
9

A Partition-Based Method for String Similarity Joins with
Edit-Distance Constraints

GUOLIANG LI, DONG DENG, and JIANHUA FENG, Tsinghua University

As an essential operation in data cleaning, the similarity join has attracted considerable attention from
the database community. In this article, we study string similarity joins with edit-distance constraints,
which find similar string pairs from two large sets of strings whose edit distance is within a given threshold.
Existing algorithms are efficient either for short strings or for long strings, and there is no algorithm that can
efficiently and adaptively support both short strings and long strings. To address this problem, we propose
a new filter, called the segment filter. We partition a string into a set of segments and use the segments as
a filter to find similar string pairs. We first create inverted indices for the segments. Then for each string,
we select some of its substrings, identify the selected substrings from the inverted indices, and take strings
on the inverted lists of the found substrings as candidates of this string. Finally, we verify the candidates
to generate the final answer. We devise efficient techniques to select substrings and prove that our method
can minimize the number of selected substrings. We develop novel pruning techniques to efficiently verify
the candidates. We also extend our techniques to support normalized edit distance. Experimental results
show that our algorithms are efficient for both short strings and long strings, and outperform state-of-the-art
methods on real-world datasets.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Processing

General Terms: Algorithms, Performance, Theory, Design

Additional Key Words and Phrases: String similarity join, edit distance, segment filter

ACM Reference Format:
Li, G., Deng, D., and Feng, J. 2013. A partition-based method for string similarity joins with edit-distance
constraints. ACM Trans. Datab. Syst. 38, 2, Article 9 (June 2013), 33 pages.
DOI: http://dx.doi.org/10.1145/2487259.2487261

1. INTRODUCTION

A string similarity join between two sets of strings finds all similar string pairs
from the two sets. For example, consider two sets of strings {vldb, sigmod, . . . } and
{pvldb, icde, . . . }. We want to find all similar pairs, for instances, 〈vldb, pvldb〉. Many
similarity functions have been proposed to quantify the similarity between two strings,
such as Jaccard similarity, Cosine similarity, and edit distance. In this articles, we
study string similarity joins with edit-distance constraints, which, given two large sets
of strings, find all similar string pairs from the two sets, such that the edit distance
between each string pair is within a given threshold. The string similarity join is

This work was partly supported by the National Natural Science Foundation of China under Grant
No. 61003004 and 61272090, National Grand Fundamental Research 973 Program of China under Grant
No. 2011CB302206, and a project of Tsinghua University under Grant No. 20111081073, and the “NExT
Research Center” funded by MDA, Singapore, under Grant No. WBS:R-252-300-001-490.
Author’s address: Department of Computer Science and Technology, Tsinghua National Laboratory for In-
formation Science and Technology (TNList), Tsinghua University, Beijing 100084, China; email: liguoliang@
tsinghua.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0362-5915/2013/06-ART9 $15.00

DOI: http://dx.doi.org/10.1145/2487259.2487261

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:2 G. Li et al.

an essential operation in many applications, such as data integration and cleaning,
near duplicate object detection and elimination, and collaborative filtering [Xiao et al.
2008a].

Existing methods can be broadly classified into two categories. The first one uses
a filter-and-refine framework, such as Part-Enum [Arasu et al. 2006], All-Pairs-Ed
[Bayardo et al. 2007], ED-JOIN [Xiao et al. 2008a]. In the filter step, they generate
signatures for each string and use the signatures to generate candidate pairs. In the
refine step, they verify the candidate pairs to generate the final result. However, these
approaches are inefficient for the datasets with short strings (e.g., person names and
locations) [Wang et al. 2010]. The main reason is that they cannot select high-quality
signatures for short strings and will generate large numbers of candidates that need
to be further verified. The second one, TRIE-JOIN [Wang et al. 2010], adopts a trie-based
framework, which uses a trie structure to share prefixes and utilizes prefix pruning to
improve the performance. However TRIE-JOIN is inefficient for long strings (e.g., paper
titles and abstracts). There are two main reasons. First it is expensive to traverse the
trie with long strings. Second long strings have a small number of shared prefixes and
TRIE-JOIN has limited pruning power.

If a system wants to support both short strings and long strings, we have to imple-
ment and maintain two separate codes, and tune many parameters to select the best
method. To alleviate this problem, it calls for an adaptive method that can efficiently
support both short strings and long strings. In this article we propose a new filter,
called the segment filter, and devise efficient filtering algorithms. We devise a parti-
tion scheme to partition a string into a set of segments and prove that if a string s
is similar to string r, s must have a substring that matches a segment of r. Based on
this observation, we use the segments as a filter and propose a segment-filter based
framework. We first partition strings into segments and create inverted indices for
the segments. Then for each string s, we select some of its substrings and search for
the selected substrings in the inverted indices. If a selected substring appears in the
inverted index, each string r on the inverted list of this substring (i.e., r contains the
substring) may be similar to s, and we take r and s as a candidate pair. Finally we
verify the candidate pairs to generate the final answer. We develop effective techniques
to select high-quality substrings and prove that our method can minimize the number
of selected substrings. We also devise novel pruning techniques to efficiently verify the
candidate pairs. To summarize, we make the following contributions.

—We propose a segment-filter-based framework. We first partition strings into a set
of segments. Then given a string, we select some of its substrings and take those
strings whose segments match one of the selected substrings as the candidates of
this string. We call this pruning technique the segment filter. Finally we verify the
candidates to generate the final answer.

—To improve the segment-filter step, we discuss how to effectively select substrings
and prove that our method can minimize the number of selected substrings.

—To improve the verification step, we propose a length-aware method, an extension-
based method, and an iterative-based method to efficiently verify a candidate.

—We extend our techniques to support normalized edit distance and R-S join.
—We have conducted an extensive set of experiments. Experimental results show

that our algorithms are very efficient for both short strings and long strings, and
outperform state-of-the-art methods on real-world datasets.

The rest of this article is organized as follows. We formalize our problem in Section 2.
Section 3 introduces our segment-filter-based framework. We propose to effectively
select substrings in Section 4 and develop novel techniques to efficiently verify candi-
dates in Section 5. We discuss how to support normalized edit distance and R-S join in

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:3

Table I. A Set of Strings

(a) Strings
Strings
avataresha
caushik chakrabar
kaushik chakrab
kaushuk chadhui
kausic chakduri
vankatesh

(b) Sorted by Length (Ascending)
ID Strings Len
s1 vankatesh 9
s2 avataresha 10
s3 kaushik chakrab 15
s4 kaushuk chadhui 15
s5 kausic chakduri 15
s6 caushik chakrabar 17

(c) Sorted by Length (Descending)
ID Strings Len
s6 caushik chakrabar 17
s5 kausic chakduri 15
s4 kaushuk chadhui 15
s3 kaushik chakrab 15
s2 avataresha 10
s1 vankatesh 9

Section 6. Experimental results are provided in Section 7. We review related work in
Section 8 and make a conclusion in Section 9.

2. PROBLEM FORMULATION

Given two collections of strings, a similarity join finds all similar string pairs from the
two collections. In this article, we use edit distance to quantify the similarity between
two strings. Formally, the edit distance between two strings r and s, denoted by ED(r, s),
is the minimum number of single-character edit operations (i.e., insertion, deletion, and
substitution) needed to transform r to s. For example, ED(“kausic chakduri”, “kaushuk
chadhui ”) = 6.

Here two strings are similar if their edit distance is not larger than a specified
edit-distance threshold τ . We formalize the problem of string similarity joins with
edit-distance constraints as follows.

Definition 2.1 (String Similarity Joins). Given two sets of strings R and S and an
edit-distance threshold τ , a similarity join finds all similar string pairs 〈r, s〉 ∈ R × S
such that ED(r, s) ≤ τ .

In the article we first focus on self join (R = S). We will discuss how to support R-S
join (R �= S) in Section 6. For example, consider the strings in Table I(a). Suppose the
edit-distance threshold τ = 3. 〈“kaushik chakrab”, “caushik chakrabar”〉 is a similar
pair as their edit distance is not larger than τ .

3. THE SEGMENT FILTER BASED FRAMEWORK

We first introduce a partition scheme to partition a string into several disjoint segments
(Section 3.1), and then propose a segment filter based framework (Section 3.2).

3.1. Partition Scheme

Given a string s, we partition it into τ + 1 disjoint segments, and the length of each
segment is not smaller than one1. For example, consider string s1=“vankatesh”. Suppose
τ = 3. We can partition s1 into τ + 1 = 4 segments, for instance, {“va”,“nk”,“at”, “esh”}.

Consider two strings r and s. If s has no substring that matches a segment of r, then
s cannot be similar to r based on the pigeonhole principle as stated in Lemma 3.1.

LEMMA 3.1. Given a string r with τ + 1 segments and a string s, if s is similar to r
within threshold τ , s must contain a substring that matches a segment of r.

