Native OLTP Architectures

Table 1 presents a comparison of the cloud-native OLTP
architectures concerning read and write performance, avail-
ability, elasticity, and cost.
(1) Disaggregated compute-storage. These databases don’t
require fast storage and remote memory service, which have
the lowest cost. Particularly, the primary node only writes
the log to the storage layer, which is more efficient than
the cloud-hosting architecture. Reading records requires
additional log replay, which affects read efficiency.
(2) Disaggregated compute-log-storage. These databases
require fast storage service to reduce log write latency, in-
creasing costs but improving write performance. Databases’
elasticity and availability are higher than the first category
because of the further separation of storage services.
(3) Disaggregated compute-buffer-storage. These databases
require remote memory service with low network latency,
which demands an expensive RDMA network. Hence, they
have a high cost. Nevertheless, they provide a better read
performance with the shared remote buffer. Since the remote
memory service is independent of computing and storage, it
enhances the system’s elasticity. Besides, the remote buffer
can accelerate the recovery of the compute layer, which
improves the availability as well.

3 CLOUD-NATIVE OLTP TECHNIQUES

This section will introduce the fundamental techniques in
cloud-native OLTP databases. We classify them into five
groups: data placement strategy, storage layer consistency,
compute layer consistency, multi-layer recovery, and HTAP
optimization. The relationship between these five parts is
depicted in Fig. 4. Data placement strategy refers to the data
organization and placement methods in the cloud. As there
are multiple instances in both the storage layer and compute
layer to ensure high availability, storage layer consistency
and compute layer consistency care about the consistent
protocols in the cloud. Multi-layer recovery mechanisms are
designed to provide a fine-grained method to recover the
failure in multiple layers. Finally, HTAP optimizations add
the OLAP support based on the original OLTP mechanism.
Table 2 summarizes the main approaches in each group, as
well as their advantages and limitations.
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TABLE 1: A Classification of Cloud-Native OLTP Databases based on the Architecture

OLTP Architecture Representatives Write Read Availability Elasticity Cost
Disaggregated Compute-Storage Aurora Medium Medium High High Low

Disaggregated Compute-Log-Storage HyperScale High Medium Excellent Excellent Medium
Disaggregated Compute-Buffer-Storage PolarDB Serverless High High Excellent Excellent High

TABLE 2: An Overview of Key Techniques of Cloud-Native OLTP Databases
Technique Type Main Approaches Cloud Databases Pros. Cons.
Data Placement Coupled Page-Log Aurora [94] Low Sync Latency Extra Log Analysis

Strategy Disaggregated Page-Log HyperScale [12] More Elasticity Long Sync Latency
Storage Layer Quorum-based Protocol Aurora [95] Strong Concurrency Extra Sync Phase
Consistency Paxos-based Protocol PolarDB [22] Strong Consistency Complex Procedure

Compute Layer Persistent Storage based Aurora [94] High Availability Long Sync Delay
Consistency Local Cache based Taurus [27] Low Sync Latency Cache misses

Remote Shared Buffer based PolarDB [22] Low Read Latency Cache Inconsistent
Mutli-layer No-Redo in Compute Layer Aurora [94] Fast Recovery Redo in Storage Node
Recovery Two-Tier ARIES in Buffer Layer LegoBase [115] Reduced Recovery Time High Cost

Optimizations in Storage Layer Aurora [95] Improved Storage Availability More Data Replicas
HTAP Storage Format Transformation AlloyDB [35] Reduced Storage Space Large Search Space

Optimization Heterogeneous Data Replicas TiDB [38] Strong Isolation Reduced Freshness
Unified Table Storage SinglestoreDB [78] Low Read Latency High Memory Cost

3.1 Data Placement Strategy

In cloud-native databases, the data placement strategy refers
to organizing different data types in databases, mainly
focusing on the logs and pages. The data placement strat-
egy determines the transaction processing workflow. They
are influenced by the architecture design, which can be
categorized as (1) Coupled Page-Log Placement Strategy
and (2) Disaggregated Page-Log Placement Strategy. For the
former type, a unified cloud storage service supports log
and page storage, which can provide physical correlation to
reduce network pressure. The coupled placement strategy
is used in disaggregated compute-storage architecture. For
the latter one, the disaggregated placement strategy is used
in disaggregated compute-log-storage architecture. Isolated
cloud storage services support log and page storage, which
separates the read and write process of transactions to
achieve both low write latency and high read throughput.

3.1.1 Coupled Page-Log Placement Strategy

In the cloud-native OLTP databases, redo logs keeps the up-
dating history, which means any record at any database ver-
sion can be analyzed from the redo logs. Hence, databases
can directly load records from redo logs. Unlike traditional
databases that read records through data pages, the coupled
page-log placement strategy uses the same cloud storage
service to store the log and page data. The fundamental
difference lies in the data processing process within the
storage layer, summarized as “the log is the database.”

As shown in Fig. 5, the same storage node saves pages
and redo logs simultaneously. The data update from the
compute layer only requires the storage node to complete
the persistence of the redo log. Thus, the dirty pages will not
flush back to the storage layer, which significantly reduces
the write amplification in cloud-hosting architectures due
to the updates of multiple replicas. A read operation from
compute layer requires the storage node to load the record
with a specific version from the redo logs. However, the

overhead of loading records will increase with the growth
of historical data, most of which has already expired. There-
fore, the page materialization controls the storage capacity
and the read time by discarding expired redo logs. This
process is done asynchronously in the background of the
storage node, which avoids the update delay of direct page
updating. As shown in Fig. 5, update requests on value X
will not be directly written into the page (Page k) to which
it belongs. Instead, the database will generate the redo log
(L9010) and append it to the storage node. During the read
requests, the storage node will ignore the redo logs later
than the transaction (version T). The page materialization
will consume the redo logs and update the page, which
reduces the length of log chains and accelerate the read
operations.

In summary, this strategy has the following advantages:
(1) Reduced write amplification. Dirty pages do not flush to
the storage layer, significantly reducing network pressure.
(2) Reduced update delay. Storage nodes can directly load
records from log data, which avoids the update delay of
page data. The main limitation of this strategy is the extra
process of redo log analysis during the reading process.

3.1.2 Disaggregated Page-Log Placement Strategy
Pages and logs stored in persistent storage have different
responsibilities in the database system. Pages can directly
read a specific version of the record, which is mainly used
in the reading process. Besides, it guarantees the availability
of the database. In contrast, logs can be written to disk
sequentially, which is mainly used in the reading process
and guarantees the durability of the transactions. The dis-
aggregated page-log storage placement strategy places the
pages and logs based on their different features. The fun-
damental difference between this strategy and coupled one
can be summarized as “the disaggregation of availability
and durability.”

As shown in Fig 6, logs and pages are persisted in
separated storage using the cloud storage service. Since the
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data update from compute layer only requires the persis-
tence of the logs, the compute layer only needs to write
the redo logs to the log storage, which is supported by
fast storage services and gets lower write latency. At the
same time, pages will be stored in standard cloud storage
services to reduce the cost. The update logs will be batched
asynchronously to page storage. Considering the possible
unavailability of page storage nodes, the log transferring
does not require all page storage nodes to complete the sync.
The nodes inside the page store supplement these missing
logs from other nodes through the Gossip protocol [24].