PROOF. We prove it by contradiction. Suppose string s contains no substring that
matches a segment of string r. In other words, any segment of r will not match any
substring of s. Thus for any transformation T from r to s, in each segment of r there at
least exists one edit operation. That is in any transformation T there are at least τ + 1

1The length of string s(|s|) should be larger than τ , that is, |s| ≥ τ + 1.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:4 G. Li et al.

Fig. 1. SEGFILTER framework.

edit operations. This contradicts that s is similar to r. Thus s must contain a substring
that matches a segment of r.

In other words, if s is similar to r, then s must contain a substring matching a segment
of r. For example, consider the strings in Table I. Suppose τ = 3. s1 = “vankatesh” has
four segments {“va”, “nk”, “at”, “esh”}. As strings s3, s4, s5, s6 have no substring that
matches segments of s1, they are not similar to s1.

Given a string, there could be many strategies to partition the string into τ + 1 seg-
ments. A good partition strategy can reduce the number of candidate pairs and improve
the performance. Intuitively, the shorter a segment of r is, the higher probability the
segment appears in other strings, and the more strings will be taken as r’s candidates,
thus the pruning power is lower. Based on this observation, we do not want to keep
short segments in the partition. In other words, each segment should have nearly the
same length. Accordingly we propose an even-partition scheme as follows.

Consider a string s with length |s|. In even partition scheme, each segment has a
length of � |s|

τ+1	 or
 |s|
τ+1�, thus the maximal length difference between two segments is

1. Let k = |s| − � |s|
τ+1	 ∗ (τ + 1). In even partition, the last k segments have length
 |s|

τ+1�,
and the first τ +1−k ones have length � |s|

τ+1	. For example, consider s1=“vankatesh” and
τ = 3. Then length of s1 (|s1|) is 9. k = 1. s1 has four segments {“va”,“nk”,“at”, “esh”}.

Although we can devise other partition schemes, it is time consuming to select a
good partition strategy. Note that the time for selecting a partition strategy should
be included in the similarity-join time. In this article we focus on the even-partition
scheme and leave how to select a good partition scheme as a future work.

3.2. The Segment-Filter-Based Framework

We have an observation that if a strings s does not have a substring that matches a
segment of r, we can prune the pair 〈s, r〉. We use this feature to prune large numbers
of dissimilar pairs. To this end, we propose a segment-filter-based framework, called
SEGFILTER. Figure 1 illustrates our framework.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:5

Fig. 2. An example of our segment filter based framework.

For ease of presentation, we first introduce some notations. Let Sl denote the set of
strings with length l and Si

l denote the set of the i-th segments of strings in Sl. We
build an inverted index for each Si

l , denoted by Li
l . Given an i-th segment w, let Li

l(w)
denote the inverted list of segment w, that is, the set of strings whose i-th segments
are w. We use the inverted indices to do similarity joins as follows.

We first sort strings based on their lengths in ascending order. For the strings with
the same length, we sort them in alphabetical order. Then we visit strings in order.
Consider the current string s with length |s|. We find s’s similar strings among the
visited strings using the inverted indices. To efficiently find such strings, we create
indices only for visited strings to avoid enumerating a string pair twice. Based on
length filtering [Gravano et al. 2001], we check whether the strings in Li

l (|s| − τ ≤ l ≤
|s|, 1 ≤ i ≤ τ + 1) are similar to s. Without loss of generality, consider inverted index
Li

l . We find s’s similar strings in Li
l as follows.

—SUBSTRING SELECTION. If s is similar to a string in Li
l , then s should contain a substring

that matches a segment in Li
l . A straightforward method enumerates all of s’s sub-

strings, and for each substring checks whether it appears in Li
l . Actually we do not

need to consider all substrings of s. Instead we only select some substrings (denoted
by W(s,Li

l)) and use the selected substrings to find similar pairs. We discuss how to
generate W(s,Li

l) in Section 4. For each selected substring w ∈ W(s,Li
l), we check

whether it appears in Li
l . If so, for each r ∈ Li

l(w), 〈r, s〉 is a candidate pair.
—VERIFICATION. To verify whether a candidate pair 〈r, s〉 is an answer, a straightforward

method computes their real edit distance. However this method is rather expensive.
To address this issue, we develop effective techniques to do efficient verification in
Section 5.

After finding similar strings for s, we partition s into τ + 1 segments and insert the
segments into inverted index Li

|s|(1 ≤ i ≤ τ + 1). Then we visit strings after s and
iteratively we can find all similar pairs. Note that we can remove the inverted index Li

k
for k < |s| − τ . Thus we maintain at most (τ + 1)2 inverted indices Li

l for |s| − τ ≤ l ≤ |s|
and 1 ≤ i ≤ τ + 1. In this article we focus on the case that the index can be fit in the
memory. We leave dealing with a very large dataset as a future work.

For example, consider the strings in Table I. Suppose τ = 3. We find similar pairs as
follows (see Figure 2). For the first string s1 = “vankatesh”, we partition it into τ + 1
segments and insert the segments into the inverted indices for strings with length 9,
that is, L1

9, L2
9, L3

9, and L4
9. Next for s2 = “avataresha”, we enumerate its substrings

and check whether each substring appears in Li
|s2|−τ , . . . ,Li

|s2|(1 ≤ i ≤ τ + 1). Here we
find “va” in L1

9, “at” in L3
9, and “esh” in L4

9. For segment “va”, as L1
9(va) = {s1}. The

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:6 G. Li et al.

Fig. 3. SEGFILTER algorithm.

pair 〈s2, s1〉 is a candidate pair. We verify the pair and it is not an answer as the edit
distance is larger than τ . Next we partition s2 into four segments and insert them into
L1

|s2|,L2
|s2|,L3

|s2|,L4
|s2|. Similarly we repeat these steps and find all similar pairs.

We give the pseudocode of our algorithm in Figure 3. We sort strings first by length
and then in alphabetical order (line 2). Then, we visit each string in the sorted or-
der (line 3). For each inverted index Li

l(|s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1), we select
the substrings of s (line 4-line 4) and check whether each selected substring w is
in Li

l (line 8-line 7). If yes, for any string r in the inverted list of w in Li
l , that is,

Li
l(w), the string pair 〈r, s〉 is a candidate pair. We verify the pair (line 7). Finally,

we partition s into τ + 1 segments, and inserts the segments into the inverted index
Li

|s|(1 ≤ i ≤ τ + 1) (line 8). Here function SUBSTRINGSELECTION selects all substrings
and function VERIFICATION computes the real edit distance of two strings to verify the
candidates using dynamic-programming algorithm. To improve the performance, we
propose effective techniques to improve the substring-selection step (the SUBSTRINGS-
ELECTION function) in Section 4 and the verification step (the VERIFICATION function) in
Section 5.

Complexity. We first analyze the space complexity. Our indexing structure includes
segments and inverted lists of segments. We first give the space complexity of segments.
For each string in Sl we generate τ + 1 segments. Thus the number of segments is at
most (τ + 1) × |Sl|, where |Sl| is the number of strings in Sl. As we can use an integer

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:7

to encode a segment, the space complexity of segments is

O

⎛
⎝ max

lmin≤ j≤lmax

j∑
l= j−τ

(τ + 1) × |Sl|
⎞
⎠,

where lmin and lmax respectively denote the minimal and the maximal string length.
Next we give the complexity of inverted lists. For each string in Sl, as the i-th

segment of the string corresponds to an element in Li
l , |Sl| = |Li

l |. The space complexity
of inverted lists (i.e., the sum of the lengths of inverted lists) is

O

⎛
⎝ max

lmin≤ j≤lmax

j∑
l= j−τ

τ+1∑
i=1

|Li
l | = max

lmin≤ j≤lmax

j∑
l= j−τ

(τ + 1) × |Sl|
⎞
⎠.

Then we give the time complexity. To sort the strings, we can first group the strings
based on lengths and then sort strings in each group. Thus the sort complexity is
O(

∑
lmin≤l≤lmax

|Sl|log(|Sl|)). For each string s, we select its substring set W(s,Li
l) for

|s|−τ ≤ l ≤ |s|, 1 ≤ i ≤ τ +1. The selection complexity is O(
∑

s∈S
∑|s|

l=|s|−τ

∑τ+1
i=1 X (s,Li

l)),
where X (s,Li

l) is the selection time complexity for W(s,Li
l), which is O(τ) (see Section 4).

The selection complexity is O(τ 3|S|). For each substring w ∈ W(s,Li
l), we verify whether

strings in Li
l(w) are similar to s. The verification complexity is

O

⎛
⎝∑

s∈S

|s|∑
l=|s|−τ

τ+1∑
i=1

∑

w∈W(s,Li
l)

∑

r∈Li
l (w)

V(s, r)

⎞
⎠,

where V(s, r) is the complexity for verifying 〈s, r〉, which is O(τ ∗ min(|s|, |r|)) (see
Section 5). In the article we propose to reduce the size of W(s,Li

l) and improve the
verification cost V(s, r).

4. IMPROVING THE FILTER STEP BY SELECTING EFFECTIVE SUBSTRINGS

For any string s ∈ S and a length l (|s| − τ ≤ l ≤ |s|), we select a substring set
W(s, l) = ∪τ+1

i=1 W(s,Li
l) of s and use substrings in W(s, l) to find the candidates of s. We

need to guarantee completeness of the method using W(s, l) to find candidate pairs.
That is any similar pair must be found as a candidate pair. Next we give the formal
definition.

Definition 4.1 (Completeness). A substring selection method satisfies completeness,
if for any string s and a length l(|s|−τ ≤ l ≤ |s|), ∀ r with length l that is similar to s and
visited before s, r must have an i-th segment rm that matches a substring sm ∈ W(s,Li

l)
where 1 ≤ i ≤ τ + 1.

A straightforward method is to add all substrings of s into W(s, l). As s has |s| − i + 1
substrings with length i, the total number of s’s substrings is

∑|s|
i=1(|s|−i+1) = |s|∗(|s|+1)

2 .
For long strings, there are large numbers of substrings and it is rather expensive to
enumerate all substrings.

Intuitively, the smaller size of W(s, l), the higher performance. Thus we want to find
substring sets with smaller sizes. In this section, we propose several methods to select
the substring set W(s, l). As W(s, l) = ∪τ+1

i=1 W(s,Li
l) and we want to use inverted index

Li
l to do efficient filtering, next we focus on how to generate W(s,Li

l) for Li
l . Table II

shows the notations used in this article.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:8 G. Li et al.

Table II. Notations

Notation Description
τ edit distance threshold
W�(s, l) substring set selected by length-based selection method
W f (s, l) substring set selected by shift-based selection method
Wp(s, l) substring set selected by position-aware selection method
Wm(s, l) substring set selected by multimatch-aware selection method
pmin minimal start position of position-aware substring selection
pmax maximal start position of position-aware substring selection
⊥l

i minimal start position of multimatch-aware from left-side perspective
⊥r

i minimal start position of multimatch-aware from right-side perspective
⊥i minimal start position of multimatch-aware substring selection

Length-based Method. As segments in Li
l have the same length, denoted by li, the

length-based method selects all substrings of s with length li, denoted by W�(s,Li
l). Let

W�(s, l) = ∪τ+1
i=1 W�(s,Li

l). The length-based method satisfies completeness, as it selects
all substrings with length li. The size of W�(s,Li

l) is |W�(s,Li
l)| = |s| − li + 1, and the

number of selected substrings is |W�(s, l)| = (τ + 1)(|s| + 1) − l.

Shift-based Method. However the length-based method does not consider the posi-
tions of segments. To address this problem, Wang et al. [2009] proposed a shift-based
method to address the entity identification problem. We can extend their method to
support our problem as follows. As segments in Li

l have the same length, they have
the same start position, denoted by pi, where p1 = 1 and pi = p1 + ∑i−1

k=1 lk for i > 1.
The shift-based method selects s’s substrings with start positions in [pi − τ, pi + τ]
and with length li, denoted by W f (s,Li

l). Let W f (s, l) = ∪τ+1
i=1 W f (s,Li

l). The size of
W f (s,Li

l) is |W f (s,Li
l)| = 2τ +1. The number of selected substrings is |W f (s, l)| = (τ +1)

(2τ + 1).
The basic idea behind the method is as follows. Suppose a substring sm of s with start

position smaller than pi − τ or larger than pi + τ matches a segment in Li
l . Consider

a string r ∈ Li
l(sm). We can partition s(r) into three parts: the matching part sm(rm),

the left part before the matching part sl(rl), and the right part after the matching part
sr(rr). As the start position of rm is pi and the start position of sm is smaller than pi − τ
or larger than pi +τ , the length difference between sl and rl must be larger than τ . If we
align the two strings by matching sm and rm (i.e., transforming rl to sl, matching rm with
sm, and transforming rr to sr), they will not be similar, thus we can prune substring sm.
Hence the shift-based method satisfies completeness.

However, the shift-based method still involves many unnecessary substrings. For
example, consider two strings s1 = “vankatesh” and s2 = “avataresha”. Suppose τ = 3
and “vankatesh” is partitioned into four segments {va, nk, at, esh}. s2 = “avataresha”
contains a substring “at” that matches the third segment in “vankatesh”, the shift-
based method will select it as a substring. However we can prune it and the reason is
as follows. Suppose we partition the two strings into three parts based on the match-
ing segment. For instance, we partition “vankatesh” into {“vank” , “at”, “esh”}, and
“avataresha” into {“av”, “at”, “aresha”}. Obviously the minimal edit distance (length
difference) between the left parts (“vank” and “av”) is 2 and the minimal edit distance
(length difference) between the right parts (“esh” and “aresha”) is 3. Thus if we align
the two strings using the matching segment “at”, they will not be similar. In this way,
we can prune the substring “at”.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:9

Fig. 4. Position-aware substring selection.

4.1. Position-Aware Substring Selection

Notice that all the segments in Li
l have the same length li and the same start position

pi. Without loss of generality, we consider a segment rm ∈ Li
l . Moreover, all the strings

in inverted list Li
l(rm) have the same length l (l ≤ |s|), and we consider a string r that

contains segment rm. Suppose s has a substring sm that matches rm. Next we give the
possible start positions of sm. We still partition s(r) into three parts: the matching part
sm(rm), the left part sl(rl), and the right part sr(rr). If we align r and s by matching
rm = sm, that is we transform r to s by first transforming rl to sl with dl = ED(rl, sl) edit
operations, then matching rm with sm, and finally transforming rr to sr with dr = ED(rr, sr)
edit operations, the total transformation distance is dl +dr. If s is similar to r, dl +dr ≤ τ .
Based on this observation, we give sm’s minimal start position (pmin) and the maximal
start position (pmax) as illustrated in Figure 4.

Minimal Start Position. Suppose the start position of sm, denoted by p, is not larger
than pi. Let � = |s|−|r| and �l = pi − p. We have dl = ED(rl, sl) ≥ �l and dr = ED(rr, sr) ≥
�l +�, as illustrated in Figure 4(a). If s is similar to r (or any string in Li

l(rm)), we have
�l + (�l + �) ≤ dl + dr ≤ τ. That is �l ≤ � τ−�

2 	 and p = pi − �l ≥ pi − � τ−�
2 	. Thus

pmin ≥ pi − � τ−�
2 	. As pmin ≥ 1, pmin = max(1, pi − � τ−�

2).

Maximal Start Position. Suppose the start position of sm, p, is larger than pi. Let
� = |s|− |r| and �r = p− pi. We have dl = ED(rl, sl) ≥ �r and dr = ED(rr, sr) ≥ |�r −�| as
illustrated in Figure 4(b). If �r ≤ �, dr ≥ � − �r. Thus � = �r + (� − �r) ≤ dl + dr ≤ τ ,
and in this case, the maximal value of �r is �; otherwise if �r > �, dr ≥ �r − �. If s is
similar to r (or any string in Li

l(rm)), we have

�r + (�r − �) ≤ dl + dr ≤ τ.

That is �r ≤ � τ+�
2 	, and p = pi + �r ≤ pi + � τ+�

2 	. Thus pmax ≤ pi + � τ+�
2 	. As

the segment length is li, based on the boundary, we have pmax ≤ |s| − li + 1. Thus
pmax = min(|s| − li + 1, pi + � τ+�

2).

For example, consider string r = “vankatesh”. Suppose τ = 3 and “vankatesh” is
partitioned into four segments, {va, nk, at, esh}. For string s = “avataresha”, we have
� = |s| − |r| = 1. � τ−�

2 	 = 1 and � τ+�
2 	 = 2. For the first segment “va”, p1 = 1.

pmin = max(1, p1 − � τ−�
2) = 1 and pmax = 1 + � τ+�

2 	 = 3. Thus we only need to
enumerate the following substrings “av”, “va”, “at” for the first segment. Similarly, we
need to enumerate substrings “va”, “at”, “ta”, “ar” for the second segment, “ta”, “ar”,
“re”, “es” for the third segment, and “res”, “esh”, “sha” for the fourth segment. We
see that the position-aware method can reduce many substrings over the shift-based
method (reducing the number from 28 to 14).

For Li
l , the position-aware method selects substrings with start positions in

[pmin, pmax] and length li, denoted by Wp(s,Li
l). Let Wp(s, l) = ∪τ+1

i=1 Wp(s,Li
l). The

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:10 G. Li et al.

Fig. 5. Multimatch-aware substring selection.

size of Wp(s,Li
l) is |Wp(s,Li

l)| = τ + 1 and the number of selected substrings is
|Wp(s, l)| = (τ + 1)2. The position-aware method satisfies completeness as formalized
in Theorem 4.2.