Compared with the coupled strategy, this method has
the following advantages: (1) Reduced data write latency.
The log persistence is backed by fast cloud storage, which
improves the write performance. (2) Better elasticity. The
scheduling of storage services is independent, enhancing the
system’s elasticity. The main limitation of this strategy is the
larger read latency caused by synchronization across storage
services when the cache misses.

3.2 Storage Layer Consistency

In cloud-native databases, storage layer consistency tech-
niques are used to maintain the consistency among multiple
data replicas in the storage layer. These techniques are based
on original distributed systems protocols with specific opti-
mization for cloud environments, which can be categorized
as (1) Quorum-based Protocol and (2) Paxos-based Protocol.
The quorum-based protocol is derived from the quorum al-
gorithm [89] with some mechanisms to enhance consistency.
In comparison, the Paxos-based protocol is derived from the
Paxos-like algorithm (including Paxos [47] & Raft [68]) with
customized mechanisms to improve the concurrency.

3.2.1 Quorum-based Protocol
Quorum-based voting [89] is a classic method to guarantee
the consistency in the distributed systems. The quorum al-
gorithm sets the minimum voting number that a distributed
transaction has to obtain, which is then used to solve the
read-write and write-write conflicts among storage nodes.
Migrating the quorum algorithm to the cloud environment
mainly faces two challenges: (1) high availability require-
ment and (2) low recovery latency.

Log Storage Page Storage

Compute Cloud

Log Storage Page Storage

Log Storage Page Storage

Log Storage Page Storage

Compute Cloud

Write into Log Storage

Data Updates in Page Storage 

Read from Page Storage

Write Log

Read Page

Some Page Stores receive logs from Log Storage
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Background Log Replaying 
Log Stores→Page Stores

Fig. 6: The Disaggregated Data Placement Strategy

For the first challenge, most distributed systems im-
plement the quorum algorithm with three data replicas,
which provide single-node fault tolerance. However, data
centers for cloud service are deployed geographically iso-
lated and require extreme availability [34]. Therefore, Au-
rora increases the number of replicas for improving the
system’s reliability [94]. Cloud services can be divided
into multiple fault-tolerant independent regions through
the isolated physical deployment. Hence, the probability of
simultaneous failure in different regions is extremely small.
Based on the above facts, the cloud databases can maintain
two replicas in three regions to achieve “region + 1”-level
fault tolerance. Even if a single region fails, at least four
replicas still run normally to ensure high availability.

For the second challenge, a possible solution of reducing
failure recovery time is to prepare a new replica before the
system breakdowns. In the case of multiple replicas, the
database can migrate data in advance and can generate a
backup instance after a single replica is abnormal. Since
the data migration is performed asynchronously, the backup
instance will not replace the abnormal one immediately due
to the high migration cost. Instead, they will run simulta-
neously and be controlled by the quorum set mechanism
[95]. Backup and abnormal instances and the rest of the
normal replicas form two quorum sets. Multiple sets are
managed in a logical ”or” manner. Query processing only
requires at least one set to complete. Instances with long-
term exceptions will be removed, and the database will
discard the quorum sets containing such instances.

The advantage of quorum-based protocol is the high
concurrency supported by the simple algorithm workflow.
The limitation is that quorum-based protocols do not guar-
antee linearizability. Replicas implement extra gossip pro-
tocols to fill up the missing updates caused by temporary
exceptions in certain replicas.

3.2.2 Paxos-based Protocol
Paxos [46], [47] is a family of protocols to reach the con-
sensus in a network of unreliable or fallible participants.
Since the Raft protocol [68] can be regarded as the simplified
Paxos with stronger assumptions, we categorize all methods
derived from Paxos and Raft as Paxos-like protocols. Clas-
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sical Paxos-like algorithms strictly follow the linearization
process, which limits the concurrency of transaction process-
ing. Therefore, how to improve the concurrency is the most
important problem in applying the Paxos-like algorithms to
the cloud-native databases.

Traditional databases require logs to be committed in
a strict order, which means the previous logs must be
committed successfully. Such a mechanism limits the con-
currency due to the strict committing order. ParallelRaft
[21] makes two optimizations to improve the performance.
Out-of-order acknowledging and committing are allowed in
ParallelRaft when the writing ranges of log entries are not
overlapping, which is considered not conflicted. Besides,
ParallelRaft optimizes the catch-up processes for lagging
followers to re-synchronize with the leader.

The advantage of paxos-based protocol is the lineariz-
able features supported by the Paxos-like algorithms. The
limitation is that Paxos-based protocols limit the system’s
concurrent processing efficiency, which requires customized
optimizations such as out-of-order committing.

3.3 Compute Layer Consistency
In cloud-native databases, compute layer adopts the “single-
writer, multi-reader” architecture. That is, the primary node
handles update queries and syncs the data to secondary
nodes. All the secondary nodes are read-only and just
update their status to the primary node. The synchroniza-
tion process requires it to be low-latency and high-reliable,
which can be categorized into three types: (1) Persistent
storage based, (2) Local cache based, and (3) Remote shared
buffer based. Notice that metadata synchronization always
adopts direct transmission, and the data size is much
smaller than log and page data. Therefore, this part mainly
focuses on the synchronization of log and page data.

3.3.1 Persistent Storage Based Synchronization
The first synchronization method is based on the persistent
storage. As shown in Fig. 7(a), the primary node transfers
the redo logs to the storage layer. Combining the data
placement strategy, the dirty pages in the primary node
never flush back to the storage layer. The storage layer
internally replays the redo logs to update the data pages.
Since all the compute nodes share the storage service, the
secondary nodes receive the updates once the correspond-
ing logs have been replayed in the storage layer. The single-
writer architecture only allows one primary node to update
data at any time, thereby eliminating the possibility of write-
write conflicts and guaranteeing strong data consistency.
However, the network transmission that crosses different
services suffers from long network latency. Besides, as the
logs are replayed asynchronously, it significantly increases
the update delay of secondary nodes.

3.3.2 Local Cache Based Synchronization
The second synchronization method is based on the local
cache status in secondary nodes. This method aims to di-
rectly update the cache data of the secondary node and
clear its dirty pages. As shown in Fig. 7(b), the primary
node directly transfers redo logs to secondary nodes. The
secondary nodes will update the dirty pages in the local
cache based on these logs, achieving cache consistency with
the primary node. The main challenge of this method lies in
network transmission, which mainly includes two aspects:
(1) Bandwidth. The network bandwidth of the primary
node is limited, and simultaneous transmission to multiple
secondary nodes may become the bottleneck. (2) Latency.
All the replicas need to obtain the logs, which may lead to
stragglers that affect the overall performance, namely, “the
bucket effect”.

For bandwidth issues, the compute layer can push down
the transmission task to the fast storage service (e.g., the
log storage) to reduce the pressure on the network band-
width [27]. In this way, the computing layer distributes the
transmission tasks to multiple nodes of the fast storage ser-
vice, which significantly reduces the transmission pressure
of a single node. For latency issues, the step of receiving logs
in secondary nodes is controlled by a loose protocol [12].
The primary node does not require the secondary node to
confirm the receiving process. The secondary nodes allow
transmission failure. Moreover, they only need to read the
missing part through the storage layer without affecting the
correctness of the system.