THEOREM 4.2. The position-aware substring selection method satisfies the complete-
ness.

PROOF. See Section A in Appendix.

4.2. MultiMatch-Aware Substring Selection

We have an observation that string s may have multiple substrings that match some
segments of string r. In this case we can discard some of these substrings. For example,
consider r = “vankatesh” with four segments, {va, nk, at, esh}. s = “avataresha” has
three substrings va, at, esh matching the segments of r. We can discard some of these
substrings to reduce the verification cost. To this end, we propose a multimatch-aware
substring selection method.

Consider Li
l . Suppose string s has a substring sm that matches a segment in Li

l . If we
know that s must have a substring after sm that will match a segment in L j

l (j > i), we
can discard substring sm. For example, s = “avataresha” has a substring “va” matching
a segment in r = “vankatesh”. Consider the three parts rm = sm = “va”, rl = φ and
sl = “a”, and rr = “nkatesh” and sr = “taresha”. As dl ≥ 1, if s and r are similar,
dr ≤ τ − dl ≤ τ − 1 = 2. As there are still 3 segments in rr, thus sr must have a
substring matching a segment in rr based on the pigeonhole principle. Thus we can
discard the substring “va” and use the next matching substring to find similar pairs.
Next we generalize our idea.

Suppose s has a substring sm with start position p matching a segment rm ∈ Li
l . We

still consider the three parts of the two strings: sl, sm, sr and rl, rm, rr as illustrated in
Figure 5. Let �l = |pi − p|. dl = ED(rl, sl) ≥ �l. As there are i − 1 segments in sl, if
each segment only has less than 1 edit operation when transforming rl to sl, we have
�l ≤ i − 1. If �l ≥ i, dl = ED(rl, sl) ≥ �l ≥ i, dr = ED(rr, sr) ≤ τ − dl ≤ τ − i (if s is
similar to r). As rr contains τ + 1 − i segments, sr must contain a substring matching
a segment in rr based on the pigeonhole principle, which can be proved similar to
Lemma 3.1. In this way, we can discard sm, since for any string r ∈ Li

l(rm), s must have a
substring that matches a segment in the right part rr, and thus we can identify strings
similar to s using the next matching segment. In summary, if �l = |p − pi| ≤ i − 1, we
keep the substring with start position p for Li

l . That is the minimal start position is
⊥l

i = max(1, pi−(i−1)) and the maximal start position is �l
i = min(|s|−li+1, pi+(i−1)).

For example, suppose τ = 3. Consider r =“vankatesh” with four segments, {va, nk,
at, esh}, and s = “avataresha”. For the first segment, we have ⊥l

i = 1 − 0 = 1 and

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:11

�l
i = 1 + 0 = 1. Thus the selected substring is only “av” for the first segment. For the

second segment, we have ⊥l
i = 3−1 = 2 and �l

i = 3+1 = 4. Thus the selected substrings
are “va”, “at”, and “ta” for the second segment. Similarly for the third segment, we have
⊥l

i = 5 − 2 = 3 and �l
i = 5 + 2 = 7, and for the fourth segment, we have ⊥l

i = 7 − 3 = 4
and �l

i = min(8, 7 + 3) = 8.

Right-side Perspective. The previous observation is made from the left-side perspec-
tive. Similarly, we can use the same idea from the right-side perspective. As there are
τ + 1 − i segments on the right part rr, there are at most τ + 1 − i edit operations on
rr. If we transform r to s from the right-side perspective, position pi on r should be
aligned with position pi + � on s as shown in Figure 5(b). Suppose the position p on s
matching position pi on r. Let �r = |p− (pi +�)|. We have dr = ED(sr, rr) ≥ �r. As there
are τ + 1 − i segments on the right part rr, we have �r ≤ τ + 1 − i. Thus the minimal
start position for Li

l is ⊥r
i = max(1, pi + � − (τ + 1 − i)) and the maximal start position

is �r
i = min(|s| − li + 1, pi + � + (τ + 1 − i)).

Consider this example. We have � = 1. For the fourth segment, we have ⊥r
i =

7 + 1 − (3 + 1 − 4) = 8 and �r
i = 7 + 1 + (3 + 1 − 4) = 8. The selected substring is

only “sha” for the fourth segment. Similarly for the third segment, we have ⊥r
i = 5 and

�r
i = 7. The selected substrings are “ar”, “re”, and “es” for the third segment.

Combine Left-side Perspective and Right-side Perspective. More interestingly, we can
use the two techniques simultaneously. That is for Li

l , we only select the substrings
with start positions between ⊥i = max(⊥l

i,⊥r
i) and �i = min(�l

i,�r
i) and with length li,

denoted by Wm(s,Li
l). Let Wm(s, l) = ∪τ+1

i=1 Wm(s,Li
l). The number of selected substrings

is |Wm(s, l)| = � τ 2−�2

2 	 + τ + 1 as stated in Lemma 4.3.

LEMMA 4.3. |Wm(s, l)| = � τ 2−�2

2 	 + τ + 1.

PROOF. See Section B in Appendix.

The multimatch-aware method satisfies completeness as stated in Theorem 4.4.

THEOREM 4.4. The multimatch-aware substring selection method satisfies the com-
pleteness.

PROOF. See Section C in Appendix.

Consider this example. For the first segment, we have ⊥i = 1−0 = 1 and �i = 1+0 =
1. We select “av” for the first segment. For the second segment, we have ⊥i = 3 − 1 = 2
and �i = 3+1 = 4. We select substrings “va”, “at”, and “ta” for the second segment. For
the third segment, we have ⊥i = 5 + 1 − (3 + 1 − 3) = 5 and �i = 5 + 1 + (3 + 1 − 3) = 7.
We select substrings “ar”, “re”, and “es” for the third segment. For the fourth segment,
we have ⊥i = 7 + 1 − (3 + 1 − 4) = 8 and �i = 7 + 1 + (3 + 1 − 4) = 8. Thus we select
the substring “sha” for the fourth segment. The multimatch-aware method only selects
8 substrings.

4.3. Comparison of Selection Methods

We compare the selected substring sets of different methods. Let W�(s, l), W f (s, l),
Wp(s, l), and Wm(s, l), respectively, denote the sets of selected substrings that use the
length-based selection method, the shift-based selection method, the position-aware
selection method, and the multimatch-aware selection method. Based on the size anal-
ysis of each set, we have |Wm(s, l)| ≤ |Wp(s, l)| ≤ |W f (s, l)| ≤ |W�(s, l)|. Next we prove
Wm(s, l) ⊆ Wp(s, l) ⊆ W f (s, l) ⊆ W�(s, l) as formalized in Lemma 4.5.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:12 G. Li et al.

Fig. 6. SUBSTRINGSELECTION algorithm.

LEMMA 4.5. For any string s and a length l, we have

Wm(s, l) ⊆ Wp(s, l) ⊆ W f (s, l) ⊆ W�(s, l).

PROOF. See Section D in Appendix.

Moreover, we can prove that Wm(s, l) has the minimum size among all substring sets
generated by the methods that satisfy completeness as formalized in Theorem 4.6.

THEOREM 4.6. The substring setWm(s, l) generated by the multimatch-aware selection
method has the minimum size among all the substring sets generated by the substring
selection methods that satisfy completeness.

PROOF. See Section E in Appendix.

Theorem 4.6 proves that the substring set Wm(s, l) has the minimum size. Next we
introduce another concept to show the superiority of our multimatch-aware method.

Definition 4.7 (Minimality). A substring set W(s, l) generated by a method with the
completeness property satisfies minimality, if for any substring set W ′(s, l) generated
by a method with the completeness property, W(s, l) ⊆ W ′(s, l).

Next we prove that if l ≥ 2(τ + 1) and |s| ≥ l, the substring set Wm(s, l) generated by
our multimatch-aware selection method satisfies minimality as stated in Theorem 4.8.
The condition l ≥ 2(τ + 1) makes sense where each segment is needed to have at least
two characters. For example, if 10 ≤ l < 12, we can tolerate τ = 4 edit operations. If
12 ≤ l < 14, we can tolerate τ = 5 edit operations.

THEOREM 4.8. If l ≥ 2(τ + 1) and |s| ≥ l, Wm(s, l) satisfies minimality.

PROOF. See Section F in Appendix.

4.4. Substring-Selection Algorithm

Based on previous discussions, we improve SUBSTRINGSELECTION algorithm by removing
unnecessary substrings. For Li

l , we use the multimatch-aware selection method to
select substrings, and the selection complexity is O(τ). Figure 6 gives the pseudocode
of the substring selection algorithm.

For example, consider the strings in Table I. We create inverted indices as illustrated
in Figure 2. Consider string s1 = “vankatesh” with four segments, we build four inverted
lists for its segments {va, nk, at, esh}. Then for s2 = “avataresha”. We use multimatch-
aware selection method to select its substrings. Here we only select 8 substrings for s2
and use the 8 substrings to find similar strings of s2 from the inverted indices. Similarly,
we can select substrings for other strings.

5. IMPROVING THE VERIFICATION STEP

In our framework, for string s and inverted index Li
l , we generate a set of its substrings

W(s,Li
l). For each substring w ∈ W(s,Li

l), we need to check whether it appears in Li
l .

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:13

Fig. 7. An example for verification.

If w ∈ Li
l , for each string r ∈ Li

l(w), 〈r, s〉 is a candidate pair and we need to verify the
candidate pair to check whether they are similar. In this section we propose effective
techniques to do efficient verification.

Traditional Method. Given a candidate pair 〈r, s〉, a straightforward method to verify
the pair is to use a dynamic-programming algorithm to compute their real edit distance.
If the edit distance is not larger than τ , the pair is an answer. We can use a matrix M
with |r|+1 rows and |s|+1 columns to compute their edit distance, in which M(0, j) = j
for 0 ≤ j ≤ |s|, and M(i, 0) = i for 1 ≤ i ≤ |r|,

M(i, j) = min(M(i − 1, j) + 1, M(i, j − 1) + 1, M(i − 1, j − 1) + δ)

where δ = 0 if the i-th character of r is the same as the j-th character of s; otherwise
δ = 1. The time complexity of the dynamic-programming algorithm is O(|r| ∗ |s|).

Actually, we do not need to compute their real edit distance and only need to check
whether their edit distance is not larger than τ . An improvement based on length
pruning [Ukkonen 1985] is proposed that computes only the values M(i, j) for |i− j| ≤ τ ,
as shown in the shaded cells of Figure 7(a). The basic idea is that if |i− j| > τ , M(i, j) > τ ,
and we do not need to compute such values. This method improves the time complexity
V(s, r) to O((2 ∗ τ + 1) ∗ min(|r|, |s|)). Next, we propose a technique to further improve
the performance by considering the length difference between r and s.

5.1. Length-Aware Verification

In this section, we propose a length-aware verification method. We first use an example
to illustrate our idea. Consider string r = “kaushuk chadhui” and string s = “caushik
chakrabar”. Suppose τ = 3. Existing methods need to compute all the shaded values in
Figure 7(a). We have an observation that we do not need to compute M(2, 1), which is
the edit distance between “ka” and “c”. This is because if there is a transformation from
r to s by first transforming “ka” to “c” with at least 1 edit operation (length difference)
and then transforming “ushuk chadhui” to “aushik chakrabar” with at least 3 edit
operations (length difference), the transformation distance is at least 4, which is larger
than τ = 3. In other words, even if we do not compute M(2, 1), we know that there
is no transformation including M(2, 1) (the transformation from “ka” to “c”) whose
distance is not larger than τ . Actually we only need to compute the highlighted values
as illustrated in Figure 7(b). Next we formally introduce our length-aware method.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:14 G. Li et al.

Fig. 8. Length-aware verification.

Length-aware Method. Without loss of generality, let |s| ≥ |r| and � = |s| − |r| ≤ τ
(otherwise their edit distance must be larger than τ). We call a transformation from r
to s including M(i, j), if the transformation first transforms the first i characters of r
to the first j characters of s with d1 edit operations and then transforming the other
characters in r to the other characters in s with d2 edit operations. Based on length
difference, we have d1 ≥ |i − j| and d2 ≥ |(|s|− j) − (|r|− i)| = |�+ (i − j)|. If d1 + d2 > τ ,
we do not need to compute M(i, j), since the distance of any transformation including
M(i, j) is larger than τ . To check whether d1 + d2 > τ , we consider the following cases.

—If i ≥ j, d1 +d2 ≥ i − j +�+ i − j. If i − j +�+ i − j > τ , that is j < i − τ−�
2 , we do not

compute M(i, j). In other words, we only need to compute M(i, j) with j ≥ i − τ−�
2 .

—If i < j, d1 = j − i. If j − i ≤ �, d1 + d2 ≥ j − i + � − (j − i) = �. As � ≤ τ , there is
no position constraint. We need to compute M(i, j); otherwise if j − i > �, we have
d1 + d2 ≥ j − i + j − i − �. If j − i + j − i − � > τ , that is j > i + τ+�

2 , we do not need
to compute M(i, j). In other words, we only need to compute M(i, j) with j ≤ i + τ+�

2 .

Based on this observation, for each row M(i, ∗), we only compute M(i, j) for i−� τ−�
2 	 ≤

j ≤ i + � τ+�
2 	. For example, in Figure 8, we only need to compute the values in black

circles. Thus we can improve the time complexity V(s, r) from O((2τ + 1) ∗ min(|r|, |s|))
to O((τ + 1) ∗ min(|r|, |s|)).

Early Termination. We can further improve the performance by doing an early termi-
nation. Consider the values in row M(i, ∗). A straightforward early-termination method
is to check each value in M(i, ∗), and if all the values are larger than τ , we can do an
early termination. This is because the values in the following rows M(k > i, ∗) must be
larger than τ based on the dynamic-programming algorithm. This pruning technique
is called prefix pruning. For example in Figure 7(a), if τ = 3, after we have computed
M(13, ∗), we can do an early termination as all the values in M(13, ∗) are larger than
τ . But in our method, after we have computed the values in M(6, ∗), we can conclude
that the edit distance between the two strings is at least 4 (larger than τ = 3). Thus
we do not need to compute M(i > 6, ∗) and can terminate the computation as shown in
Figure 7(b). To this end, we propose a novel early-termination method.

For ease of presentation, we first introduce several notations. Given a string s, let s[i]
denote the i-th character and s[i : j] denote the substring of s from the i-th character to
the j-th character. Notice that M(i, j) denotes the edit distance between r[1 : i] and s[1 :
j]. We can estimate the lower bound of the edit distance between r[i : |r|] and s[j : |s|]
using their length difference |(|s|− j)−(|r|−i)|. We use E(i, j) = M(i, j)+|(|s|− j)−(|r|−i)|

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:15

Fig. 9. Length-aware verification algorithm.

to estimate the edit distance between s and r, which is called expected edit distance of
s and r with respect to M(i, j). If each expected edit distance for M(i, j) in M(i, ∗) is
larger than τ , the edit distance between r and s must be larger than τ , thus we can
do an early termination. To achieve our goal, for each value M(i, j), we maintain the
expected edit distance E(i, j). If each value in E(i, ∗) is larger than τ , we can do an
early termination as formalized in Lemma 5.1.

LEMMA 5.1. Given strings s and r, if each value in E(i, ∗) is larger than τ , the edit
distance of r and s is larger than τ .

PROOF. We prove that any transformation from r to s will involve more than τ edit
operations if each value in E(i, ∗) is larger than τ . For any transformation T from
r to s, T must include one of M(i, ∗). Without loss of generality, suppose T includes
M(i, j). Then we have d1 = M(i, j) and d2 ≥ |(|s| − j) − (|r| − i)|. Thus |T | = d1 + d2 ≥
M(i, j) + |(|s| − j) − (|r| − i)| = E(i, j) > τ . Thus transformation T will involve more
than τ edit operations. Therefor the edit distance of r and s is larger that τ .

Figure 9 shows the pseudocode of the length-aware algorithm. Different from tradi-
tional methods, for each row M[i][∗], we only compute the columns between i − � τ−�

2 	
and i + � τ+�

2 	 (lines 4–6). We also use the expected matrix to do early termination
(lines 7-8). Next we use an example to walk through our algorithm. In Figure 7(b), the
expected edit distances are shown in the left-bottom corner of each cell. When we have
computed M(6, ∗) and E(6, ∗), all values in E(6, ∗) are larger than 3, thus we can do an
early termination and avoid many unnecessary computations.

We use the length-aware verification algorithm to improve the Verification function
in Figure 3 (by replacing line 3). Our technique can be applied to any other algorithms
that need to verify a candidate in terms of edit distance (e.g., ED-JOIN and NGPP).

5.2. Extension-Based Verification

Consider a selected substring w of string s. If w appears in the inverted index Li
l , for

each string r in the inverted list Li
l(w), we need to verify the pair 〈s, r〉. As s and r share

a common segment w, we can use the shared segment to efficiently verify the pair. To
achieve our goal, we propose an extension-based verification algorithm.

As r and s share a common segment w, we partition them into three parts based
on the common segment. We partition r into three parts, the left part rl, the matching
part rm = w, and the right part rr. Similarly, we get three parts for string s: sl, sm = w,
and sr. Here we align s and r based on the matching substring rm and sm, and we only

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:16 G. Li et al.

Fig. 10. Extension-based verification.

need to verify whether r and s are similar in this alignment. Thus we first compute the
edit distance dl = ED(rl, sl) between rl and sl using the aforementioned method. If dl is
larger than τ , we terminate the computation; otherwise, we compute the edit distance
dr = ED(sr, rr) between sr and rr. If dl +dr is larger than τ , we discard the pair; otherwise
we take it as an answer.