3.3.3 Remote Shared Buffer Based Synchronization
The third synchronization method is based on the remote
shared buffer. The primary and secondary nodes share the
same remote buffer, which makes it possible to transfer the
data updates. As shown in Fig. 7(c), the update requests
in the primary node must update data in the local cache
and remote buffer simultaneously. Secondary nodes can
directly load the record from the remote buffer. This method
has two following challenges: (1) Consistency. Updates in
the primary node’s local cache and remote buffer do not
satisfy strict atomicity. (2) Network. The shared buffer is
accessed by multiple nodes simultaneously and has a high
requirement on the network access.

For the consistency issue, PolarDB serverless [22] pro-
poses a cache invalidation mechanism to ensure the con-
sistency between the primary node and shared buffer. A
specific table in the shared cache records the consistency re-
lationship. Then the secondary nodes will ignore the invalid
pages. The update of the table and data satisfies atomicity,
whose delay is much lower than directly udate the corre-
sponding pages in the remote shared buffer. For the network
issue, the RDMA network can support both high-bandwidth
and low-latency network requirements. Therefore, the sys-
tem requires a high-speed RDMA network deployed in the
hardware layer.

3.4 Mutli-Layer Recovery
In cloud-native databases, different cloud services support
various functional modules, resulting in the fault-tolerant
independence between the modules. On the one hand,
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independent fault tolerance produces high availability. On
the other hand, the physical isolation of different cloud
services significantly increases network latency for failure
recovery, which demands specific treatment in the failure
recovery phase. According to the architecture design of the
cloud-native databases, the recovery optimization can be
performed at different layers, which can be classified into
the following three categories: (1) No-Redo Recovery in
Compute Layer, (2) Two-Tier ARIES in Buffer Layer, and
(3) Optimization in Storage Layer.

3.4.1 No-Redo Recovery in Compute Layer
Failure recovery of the computing layer requires restart-
ing the computing nodes. As shown in Fig. 8, traditional
database systems use a monolithic architecture. The write-
back policy postpones the flush process of dirty pages
and causes some page updates to be lost under abnormal
circumstances. Therefore, databases need to write redo logs
to the persistent storage before committing the transactions
to avoid the loss of page updates. ARIES algorithm [63]
is a classic recovery algorithm in database systems, which
contains three main stages: analysis, redo, and undo. During
the redo stage, the database will scan the required logs
sequentially based on the analysis results to restore the dirty
page status. However, as cloud-native databases use a disag-
gregated architecture and follow the philosophy of “the log
is the database”, the compute layer does not need to sync
the dirty page status to the storage layer for the durability
of transactions, and the storage layer can directly load data
from the redo logs without sending it to the compute nodes.
Therefore, the redo process is pushed down to the storage
layer, which reduces data transmission between layers and
the recovery latency of the compute nodes.

3.4.2 Two-Tier ARIES in Buffer Layer
The exceptions in the buffer layer will not affect the durabil-
ity and availability of the system. However, the disaggrega-
tion of cloud computation and memory services produces
independent fault tolerance, which means the compute
nodes and remote buffer are unlikely to fail simultaneously.
Based on the above assumption, LegoBase [115] proposes
the two-tier ARIES protocol to handle the failure of the com-
pute node and the remote buffer. Such a protocol extends

the traditional ARIES algorithm by creating checkpoints into
two layers: (1) the remote buffer layer and (2) the persistent
storage layer. The compute nodes and the remote buffer
forms the first-tier ARIES. The network transmission cost
of this part is small, and checkpoints can be recorded more
frequently to reduce the failure recovery time. The first-tier
protocol can deal with failure recovery in most cases, except
for the case that the computing nodes and remote memory
are abnormal simultaneously. In this case, the persistent
storage in the second-tier ARIES will guarantee the worst-
case failure recovery.

In summary, this algorithm is similar to the traditional
ARIES one in the worst case. Nevertheless, it significantly
reduces the recovery time in most cases with the help of
remote shared buffer.

3.4.3 Recovery Optimization in Storage Layer
The storage layer is the foundation of the system’s durability
and availability in cloud-native databases, which maintains
multiple replicas simultaneously to ensure the extremely
high-reliability requirements. Particularly, the storage layer
has two types of optimization in failure recovery: (1) More
replicas; and (2) Pre-failure recovery preparation.

The most basic way of improving fault tolerance is to
increase the number of redundant replicas, e.g., doubling
replicas in each available zone [95]. Moreover, it could ex-
pand the number of nodes in the log storage [27]. The main
limitation of this method is that it introduces additional stor-
age overhead. The second approach requires pre-preparing
new standby nodes when partial replica anomalies are de-
tected, e.g., the quorum set mechanism in Aurora [95]. Such
a method has a smaller storage overhead but will occupy
network bandwidth while generating backup nodes.

3.5 HTAP
Traditional OLTP database systems are generally used for
transactional workloads, so they have implemented many
techniques to optimize the efficiency of transactional pro-
cessing, e.g., row-format page organization and index struc-
tures. However, with the further development of data-
intensive applications in recent years, it calls for real-time
analysis requirements for the transactional databases, e.g.,
real-time fraud detection [79]. These demands drive the
OLTP databases to add support for real-time analytical
workloads [51], [74], [107], [108]. Regarding the cloud-
native OLTP databases, there exists three types of HTAP
optimization (shown in Fig. 9): (1) Dynamic storage format
transformation in the compute layer; (2) Heterogeneous data
replicas in the storage layer; and (3) Unified Table Storage.
These techniques add particular optimizations for analytical
workloads based on the original OLTP databases. Therefore,
the ACID properties of the databases will not be affected.

3.5.1 Storage Format Transformation
The first type is the dynamic storage format transformation
in the compute layer. Conventionally, the pages of the
storage layer in the OLTP databases organize records in row
format. Such an organization method has obvious perfor-
mance advantages in dealing with transactions and point
queries. However, it is not suitable for analytical queries,
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which are mainly composed of large-scale aggregation and
scan queries. AlloyDB [87] proposes a method to transform
the row-format data to the columnar data in the compute
nodes dynamically. Particularly, the optimizer analyzes the
characteristics of the workload and predicts data that is
likely to be frequently accessed in analytical workloads.
Then, in the process of reading records from the storage
layer, this part of the data is directly converted into the
columnar format and kept in the cache. As a result, the
analytical queries can directly use the data in the columnar
format in the cache to speed up the query.

The above approach has two main challenges: (1) Storage
format transformation will yield additional computing and
storage overhead, so selecting which data to be converted
is critical to the system performance. AlloyDB adopts the
method of machine learning to assist in the work of data
selection. However, few details have been revealed. (2)
Storage format conversion should minimize the impact on
the efficiency of transaction processing. Therefore, AlloyDB
can keep data in both storage formats in the cache at the
same time [87]. The optimizer chooses which type of data
to scan based on workload type. However, it is challenging
to select an optimal execution plan due to the exponential
growth of the planning space.

3.5.2 Heterogeneous Data Replicas
The second type of method [20], [38] maintains heteroge-
neous data replicas in the storage layer. The main differ-
ence from the first method is that it persists the row-wise
and columnar replicas in the storage layer rather than the
compute layer. Particularly, when handling the transaction
requests, the master node asynchronously replicates the logs
to the secondary nodes for data synchronization.

From the implementation perspective, the overall archi-
tecture do not need to be modified. The columnar format
replicas are stored in read-only nodes, which are the learners
of the row format replicas in the consensus protocol. Hence,
it ensures the consistency of the heterogeneous replicas
without influencing the origin OLTP system. Analytical
workloads will be allocated with extra computing resources
on demand according to the workload’s intensity, benefiting
from cloud services’ elastic scheduling capability. Therefore,
handling analytical workloads will not influence the com-
puting resources for transaction processing.

From performance perspective, this method’s advantage
is that it isolates the performance of transactional and
analytical processing, meaning that both transactions and
queries can be efficiently processed at the same time. More-
over, the excellent isolation facilitates the flexible scheduling

of the heterogeneous workloads. However, since the colum-
nar format replicas are the learners of row format ones, it
must face the problem of data freshness due to the data
transmission and transformation. That is, recent updates on
the primary node must take certain time to be transferred
and transformed to the columnar replica, causing analytical
workloads to have a version lag compared to transactional
workloads. Furthermore, this method adds additional com-
putation and storage resources for the OLAP workload.

3.5.3 Unified Table Storage
The third type of method is a unified table storage design
for both OLTP and OLAP workloads, which is employed in
the SingleStoreDB (S2DB) [78]. The main difference is that
S2DB does not persist data into different layouts, which is
often adopted in other HTAP systems. The unified table
storage contains two parts: (1) In-memory row store. The
in-memory storage is developed from its predecessor Mem-
SQL [86], which implements a lock-free skiplist to index the
rows and use the pessimistic concurrency control to avoid
conflicts. This part is mainly used to improve the OLTP
performance. (2) On-disk column store. WAL logs on the
disk supports durability, which are written to the storage
sequentially. Other data pages are organized in columnar
format to optimize the aggregation and scan operations in
analytical queries. Besides, it constructs the secondary and
unique indexes on the column store, which provides the
optimization on point-queries on the columnar store. In
addition to the extra indexes on the disk, the key to maintain
the high performance of S2DB is that the in-memory row
store needs to cover most of the search requirements. Other-
wise, on-disk column storage will degrade the performance
in transaction processing compared with on-disk row store.

Overall, this method does not need to copy data into
different layouts, which saves the computation and I/O
overhead caused by the data conversion. The limitation of
this method is that maintaining the high cache hit rate is
necessary for the high seeking performance which requires
more memory resources.

4 CLOUD-NATIVE OLAP ARCHITECTURES

Cloud-native OLAP databases target at large-scale data an-
alytics with elastic and scalable cloud services. Compared
to share-nothing MPP data warehouses, cloud-native OLAP
databases increase the elasticity with the disaggregation
architecture and achieve high availability with the cloud
storage and cross-region availability zones. We classify the
cloud-native OLAP architectures into two categories: (1) dis-
aggregated compute-storage OLAP architecture and (2) dis-
aggregated compute-memory-storage OLAP architecture.

4.1 Disaggregated Compute-Storage OLAP

This category of databases [3], [15], [96] adopts a disag-
gregated compute-storage architecture, and the compute
layer and the storage layer are connected to a high-speed
network. As shown in Fig. 10 (a), the compute layer consists
of a service manager and compute clusters, the service
manager provides a collection of services that manage the
metadata, resources, queries, and security. The compute
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TABLE 3: A Comparison of Two Cloud-Native OLAP Architectures

OLAP Architecture Computation Storage Throughput Elasticity Isolation Cost
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clusters perform the queries with elastic compute resources,
and each worker node has the local SSD for caching.
(1) Motivation and Key Features. There are three moti-
vations for such an architectural design. First, the tradi-
tional coupled architectures can only manage the resources
at the instance level, and storage and compute resources
need to be scaled independently for high elasticity. Second,
the cloud service should tolerate cluster and node failures
for high availability. Thus a disaggregated architecture can
have smaller downtime as it can handle the failures of
compute and storage nodes separately. Lastly, since the
workloads are heterogeneous (either high I/O bandwidth
or heavy computation), different hardware configurations
could be used to compute the storage nodes. In summary,
this architecture features (i) disaggregation of compute and

storage, (ii) multi-tenancy and serverless, (iii) elastic data
warehouses, (iv) local SSD caching, and (v) cloud storage
service, such as AWS S3 [80].
(2) OLAP Workflow. Processing the queries in the cloud
mainly involves three steps. First, the queries are parsed,
rewritten, and optimized with the catalog statistics in the
metadata storage. Second, the query plans are compiled and
sent to the computer clusters for execution. The computer
nodes perform the tasks with the local attached SSDs that
can be treated as the local cache. Third, if the local cache is
not hit, the data will be loaded from the cloud storage with
the optional computation pushdown.
(3) Pros and Cons. Compared to on-premise share-nothing
OLAP architectures, the disaggregated compute-storage ar-
chitecture has higher availability, where cluster and node
failures can be recovered quickly because of the data repli-
cation across many availability zones and the scalable cloud
service. It is more cost-efficient in two-fold. First, resources
are virtualized and shared by multiple tenants. Second,
serverless computing provides the pay-as-you-go model in
a query-level granularity. Finally, since the compute and
storage resources can be scheduled on demand individually,
it provides better elasticity. However, the major limitation
of the first architecture is that network traffic becomes the
bottleneck when the local cache misses. Therefore, it needs
to design efficient and effective caching and computation
pushdown strategies.
(4) Representatives. Two representatives are Snowflake [25],
[96] and Redshift [70]. Snowflake relies on cloud services to
manage multiple virtual warehouses, workloads, security,
and metadata. In the compute layer, it provides multiple
VWs(Virtual Warehouse), where each VW is a cluster and
consists of multiple EC2 instances. Normally, one query is
executed in one VW for one tenant, and each VW can be
started or shut down at any point. For data storage, it com-
bines local ephemeral storage and cloud storage(e.g., AWS
S3) to store data. Another representative is Redshift [15],
[70], which was initially an MPP data warehouse and then
transformed into a cloud-native database. It also contains
multiple compute clusters, each with a leader node as the
coordinator, with multiple compute nodes. Particularly, it
has an acceleration layer with various components. First,
the spectrum nodes are customized for querying semi-
structured data using partiQL [5]. The advanced query
accelerator (AQUA) [70] service leverages FPGAs [72] to
accelerate query processing. The compilation as a service
(CaaS) [15] service is for caching the code generation. The
data of each cluster is managed in the Redshift managed
storage (RMS) backed by the Amazon S3.

4.2 Disaggregated Compute-Memory-Storage OLAP
As shown in Fig. 10 (b), the second architecture consists of
three layers, a compute layer, a shuffle memory layer, and
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a storage layer. Similar to the first architecture, the compute
layer has a service manager and a compute cluster. The main
difference is that the compute cluster schedules the jobs for
the workers in a centralized fashion. Moreover, it contains
a shared memory pool to accelerate the shuffle process of
complex operations such as aggregations and joins.

(1) Motivation and Key features. There are three motiva-
tions. First, as memory is an expensive resource, it needs to
be disaggregated and scaled independently for high elastic-
ity. Second, it is preferable to achieve centralized scheduling,
enabling better resource utilization for query processing.
Third, when it comes to complex and costly workloads, it
is challenging to cope with large intermediate results as
the high I/O overhead is the bottleneck. In summary, this
architecture features (i) disaggregation of compute, memory,
and storage, (ii) shuffle memory layer for speeding up com-
plex operations such as joins and aggregations. (iii) multi-
tenancy and serverless computing, (iv) local SSD caching,
and (v) cloud storage service.