Note that this method can correctly verify a candidate pair. Here we present the
basic idea and will formally prove it in Theorem 5.3. Recall Lemma 3.1. If s and r
are similar, s must have a substring that matches a segment of r. In addition, based
on dynamic-programming algorithm, there must exist a transformation by aligning rm
with sm and ED(s, r) = dl+dr. As our method selects all possible substrings and considers
all such common segments, our method will not miss any results. On the other hand,
the results found in our algorithm satisfy dl + dr ≤ τ . Since ED(s, r) ≤ dl + dr ≤ τ , the
results found in our algorithm must be true answers.

Improve the Verification Algorithm Using Tighter Bounds. Actually, we can further
improve the verification algorithm. For the left parts, we can give a tighter threshold
τl ≤ τ . The basic idea is as follows. As the minimal edit distance between the right parts
rr and sr is ||rr| − |sr||. Thus we can set τl = τ − ||rr| − |sr||. If the edit distance between
rl and sl is larger than threshold τl, we can terminate the verification; otherwise we
continue to compute dr = ED(rr, sr). Similarly for the right parts, we can also give a
tighter threshold τr ≤ τ . As dl has been computed, we can use τr = τ − dl as a threshold
to verify whether rr and sr are similar. If dr is larger than threshold τr, we can terminate
the verification.

For example, suppose τ = 3 and we want to verify s5 = “kausic chakduri” and s6 =
“caushik chakrabar”. s5 and s6 share a segment “chak”. We have s5l = “kausic ” and
s6l = “caushik ”, and s5r = “duri” and s6r = “rabar”. As ||s5r | − |s6r || = 1, τl = τ − 1 = 2.
We only need to verify whether the edit distance between s5l and s6l is not larger than
τl = 2. After we have computed M(6, ∗), we can do an early termination as each value
in E(6, ∗) is larger than 2.

Actually we can deduce two much tighter thresholds for τl and τr respectively.
Consider the i-th segment, we can terminate the verification based on the multi-match-
aware method. Thus we have dl ≤ τl = i − 1. Combining with the given pruning condi-
tion, we have τl = min(τ −||rr|− |sr||, i −1). As ||rr|− |sr|| = |(|r|− pi − li)− (|s|− p− li)| =
|p− pi − �| ≤ τ + 1 − i (based on the multimatch-aware method), τ − ||rr| − |sr|| ≥ i − 1.
we set τl = i − 1.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:17

Fig. 11. Extension-based verification algorithm.

We can get similar conclusion from the right-side perspective. If dr ≥ τ +1− i, we can
terminate the verification based on the multimatch-aware method from the right-side
perspective. Thus we have τr = min(τ −dl, τ +1−i). As dl ≤ τl ≤ i−1, τ −dl ≥ τ − (i−1).
Thus we set τr = τ + 1 − i.

Also we can use these two tighter thresholds simultaneously. That is for any substring
sm ∈ Wm(s, l) of s that matches the i-th segment rm of r, we only need to check whether
ED(rl, sl) ≤ i − 1 and ED(rr, sr) ≤ τ + 1 − i using the length-aware method. If so, we can
say that r and s are similar and output 〈r, s〉 as an answer.

Based on our proposed techniques, we improve the Verification function. Figure 11
illustrates the pseudocode. Consider a string s, a selected substring w, and an inverted
list Li

l(w). For each r ∈ Li
l(w), we use the extension-based method to verify the candidate

pair 〈s, r〉 as follows. We first compute τl = i − 1 and τr = τ + 1 − i (line 2). Then for
each r ∈ Li

l(w), we compute the edit distance (dl) between rl and sl with the tighter
bound τl using the length-aware verification method (line 5). If dl > τl, we terminate
the verification; otherwise we verify whether sr and rr are similar with threshold τr
using the length-aware verification method (line 7).

To guarantee correctness of our extension-based method, we first give a formal defi-
nition of correctness.

Definition 5.2 (Correctness). Given a candidate pair 〈s, r〉, a verification algorithm
is correct, if it satisfies (1) If 〈s, r〉 passes the algorithm, 〈s, r〉 must be a similar pair;
and (2) If 〈s, r〉 is a similar pair, it must pass the algorithm.

Our extension-based method satisfies correctness as stated in Theorem 5.3.

THEOREM 5.3. Our extension-based verification method satisfies correctness.

PROOF. See Section G in Appendix.

5.3. Iterative-Based Verification

In this section, we introduce an iterative-based verification method to further im-
prove the verification step. Instead of verifying a candidate pair with a matching
segment/substring using the extension-based verification method, we can iteratively
apply our multimatch-aware technique on the left and right part of the matching seg-
ment/substring to filter this candidate pair. We first present the basic idea, then give
the pseudocode, and finally discuss the technical details.

Basic Idea. Consider two strings r and s where s has a selected substring that
matches r’s i-th segment w. We still partition r/s into three parts, the left part rl/sl,
the matching part rm/sm = w and the right part rr/sr. Instead of checking whether

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:18 G. Li et al.

Fig. 12. Iterative-based verification algorithm.

ED(rl, sl) ≤ τl = i − 1 and ED(rr, sr) ≤ τr = τ + i − 1 using the length-aware verification
technique, we iteratively use the multimatch-aware technique to check whether rl(rr)
and sl(sr) are similar. Without loss of generality, consider the left parts rl and sl. We
partition rl into τl + 1 segments. If sl has no selected substring that matches a segment
of rl, r and s cannot be similar and we can prune the pair.

For example consider a string r = “kausic chakduri” with four segments “kau”,
“sic ”, “chak”, and “duri” and another string s = “caushik chakrabar”. String s has
a substring “chak” matching with the third segment of string r. Thus rl = “kausic ”
and sl = “caushik ”. The extension-based verification will compute their edit distance
using the tighter bound τl = i − 1 = 2. Actually we need not compute their real
edit distance using the dynamic-programming method. Instead, we partition rl into
τl + 1 = 3 segments “kau”, “si”, and “c ”. Based on the multimatch-aware substring
selection method, we only select four substrings of sl, “cau”, “sh”, “hi” and “k ”. As none
of the four substrings matches any segment of rl, we deduce that the edit distance
between sl and rl is larger than τl = 2. Thus we can prune the pair of s and r.

Pseudocode. Figure 12 shows the pseudocode of our iterative-based method. It first
verifies the left parts by calling subroutine ITERATIVEVERIFY (line 3). If the left-part
verification passes, it verifies the right parts by calling subroutine ITERATIVEVERIFY

(line 5) again. If the verifications on the both parts passes, it returns the real edit

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:19

distance (line 8). ITERATIVEVERIFY first partitions the input strings into τ ′ + 1 segments
(line 3). It employs different partition strategies for the leaf part and the right part,
which will be discussed later. Then it selects substrings based on the left part or the
right part (line 6). If there is no selected substring matching the segment, it returns
fail (line 7); otherwise it iteratively calls itself to verify the candidate pair (line 11).

To use the iterative-based method in the verification step, we only need to replace
lines 5-8 in Figure 9 with the ITERATIVEVERIFICATION algorithm.

Technical Details of The Iterative-based Method. We formally introduce how to
use the iterative-based method to verify r and s, that is, how to implement the
ITERATIVEVERIFY function. Suppose s has a selected substring sm that matches the i-
th segment (rm) of string r, and the left parts are rl/sl and right parts are rr/sr. We
respectively discuss how to iteratively verify the left parts (rl/sl) and right parts (rr/sr).

Left Parts. We consider rl/sl and check whether ED(rl, sl) ≤ τl = i − 1. If sm is not
the first selected substring of s (with the minimum start position) that matches a
segment of r, we still use the length-aware method; otherwise we use our iterative-
based method. (Notice that the matching substring sm has a very large probability
(larger than 90% in our experiments) to be the first substring). The iterative-based
method first partitions rl into τl + 1 = i segments. Then it uses the multimatch-aware
method to select substrings from sl. If sl has a selected substring matching a segment
of rl, we iteratively call the iterative-based method; otherwise we prune 〈r, s〉.