(2) OLAP Workflow. For query processing, this architecture
processes the data in parallel with multiple stages. Specifi-
cally, the worker nodes load the columnar data (e.g., ORC
and Parquet files) from the shared storage, apply the filters
locally, and send the data to the next stage. Then the system
performs multiple shuffle operations to aggregate and sort
the partial data by keys.

(3) Pros and Cons. Compared to the on-premise share-
nothing OLAP architectures, the disaggregated compute-
memory-storage architecture has higher throughput, where
the shuffle memory tier can significantly reduce I/O over-
head by avoiding writing intermediate results to the disks.
It has higher resource utilization as compute resources are
virtualized and scheduled in a centralized way. Finally, since
the compute, memory, and storage resources can be sched-
uled individually, it provides better elasticity. However, the
major limitation of the second architecture is that shuffle
memory tier could incur a high cost, so it needs to design
efficient and effective pushdown and scheduling algorithms
to reduce the data loaded to memory.

(4) Representatives. A representative that adopts the three-
tier architecture is BigQuery [59] which is built on the
Dremel query engine [60]. It introduces a shared memory
tier to accelerate the shuffle processing of the distributed
joins, which significantly reduces the latency by avoiding
writing and reading the intermediate results from disks.
Moreover, it supports semi-structured data querying based
on the Dremel query engine. Regarding storage manage-
ment, it relies on the colossus file system [31] with the
capacitor format [59] that is similar to Parquet and ORC. For
query processing, it adopts the producer-consumer model,
where the producers in each worker generate partitions and
send them to the in-memory nodes for shuffling, then the
consumers combine the received partitions and do the op-
erations locally. Another representative is Databricks Lake-
house [104], which support data analytic over the data lakes
with Spark SQL [14] directly. It has also developed an ACID
table storage layer over the cloud object store, called Delta
lake [13], and a vectorized query engine, called Photon [18],
which can integrate with the Spark SQL runtime.

4.3 Summary of the Cloud-Native OLAP Architectures
Table 3 presents a comparison of the cloud-native OLAP
architectures concerning computation, storage, throughput,
elasticity, isolation, and cost. The first category has the
disaggregated compute-storage architecture. For the com-
putation, it employs multiple clusters with various worker
nodes. For the storage, it relies on local SSD caching and
cloud storage. It has a high throughput based on scalable
cloud computing. Its elasticity is also high because of the
disaggregated architecture. Since the clusters are isolated
and a query is typically only executed in one cluster, it has
excellent performance isolation. By embracing the multi-
tenancy with the elastic cloud service, it saves a large
amount of cost for the cloud provider. The second category
adopts the disaggregated compute-memory-storage archi-
tecture. For the computation, it employs multiple worker
nodes with a shuffle memory layer. For the storage, it
leverages the shared memory pool and the cloud storage.
As the memory layer is disaggregated for shuffling, it has
excellent throughput and elasticity. However, it leads to
high costs due to the high price of in-memory computing.
In addition, compared to the first category, it has lower
performance isolation due to the shared memory pool.

5 CLOUD-NATIVE OLAP TECHNIQUES

This section introduces the key techniques of cloud-native
OLAP databases in detail. Table 4 summarizes five types of
key techniques, including storage management, query pro-
cessing, serverless computing, data protection, and machine
learning. It also summarizes their pros and cons.

As shown in Fig. 12, storage management is the corner-
stone of the cloud data service, which focuses on organizing
and partitioning the data for optimizing the queries in the
cloud. Query processing aims to handle queries with the lo-
cal cache and the elastic cloud storage. By taking as input the
SQL requests, serverless computing responds to each query
by provisioning and scaling the resources on demand. Data
protection relies on software-based or hardware-enabled
techniques to protect data from stealing and tampering
throughout the cloud service. Machine learning techniques
include two parts: employing AI techniques to optimize the
service quality of cloud-native DBMS (AI4DB) and harness-
ing the power of cloud-native DBMS to support AI.

5.1 Storage Management
We introduce three techniques of storage management: (1)
metadata store based optimization; (2) join key based data
partitioning; and (3) column store for semi-structured data.

5.1.1 Optimization with Metadata Store
For cloud-native OLAP databases, metadata is managed
in the layer of cloud service separately, which contains
information for schema, data version, location, statistics,
logs, etc. With metadata, the cloud databases can enable
three optimizations: pruning, zero-copy cloning, and time
traveling. Particularly, pruning means that the scanning
data can be pruned without touching the underlying cloud
storage; zero-copy cloning refers to cloning data without
creating new copies; time traveling enables querying the
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Fig. 11: Three Key Techniques based on Metadata Store
TABLE 4: An Overview of Key Techniques of Cloud-Native OLAP Databases

Technique Type Main Approach Cloud Database Pros Cons

Storage
Management

Metadata Store Based Optimization Snowflake [25] High Throughput Extra Cost
Join Key-based Data Partitioning Redshift [70] High Efficiency Cost Oblivious

Columnar Format for Semi-Structured Data BigQuery [59] High Throughput Storage Overhead

Query
Processing

Columnar Scan with Pushdown PushdownDB [103] Low Cost No Cache
Scan with Caching and Pushdown FlexPushdownDB [102] High Throughput Low Scalability

Scan with Shuffle Memory Tier BigQuery [59] High Throughput High Cost
Serverless

Computing
Functions as a Service Starling [73] High Elasticity Stateless Functions
Serverless Databases Athena [16] High Throughput High Cost

Data
Protection

Key-based Data Protection Snowflake [96] High Scalability Decrypted Access
Enclave-based Data Protection Azure [11] High Security Low Efficiency

Machine
Learning

ML-enabled Cloud Data Service Redshift [70] High Quality Low Adaptation
SQL-based ML Pipeline SageMaker [55] High Elasticity Training Overhead

SQL SQL with ML
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Fig. 12: An Overview of Cloud-Native OLAP Techniques

historical data based on MVCC, which is similar to the
flashback query in RDBMS. Fig. 11 depicts an example
of each technique. Consider a customer table T, which is
partitioned into two files and saved in the storage. The
metadata file stores the range of uid and name for each file.
Suppose a SQL query that requests the customer data with
uid = 2. The metadata can be used to prune the data of
file 2 because only file 1 covers the range of uid of 2. For the
DDL operation that creates table T2 cloning from table T, the
cloud database simply creates a new metadata file M2 from
M1 without making physical copies of table files, namely,
the zero-copy cloning technique (Note that at the time of
cloning, file 2 has been deleted). Time-traveling technique
utilizes timestamp information in the metadata. As shown
in Fig. 11(c), the first two SQL queries find the data with
an absolute and relative timestamp, respectively; the third
query scans a versioned table with a specified statement ID.

For the pros, metadata-based optimization can largely
improve query performance. However, the main challenge

of metadata management are (1) how to serve the metadata
request with super low latency; (2) how to provide the
scalability of the metadata service.

5.1.2 Data Partitioning with Key Selection
Although cloud databases can always read persisted data
from the cloud storage, the network traffic could become
the bottleneck. Hence, how to organize the ephemeral data
in the local cluster is also essential. To improve the query
performance, one of the most important issues is to select
the partition keys for large tables to distribute the data
shards across the compute nodes. Take a schema in Fig. 13(a)
as an example, it has a customer table and an order table,
and these two tables can be joined on the country field. By
partitioning both tables on the country field and placing the
data partitions with the same hash value to the same node, it
enables the join operation locally and can minimize network
communication. However, selecting an optimal partition
key set for the cloud databases is a non-trivial problem.
First, existing partitioning solutions in distributed databases
rely on tailored cost models [37] to which the customers
have no access. Second, the cost models are inaccurate due
to the uniform and independent assumption. There exist
two solutions for cloud-native databases. The first one is the
join graph approach [71] proposed by Redshift. Its basic idea
is to build a multi-join graph based on a query workload.
Then it performs random walks over the graph to select
partition keys. In a join graph, each node represents a table;
each edge denotes a join between two tables; the join weight
on the edges denotes the join number from the queries.
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Fig. 13: An Example of Data Partition

By randomly walking the join graph, it greedily selects the
partition keys with the largest weight to collocate the joins in
the same nodes. For the pros, it has high efficiency as it can
efficiently build the join graph and can search for a solution
in the graph. For the cons, it neglects the cost of different
types of joins, leading to a suboptimal solution. The second
method is to leverage deep reinforcement learning (DRL)
[37] for selecting the partition keys. DRL can explore column
combinations as partition keys and learns from the parti-
tioning feedback, e.g., the reward. Such a method extracts
partition features as a vector of tables, query frequencies,
and foreign keys. Then it uses DQN models to partition the
tables for a workload. To migrate the learned models to new
workloads, it trains a cluster of Deep Q-Network models on
typical workloads. Then it picks one with the most similar
features for a new workload.

The major problem of the DRL-based method is the high
training overhead. Since it needs to train the agent in an
online fashion, it still consumes a large amount of time to
make the learning process converge.

5.1.3 Columnar Format for Semi-Structured Data
Representing semi-structured data in a columnar format can
speed up the query processing over the nested data [109],
[110]. As semi-structured data such as HTML and JSON
files are growing rapidly, it is crucial to manage a large
amount of nested data in the cloud. There exist two ma-
jor methods for encoding semi-structured data. The first
method encodes the documents with lengths and presences
of the fields, where the length implies the number of oc-
currences of each repeated field and the presence uses a
boolean value to indicate whether or not an optional field is
null. Two columnar formats, ORC and Apache Arrow [59],
adopt such a representation. The second method encodes
the documents with repetition levels and definition levels.
Particularly, the repetition level tells which repeated field is
changed compared to the previous record and the definition
level indicates the length of the repeated or optional fields.
Two columnar formats, Parquet and Capacitor [59], adopt
such a representation.

There is a trade-off between the file size and query per-
formance. To read a nested field, the first method requires
access to its ancestor information, as only the ancestor field
tracks the nested information. Nevertheless, it has a smaller
file size as the information is denormalized in the separated
tables. The second method can directly access the child
fields without reading other tables as it repeates the ancestor
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Fig. 14: Three Key Techniques for Query Processing

information for each field. However, it has a larger file size
due to the redundant information about the common ances-
tors. Besides the schema-based encoding method, there is
a schema-less method [25] that can infer the data type and
cluster the frequently-accessed paths automatically.

5.2 Query Processing

We introduce three types of query processing, including (1)
columnar scan with pushdown [70], [96], [103], (2) columnar
scan with caching and pushdown [102], and (3) columnar
scan with shuffle memory pool [59]. As shown in Fig. 14,
the first type loads the pushdown results from the cloud
storage. The second one merges the results from both the
pushdown results and the local cache. The third one loads
the pushdown results from the cloud storage, then performs
the queries using the shuffle memory tier.

5.2.1 Columnar Scan with Pushdown
This type of query processing [20], [103], [106] aims to
reduce network traffic by pushing down the computation
to the storage side. A representative is Amazon Simple
Storage Service (S3), which has exposed the Select API,
by which users can specify the bucket and key of the S3
objects, then the unwanted data can be filtered with simple
computations, such as selection and projection. When it
comes to highly-selective operators, S3 Select can reduce a
large amount of data in the storage side, thereby saving the
computation cost on the compute layer. However, S3 Select
does not mean that it is always cheaper than computing on
normal EC2 nodes due to the more expensive pricing model
for scanning ($0.002/GB) and returning data ($0.0007/GB).

PushdownDB [103] has studied the relation between
the pushdown performance and its price. It particu-
larly extended the S3 Select API to support more op-
erations, including index scan, hash-join, group by, and
top-k. For instance, it designed an offset index table
based on S3 Select, which has the form of |indexed
value|first byte offset|last byte offset|. Finding the objects
involves two phases. First, the S3 objects are filtered using
the index table and the offset of the target data is returned.
Second, the data is fetched using the cheaper HTTP API
instead of the S3 Select API. To push down the join, it
builds a bloom filter for the join key of the small table, then
adopts a substring-based matching strategy to perform the
join using S3 Select.

Overall, these pushdown operations can have a lower
cost and higher throughput regarding highly selective op-
erators. Otherwise, it could have no payoffs due to the
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pushdown cost. Another drawback of the pushdown-only
methods is that they make no use of the cache data.

5.2.2 Columnar Scan with Caching Pushdown
The second type of query processing is to scan the data
with both caching and pushdown. The main idea is that
since the local cache is more efficient than pushdown, it
can be combined to further speed up the queries. Flex-
Pushdown [102] is a representative of such a technique.
Specifically, it consists of two parts: hybrid execution and
cache replacement. For hybrid execution, it organizes the
columnar data with segments and transforms the original
query plan to a separable query plan with the consideration
of the local cache and computation pushdown. For instance,
suppose a scan query retrieves two attributes A and B,
if all the segments of A are cached, these data can be
scanned using local cache while the filters on segments
of B are pushed down to the cloud storage, and finally
the segments are merged at the compute nodes. Regarding
cache replacement, it employs a weighted LFU strategy to
manage the cache data. Intuitively, the larger the push-
down computation cost is, the larger weight the related
data has for caching. As a result, it relies on a benefit-
based caching framework by calculating a segment’s weight
w(s) = (tnet(s) + tscan(s) + tcompute(s))/size(s), where
tnet(s) is the time of network transfer, tscan(s) is the time of
data scanning, and tcompute(s)) is the time of computation
from the query. For the pros, it has high throughput as it can
utilize local cache. However, it has low scalability due to the
limited capacity of local cache.

5.2.3 Columnar Scan with Shuffle Memory Tier
The third category uses a shuffle memory to perform
queries. This technique is associated with the second dis-
aggregated OLAP architecture. BigQuery [59] is a repre-
sentative, which follows the map-reduce-style processing
paradigm that partitions and processes the data with mul-
tiple phases. It adopts the producer-consumer execution
model, where producers in each worker generate partitions
and send them to the in-memory nodes for shuffling. Con-
sumers in the next stage asynchronously combine the par-
titions and do the operations locally. For the shuffle phase
of (n-1), workers use the consumers to receive partitions
and use producers to generate new partitions. Then the dis-
tributed in-memory nodes conduct the shuffling. Regarding
the shuffle phase of (n+1), the workers do the same opera-
tions with new consumers and producers. Finally, a single
worker merges the results and returns to the coordinator.
For the pros, it has high throughput as the shuffle phase is
conducted using the shared memory. For the cons, it incurs
high costs due to high pricing of in-memory computing.