Next we discuss how to partition rl into τl +1 = i segments. As rm is the i-th segment
of r, rl contains the first i − 1 segments of r. Since sm is the first selected substring that
matches the i-th segment of r, s has no selected substring that matches the first i − 1
segments. More interestingly we find that sl also has no selected substring that matches
the first i − 1 segments (which will be proved in Theorem 5.4).2 Thus we keep the first
i − 2 segments of r as the first i − 2 segments of rl. In this way, we know that sl has no
substring that matches the first i − 2 segments of rl. Then we partition the (i − 1)-th
segment of r into two segments and take them as the last 2 segments of rl as follows. Let
c1c2 · · · cx · · · cy denote the (i − 1)-th segment of r and sl = c′

1c′
2 · · · c′

x′ · · · c′
y′ . We compute

the longest common suffix of c1c2 · · · cx · · · cy and sl. Suppose cx+1 · · · cy = c′
x′+1 · · · c′

y′

is the longest common suffix. If x > 1, we partition the (i − 1)-th segment into two
segments c1c2 · · · cx−1 and cx · · · cy. Thus we can partition rl into i segments. Based
on the multimatch-aware method, sl has no selected substring that matches the i-th
segments of rl as cx �= c′

x′ . Thus we only need to select substrings from sl for the (i − 1)-
th segment of rl (e.g., c1 · · · cx−1). We check whether the selected substrings match the
(i − 1)-th segment of rl. If yes, we iteratively call the iterative-based method on the
left parts of the matching segments/substrings; otherwise we prune the pair of r and s.
Notice that if x = 1, we cannot partition the (i − 1)-th segment into two segments and
we still use the length-aware verification method to verify rl and sl.

Right Parts. If ED(rl, sl) ≤ τl = i − 1, we continue to verify the right parts rr/sr
similarly. The differences are as follows. First we partition rr into τr + 1 = τ + 2 − i
segments. Second the partition strategy is different. Next we discuss how to partition
rr into τ +2−i segments. Notice that if s has another substring that matches a segment
among the last τ − i + 1 segments of r, we can discard rm and sm and verify r and s
using the next matching pair based on the multimatch-aware technique. Thus we keep
the last τ − i segments of r as the last τ − i segments of rr and we do not need to
select substrings from sr to match such segments. Then we repartition the (i + 1)-th

2As |sl| − |rl| may be unequal to |s| − |r|, the selected substrings of sl for segments of rl may be different from
those selected substrings of sl (as a part of s) for segments of r. Thus we need to prove the statement.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:20 G. Li et al.

segment of r into the first two segments of rr as follows. We find the longest common
prefix of the (i + 1)-th segment of r and sr and then partition (i + 1)-th segment of r
into two segments similarly. Let c1c2 · · · cx · · · cy denote the (i + 1)-th segment of r and
sr = c′

1c′
2 · · · c′

x′ · · · c′
y′ . We compute the longest common prefix of c1c2 · · · cx · · · cy and sr.

Suppose c1 · · · cx−1 = c′
1 · · · c′

x′−1 is the longest common prefix. If x < y, we partition
the (i + 1)-th segment into two segments c1c2 · · · cx and cx+1 · · · cy and take them as
the first two segments of rr. Thus we can partition rr into τ + 2 − i segments. Based
on the multimatch-aware method, we only need to select substrings from sr for the
second segment of rr (e.g., cx+1 · · · cy) and check whether the selected substrings match
the second segment. If yes, we iteratively call the iterative-based method on the right
parts of the matching segments/substrings; otherwise we prune the pair of r and s.
Notice that if x = y, we cannot partition the (i + 1)-th segment into two segments and
we still use the length-aware verification method to verify rr and sr.

As verifying the left parts is similar to verifying right parts, we combine them and
use the ITERATIVEVERIFY function to verify them. In the function, r′/s′ refer to rl/sl or
rr/rs as show in Figure 12. We use a flag to distinguish the left parts or the right parts.
For the left parts we keep the first i−2 segments and split the i−1-th segment into two
new segments and for the right parts we split the first segment into two new segment
and keep the last τ − i segments. We select the substrings based on the left parts or
right parts. Then we can use the segments and selected substrings to do pruning.

The iterative-based verification method satisfies the correctness as stated in
Theorem 5.4.

THEOREM 5.4. Our iterative-based verification method satisfies the correctness.

PROOF. See Section H in Appendix.

5.4. Correctness and Completeness

We prove correctness and completeness of our algorithm as formalized in Theorem 5.5.

THEOREM 5.5. Our algorithm satisfies the (1) completeness: Given any similar pair
〈s, r〉, our algorithm must find it as an answer; and (2) correctness: A pair 〈s, r〉 found
in our algorithm must be a similar pair.

PROOF. See Section I in Appendix.

6. DISCUSSIONS

In this section we first discuss how to support normalized edit distance (Section 6.1)
and then extend our techniques to support R-S join (Section 6.2).

6.1. Supporting Normalized Edit Distance

Normalized edit distance, aka edit similarity, is also a widely used similarity function to
quantify the similarity of two strings. The normalized edit distance of two strings r and
s is defined as NED(r, s) = 1 − ED(r,s)

max(|r|,|s|) . For example, NED(“kausic chakduri”, “kaushuk
chadhui ”) = 11

17 . Given a normalized edit distance threshold δ, we say two strings are
similar if their normalized edit distance is not smaller than δ. Then we formalize the
problem of string similarity join with normalized edit distance constraint as follows.

Definition 6.1 (String Similarity Joins With Normalized Edit Distance Constraint).
Given two sets of strings R and S and an normalized edit-distance threshold δ, it finds
all similar string pairs 〈r, s〉 ∈ R × S such that NED(r, s) ≥ δ.

Next we discuss how to support normalize edit distance. For two strings r and s, as
NED(r, s) = 1 − ED(r,s)

max(|r|,|s|) , ED(r, s) = max(|r|, |s|) · (1 − NED(r, s)). If NED(r, s) ≥ δ, ED(r, s) =

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:21

Fig. 13. SEGFILTER-NED algorithm.

max(|r|, |s|) · (1− NED(r, s)) ≤ max(|r|, |s|) · (1− δ). Notice that in the index phase we need
to partition string r into τ + 1 segments. If |s| > |r|, we cannot determine the number
of segments. To address this issue, we first index the long strings (r) and then visit the
short strings (s). That is we index segments of the long strings and select substrings
from the short strings. In this case, we always have |s| ≤ |r|. Thus ED(r, s) ≤ |r| · (1 − δ).
Let τ = |r| · (1 − δ), we can partition r to τ + 1 = �|r| · (1 − δ)	 + 1 segments using the
even partition scheme. In addition, as |r|− |s| ≤ ED(r, s) ≤ |r| · (1− δ), we have |r| ≤ � |s|

δ
	.

Thus for string s, we only need to find candidates for strings with length between |s|
and � |s|

δ
	. The substring selection phase and verification phase are still the same as the

original method.
Figure 13 gives the pseudocode SEGFILTER-NED to support normalized edit distance.

We first sort strings in S by string length in descending order (line 2) and then visit
each string s in sorted order (line 3). For each possible length ([|s|, � |s|

δ
]) of strings that

may be similar to s (line 4), we transform the normalized edit distance threshold δ to
edit distance threshold τ (line 5). Then for each inverted index Li

l(1 ≤ i ≤ τ +1) (line 6),
we select the substrings of s (line 7) and check whether each selected substring w is in
Li

l (line 8). If yes, for any string r in the inverted list Li
l(w), the string pair 〈r, s〉 is a

candidate pair. We verify the pair (line 9). Finally, we partition s into �(1 − δ) · |s|	 + 1
segments, and insert the segments into the inverted index Li

|s|(1 ≤ i ≤ �(1 − δ) · |s|	 + 1)
(line 10). Here algorithms SUBSTRINGSELECTION and VERIFICATION are the same as the
algorithms in Figure 3.

Next we give a running example of our SEGFILTER-NED algorithm (Figure 14). Con-
sider the string set in Table I and suppose the normalized edit distance threshold
δ = 0.82. We sort the strings in descending order as show in Table I(c). For the first
string s6, we partition it to �(1 − δ) · |s6|	+ 1 = 4 segments and insert the segments into
L|s6|. Next for s5 we select substrings for L|s6| using the multimatch-aware method and
check if there is any selected substring matching with its corresponding segment. Here
we find “chak” and the pair 〈s6, s5〉 is a candidate. Then we verify this pair using the
iterative-based method based on the matching part “chak” and it is not a result. Next
we partition s5 into �(1 − δ) · |s5|	 + 1 = 3 segments. Similarly we repeat these steps
and we find another two candidate pairs 〈s3, s4〉 and 〈s3, s6〉. We verify them using the
iterative-based method and get a final result 〈s3, s6〉.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:22 G. Li et al.

Fig. 14. An example of SEGFILTER-NED algorithm.

Fig. 15. SEGFILTER-RSJOIN algorithm.

6.2. Supporting R-S Join

To support R-S join on two sets R and S, we first sort the strings in the two sets
respectively. Then we index the segments of strings in a set, for instance, R. Next we
visit strings of S in order. For each string s ∈ S with length |s|, we use the inverted
indices of strings in R with lengths between [|s|−τ, |s|+τ] to find similar pairs. We can
remove the indices for strings with lengths smaller than |s| − τ . Finally we verify the
candidates. Notice that in Section 4, for two strings r and s, we only consider the case
that |r| ≥ |s| where we partition r to segments and select substrings from s. Actually,
Theorem 4.4 still holds for |r| < |s|.