5.3 Serverless Computing in Cloud Databases
Serverless computing is expected to be the next generation
of cloud computing [84], which allows the programmers
to write functions and code in the cloud without caring
about server management, including resource provision and
scaling, fault tolerance, and system monitoring. By com-
bining cloud databases with serverless computing, users
can enjoy the auto-scaling feature and pay for the used
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resources in a query granularity. Generally speaking, there
are two implementations of serverless computing in cloud
databases (see Fig. 15). The first type is (i) serverless with
functions as a service (FaaS) [64], [73], [91], where queries
are adaptively executed by invoking the cloud function
services. The second type is (ii) serverless databases [16],
[77], which automate the process of provisioning and scaling
for the queries at the level of the database instance.

5.3.1 Functions As a Service
The first type of serverless computing technique [64], [73],
[91] relies on serverless functions to process the queries.
Particularly, the function as a service (FaaS) such as AWS
Lambda [9], Azure Functions [62], Google Cloud Func-
tions [33], allows to invoke multiple functions in a few
milliseconds, and users are charged only for used resources.
With FaaS, users could invoke many parallel jobs to scan,
join, and aggregate tables in the cloud storage. As shown
in Fig. 15, the workflow is as follows: users submit the
SQL queries to a coordinator, which compiles the query
and uploads the code to a cloud function service. Then, the
coordinator schedules the tasks by provisioning resources
and invoking them through the function service. Afterward,
the function service executes the tasks in the cloud.

This line of work is mainly driven by the research
community. Two representatives are Starling [73] and Lam-
bada [64], both of which build a query engine on top of
the cloud function and storage service. Starling [73] im-
plements the coordinator, which generates the C++ code
for the specified query plan and invokes the AWS Lambda
functions. The intermediate results are exchanged with the
AWS cloud storage, i.e., S3. It makes two optimizations.
First, it uses tuned models to detect stragglers, which in-
crease the overall latency of parallel query processing. Then
it invokes functions with duplicate computation. Second, it
employs function-based combiners to reduce the overhead
of large shuffling. Lambada [64] implements a part of TPC-
H queries [29] using a Python front-end, and the code
is generated based on its own compilation and execution
framework. It uses three types of cloud storage service
to exchange states: (i) Amazon S3 for a large amount of
data, (ii) DynamoDB [88] for a small portion of data, and
(iii) Amazon Simple Queuing System (SQS) [5] for passing
messages such as query results. To address the limitations
of slow invocations of multiple tasks, it uses the two-level
invocations that enable the first-level workers to invoke
the second-level workers internally. Apart from the query
processing, there exist works that focus on FaaS-based
data analytics with specific programming languages (e.g.,
Python), such as Cloudburst [91] and general serverless
computing runtime like NightCore [41].
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There are two main challenges for FaaS-based query
processing, First, since functions are stateless and cannot
communicate with each other, their states are hard to keep
and exchange. Simply using cloud storage often incurs large
latency. Thus it calls for new methods for stateful serverless
computing. There exists a number of works focusing on
developing a unified storage service, including Pocket [45],
Boki [40], Anna [99], and Jiffy [44]. However, they target
general programming languages, and it is unclear how they
can be applied and optimized for query processing. Second,
it is challenging for users to decide how many resources
(e.g., the number and size of the functions) should be
obtained before performing the task [64], [73]. Therefore,
how to balance the trade-off between cost and performance
remains critical [43].

5.3.2 Serverless Databases
The second type of approach [76], [77], [85] supports server-
less computing with database instances by dynamically
scheduling the resources. This line of work is mainly led
by commercial cloud data services, such as Aurora Server-
less [6], Athena Serverless [16], and Azure Serverless [61].
These services have a tailored resource unit for scheduling.
For instance, Aurora Serverless V2 [7] defines Aurora Ca-
pacity Unit (ACU), where the minimum unit is 0.5*ACU,
and each ACU has 2 GiB memory (the CPU and network
is the same as an instance’s). Depending on the input size
and the predicated resources, BigQuery [59] and AutoEx-
ecutor [85] can vary the number of executors for performing
the tasks from multiple tenants. Four key operations in
serverless computing are provisioning, pausing, resuming, and
scaling, where provisioning aims to allocate the resources
based on the issued queries; pausing stops the service
tentatively and charges no fee for users; resuming starts the
service again with the provisioned resources; scaling allows
for smoothly scaling up/down when the access pattern of
workloads change. For provisioning and scaling, the main
problem is to predict the required resources for a query
workload. However, it is a challenging problem as even an
expert can hardly estimate the resources needed for a given
query [85]. For pausing and resuming, the main problem
is to predict the arrival pattern of the workload. The main
challenge is starting a database is expensive after a pause
period, and resources could be wasted for a proactive re-
sume period. Therefore, an adaptive model that can predict
the pause/resume patterns is needed [76], [77].

5.4 Data Protection
Security is one of the most important issues in cloud
databases. There are two main types of data protection tech-
niques: software-based data protection [25] and hardware-
based data protection [11].

5.4.1 Key-based Data Protection
The first type of security method relies on key management
services such as AWS CloudHSM [8] to manage the en-
cryption keys for users. A representative is Snowflake [25],
which utilizes an encryption key hierarchy that has four
levels: root keys, account keys, table keys, and file keys. The
keys are managed with life cycles and would be rotated
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and re-keyed periodically to ensure security. For instance,
each key is rotated once per month, and data is re-keyed
once per year in Snowflake. There are two main challenges
for software-based data protection. First, data is decrypted
for query processing. Second, the cloud vendors may be
untrusted, so the keys may be stolen.

5.4.2 Enclave-based Data Protection
The hardware-based data protection utilizes customized
hardware, e.g., Enclave [10], for data protection. An enclave
is a kind of Trusted Execution Environment(TEE), which has
a virtual address space of a process that cannot be accessed
by other processes, including operating system. Moreover,
it assumes both database systems and cloud providers are
untrusted, so it adopts a bring-your-own-key model, where
only the data owners have the keys to access the encrypted
data. Fig. 16 shows the design of enclave-based query pro-
cessing: (1) the user requests a key from the key provider
for the protected data (e.g., at a column granularity); (2)
then the user issues a query “select * from T where value
= @v” with the obtained key; (3) the attestation service
verifies the key, and (4) notifies the result to the encrypted
database; (5) the DBMS fetches the data and invokes the
enclave for evaluation, and enclave will decrypt the data to
plaintext and evaluates the filter; (6) finally the query results
are sent back to the user. There are two main challenges
for hardware-based data protection. The first challenge is
how to perform the computation over ciphertext directly,
particularly for the range queries [2]. The second challenge
is how to improve the efficiency and the scalability of the
enclave due to its limited computing resources and space.

5.5 Machine Learning

Intersecting cloud-native databases with machine learning
(ML) is another major trend for modern data-intensive
applications. On the one hand, machine learning can ben-
efit cloud-native databases by optimizing various database
tasks [4], [15], [28], [37], [54], [100], [113], [114]. On the other
hand, cloud-native databases can facilitate machine learning
techniques with SQL-enabled ML pipelines [26], [30], [55].

5.5.1 ML-Enabled Cloud Data Service
Advanced ML techniques have been widely studied in the
setting of cloud database tasks such as workload man-
agement [15], partition-key selection [37], knob tuning [4],
[19], [54], [112], buffer size tuning [49], and index tun-
ing [100]. For instance, AutoWLM [15] tunes the workload
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concurrency by predicting the memory consumption and
execution time for the workload. It featurizes the query
plans and trains an XGBoost [23] model for each cluster
to predict the query performance. Ottertune [4] is an au-
tomatic knob tuning service that leverages Gaussian Pro-
cess (GP) to tune the database configurations interactively.
Further, CDBTune [112] and Qtune [54] employ the deep
reinforcement learning (DRL) [56] to search for the optimal
knobs in the large exponential space. Further, Hunter [19]
combines the traditional ML techniques such as Genetic
algorithm (GA) with DRL to address the cold-start problem,
then it improves the performance based on multiple cloned
database instances. Wu et al. [100] employs Monte Carlo
Search Tree (MCTS) to build the indexes with the given
budget of what-if calls. There are two main challenges for
the ML-based cloud data service. First, most of the services
are optimized independently. Thus it is hard to optimize the
overall performance due to the interaction of the tuned com-
ponents. Second, the machine learning models will become
inaccurate due to the data drift or workload drift, and it is
challenging to migrate a trained model to a new workload
and dataset effectively and efficiently.

5.5.2 SQL-based ML Pipeline
Using cloud-native databases for machine learning brings
many benefits. First, it supports an SQL-enabled machine-
learning pipeline backed with high elasticity and avail-
ability. Second, it brings the model to the data without
additional data transferring overhead. Third, it supports
AutoML [42], [82], [101] for the users, such as automatic
model selection, training, and hyper-parameter tuning. For
instance, Sagemaker [26], [55] supports the syntax of “Create
Model” to train a model automatically, then it can make
predictions with the SQL function. In order to perform ML
inference locally, it invokes the Neo service to compile the
model, and Neo transforms the machine learning models
into inference code and brings the models to the databases.
BigQueryML [30] also enables a similar functionality, where
users can leverage SQL tools to import, build and invoke
advanced ML models based on TensorFlow [57].

6 RELATED WORK

There is a general lack of a comprehensive survey on the
cloud-native database as it is a relatively new field for
both industry and academia. Particularly, Sakr [81] reviewed
cloud-hosting databases. The survey discussed several top-
ics, such as NoSQL databases, Database-as-a-Service (DaaS),
and virtualized database servers. It also presented several
future directions, including true elasticity, data consistency,
live migration, SLA management, transaction support, and
benchmarking. Mansouri [58] surveyed the storage man-
agement techniques in the cloud, namely, Storage as a
Service (StaaS). The survey introduced cloud storage based
on the intra-cloud and inter-cloud storage architectures. It
also covered the topics of the data model, data replication,
data consistency, transaction, and data management cost.
Gartner [75] compared different cloud database systems
from the business perspective. By weighing the business
value with a set of evaluation criteria such as service quality
and market record, the report classified the cloud DBMSs

or cloud vendors into four roles in a Magic Quadrant, in-
cluding niche players, visionaries, challengers, and leaders.
It also discussed the strengths and weaknesses of each cloud
DBMS. Narasayya et al. [65], [66] reviewed the cloud data
services. The survey discussed various topics, including
workloads and architectures, multi-tenancy and virtualiza-
tion technologies, SLAs and pricing models, resource man-
agement, efficiency, and cost, as well as serverless databases.

Our work is different from existing surveys in three
aspects. First, we classify the cloud-native databases into
two types, OLTP-oriented and OLAP-oriented. We give
a taxonomy for each type based on their disaggregation
architecture and summarize their pros and cons. There-
fore, our taxonomy is based on the architectures rather
than the specific product. Second, our work covers a wide
spectrum of advanced techniques developed by state-of-
the-art cloud-native databases, including HTAP techniques,
serverless computing, and machine learning. These update-
to-date techniques are rarely reviewed and summarized in
the previous work. Third, we give new future directions that
existing works have not been discussed.

7 OPEN PROBLEMS AND OPPORTUNITIES

Multi-Writer Architecture. Existing cloud databases only
support a single writer and multiple readers, which may
cause a large Recovery Time Objective (RTO) if the primary
node has any failure. Besides, such an architecture has a
limited capacity for highly-concurrent write transactions
due to the single read-write (RW) node. Thus, it calls for
cloud-native multi-writer techniques that can scale out write
capabilities. Two promising architectures are (1) the share-
storage architecture [97], [105] and (2) coherent cache archi-
tecture [69], where the former supports multiple RW nodes
accessing the same storage with an RDMA network, and the
latter enables the multi-writer with a coherent cache layer.
The challenge is to handle skewed write as the storage layer
will accept write requests from multiple RW nodes [116].
Fine-Grained Serverless. Existing elastic databases mainly
support provisioning the resources for a query with coarse-
grained serverless (VMs or specific units, e.g., Aurora Ca-
pacity Unit). However, they are not cost-efficient and may
suffer from the high latency of elastic scaling. One promising
direction is to combine the advantage of FaaS-based Server-
less and databases, where the former has a lower starting
cost that can be used to address the cold-start problem,
and the latter has a better performance. The challenge is
to balance the trade-off between cost and performance.
SLA-Aware Cloud-Native HTAP. Existing cloud-native
HTAP solutions only care about how to improve the HTAP
performance, which may not be cost-efficient. For instance,
transforming the row data to column data may accelerate
query processing, but it also brings the higher dollar cost
of memory computing. Two main challenges are (1) how to
organize the data storage to achieve the best performance
with the satisfied SLA [66], [81], and (2) how to judiciously
schedule the resources for OLTP and OLAP workloads with
SLA-aware optimization.
Multi-Cloud Data Service. As multi-cloud has become
available, more and more data-intensive applications can
benefit from using multi-cloud data services. However, it

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3397508

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 21,2024 at 05:17:38 UTC from IEEE Xplore.  Restrictions apply. 



18

also poses new challenges to cloud-native databases with
higher complexity. First, it is challenging to provide high
availability as the data is stored across the cloud vendor.
Thus, data migration in real time can largely affect avail-
ability [39]. Second, it is hard to maintain data consis-
tency between the cloud vendors when the data is updated
frequently. Third, it is challenging to have a cost-efficient
execution plan for query processing as different cloud ven-
dors have different pricing models. Even for the different
regions in the same cloud vendor, the offering resources
are disparate. A promising direction is sky computing [92],
which aims to build an abstraction on top of inter-cloud
services. For example, Skyplane [39] has been developed to
facilitate data migration across clouds, and the SkyPilot [90]
framework has supported the ML workload using multiple
cloud providers such as AWS [5], Google Cloud [32], and
Azure Cloud [17] simultaneously.

8 CONCLUSION

This paper offers a comprehensive survey of cloud-native
databases. We summarize the state-of-the-art cloud-native
architectures and techniques. We introduce three types of
cloud-native OLTP architectures including (1) disaggre-
gated compute-storage OLTP architecture, (2) disaggregated
compute-log-storage OLTP Architecture, and (3) disaggre-
gated compute-buffer-storage OLTP architecture. We also
introduced their key techniques including data placement,
storage layer consistency, compute layer consistency, multi-
layer recovery, and HTAP optimization. Furthermore, we
present two types of cloud-native OLAP architectures, in-
cluding two-layered compute-storage OLAP architecture
and three-layered compute-memory-storage OLAP archi-
tecture. We also summarize their key techniques regarding
storage management, query processing, serverless comput-
ing, data protection, and machine learning. Finally, we
discuss the research challenges and opportunities for cloud-
native databases, including multiple write architecture, fine-
grained serverless, SLA-aware cloud-native HTAP tech-
niques, and multi-cloud data service.
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