The pseudocode of SEGFILTER-RSJOIN algorithm is illustrated in Figure 15. It first
sorts the strings in the two sets (line 2), and then builds indices for strings in R
(lines 3–4). Next it visits strings in S in sorted order. For each string s, it selects
substrings of s by calling algorithm SUBSTRINGSELECTION (line 7) and finds candidates
using the indices. Finally it verifies the candidates by calling algorithm VERIFICATION

(line 9). Here algorithms SUBSTRINGSELECTION and VERIFICATION are the same as the
algorithms in Figure 3.

7. EXPERIMENTAL STUDY

We have implemented our method and conducted an extensive set of experimental
studies. We used six real-world datasets. To evaluate self-join, we used three datasets,

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:23

Table III. Datasets

Datasets Cardinality Avg Len Max Len Min Len
DBLP Author 612,781 14.83 46 6
Query Log 1 464,189 44.75 522 30
DBLP Author+Title 863,073 105.82 886 21
Citeseer Author 1,000,000 20.35 54 5
Query Log 2 1,000,000 39.76 501 29
Citeseer Author+Title 1,000,000 107.45 808 22

 0

 20000

 40000

 60000

 80000

 0 5 10 15 20 25 30 35 40 45

N
um

be
rs

 o
f s

tri
ng

s

String Lengths

(a) DBLP Author(AvgLen=15)

 0

 10000

 20000

 30000

 40000

 0 100 200 300 400 500

N
um

be
rs

 o
f s

tri
ng

s

String Lengths

(b) Query Log 1(AvgLen=45)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800

N
um

be
rs

 o
f s

tri
ng

s

String Lengths

(c) DBLP Author+Title(AvgLen=105)

 0

 20000

 40000

 60000

 80000

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
rs

 o
f s

tri
ng

s

String Lengths

(d) CITESEERX Author(AvgLen=20)

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500

N
um

be
rs

 o
f s

tri
ng

s

String Lengths

(e) Query Log 2(AvgLen=40)

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800

N
um

be
rs

 o
f s

tri
ng

s

String Lengths

(f) CITESEERX Author+Title (Av-
gLen=107)

Fig. 16. String length distribution.

DBLP Author,3 DBLP Author+Title, and AOL Query Log 1.4 DBLP Author is a dataset
with short strings, DBLP Author+Title is a dataset with long strings, and the Query
Log 1 is a set of query logs. Note that the DBLP Author+Title dataset is the same
as that used in ED-JOIN and the DBLP Author dataset is the same as that used in
TRIE-JOIN. To evaluate R-S join, we used other three datasets: CITESEERX Author,5
CITESEERX Author+Title, and AOL Query Log 2. AOL Query Log 2 is another set
of query logs that is different from AOL Query Log 1. We joined DBLP Author and
CITESEERX author, DBLP Author+Title and CITESEERX Author+Title, and AOL
Query Log 1 and AOL Query Log 2. Table III shows the detailed information of the
datasets and Figure 16 shows the string length distributions of different datasets.

We compared our algorithms with state-of-the-art methods, ED-JOIN [Xiao et al.
2008a], QCHUNK-JOIN [Qin et al. 2011] and TRIE-JOIN [Wang et al. 2010]. As ED-JOIN,
QCHUNK-JOIN and TRIE-JOIN outperform other methods, for instance, Part-Enum [Arasu
et al. 2006] and All-Pairs-Ed [Bayardo et al. 2007] (also experimentally shown in [Xiao
et al. 2008a; Wang et al. 2010; Qin et al. 2011]), in the article we only compared our

3http://www.informatik.uni-trier.de/∼ley/db.
4http://www.gregsadetsky.com/aol-data/.
5http://asterix.ics.uci.edu/fuzzyjoin/.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:24 G. Li et al.

 1e+006

 1e+007

 1e+008

 1e+009

 1 2 3 4

of

 s
el

ec
te

d
su

bs
tri

ng
s

Threshold τ

Length
Shift

Positon
Multi-Match

(a) DBLP Author(AvgLen=15)

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 4 5 6 7 8

of

 s
el

ec
te

d
su

bs
tri

ng
s

Threshold τ

Length
Shift

Positon
Multi-Match

(b) Query Log 1(AvgLen=45)

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 5 6 7 8 9 10

of

 s
el

ec
te

d
su

bs
tri

ng
s

Threshold τ

Length
Shift

Positon
Multi-Match

(c) DBLP Author+Title(AvgLen=105)

Fig. 17. Numbers of selected substrings.

method with them. We downloaded their binary codes from their homepages, ED-JOIN,6
QCHUNK-JOIN7 and TRIE-JOIN.8

All the algorithms were implemented in C++ and compiled using GCC 4.2.4 with -O3
flag. All the experiments were run on a Ubuntu machine with an Intel Core 2 Quad
X5450 3.00GHz processor and 4 GB memory.

7.1. Evaluating Substring Selection

In this section, we evaluate substring selection techniques. We implemented the fol-
lowing four methods. (1) The length-based selection method, denoted by Length, which
selects the substrings with the same lengths as the segments. (2) The shift-based
method, denoted by Shift, which selects the substring by shifting [−τ, τ] positions as
discussed in Section 4. (3) Our position-aware selection method, denoted by Position.
(4) Our multimatch-aware selection method, denoted by Multi-match. We first compared
the total number of selected substrings. Figure 17 shows the results.

We can see that the Length-based method selected large numbers of substrings. The
number of selected substring of the Position-based method was about a tenth to a
fourth of that of the Length-based method and a half of the Shift-based method. The
Multi-match-based method further reduced the number of selected substrings to about
a half of that of the Position-based method. For example, on DBLP Author dataset, for
τ = 1, the Length-based method selected 19 million substrings, the Shift-based method
selected 5.5 million substrings, the Position-based method reduced the number to 3.7
million, and the Multimatch-based method further deceased the number to 2.4 million.
Based on our analysis in Section 4, for strings with l, the length-based method selected
(τ + 1)(|s|+ 1) − l substrings, the shift-based method selected (τ + 1)(2τ + 1) substrings,
the position-based method selected (τ + 1)2 substrings, and the multimatch-aware
method selected � τ 2−�2

2 	 + τ + 1 substrings. If |s| = l = 15 and τ = 1, the number of
selected substrings of the four methods are respectively 17, 6, 4, and 2. Obviously the
experimental results consisted with our theoretical analysis.

We also compared the elapsed time to generate substrings. Figure 18 shows the
results. We see that the Multimatch-based method outperformed the Position-based
method, which in turn was better than the Shift-based method and the Length-based
method. This is because the elapsed time depended on the number of selected substrings
and the Multimatch-based selected the smallest number of substrings.

6http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html.
7http://www.cse.unsw.edu.au/∼jqin/.
8http://dbgroup.cs.tsinghua.edu.cn/wangjn/.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:25

 0.1

 1

 10

 100

 1 2 3 4

S
el

ec
tio

n
Ti

m
e

(s
)

Threshold τ

Length
Shift

Positon
Multi-Match

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 4 5 6 7 8

S
el

ec
tio

n
Ti

m
e

(s
)

Threshold τ

Length
Shift

Positon
Multi-Match

(b) Query Log 1(AvgLen=45)

 1

 10

 100

 1000

 10000

 5 6 7 8 9 10

S
el

ec
tio

n
Ti

m
e

(s
)

Threshold τ

Length
Shift

Positon
Multi-Match

(c) DBLP Author+Title(AvgLen=105)

Fig. 18. Elapsed time for generating substrings.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

2τ+1
τ+1

Extension
Iterative

(a) DBLP Author(AvgLen=15)

 10

 100

 1000

 10000

 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

2τ+1
τ+1

Extension
Iterative

(b) Query Log 1(AvgLen=45)

 10

 100

 1000

 10000

 5 6 7 8 9 10
E

la
ps

ed
 T

im
e

(s
)

Threshold τ

2τ+1
τ+1

Extension
Iterative

(c) DBLP Author+Title(AvgLen=105)

Fig. 19. Elapsed time for verification.

7.2. Evaluating Verification

In this section, we evaluate our verification techniques. We implemented four methods.
(1) The naive method, denoted by 2τ + 1, which computed 2τ + 1 values in each row
and used the naive early-termination technique (if all values in a row are larger than
τ , we terminate). (2) Our length-aware method, denoted by τ +1, which computed τ +1
values in each row and used the expected edit distance to do early termination. (3)
Our extension-based method, denoted by Extension, which used the extension-based
framework. It also computed τ +1 rows and used the expected edit distance with tighter
threshold to do early termination. (4) Our iterative-based method, denoted by Iterative,
which used the iterative-based verification algorithm. Figure 19 shows the results.

We see that the naive method had the worst performance, as it needed to compute
many unnecessary values in the matrix. Our length-aware method was 2–5 times faster
than the naive method. This is because our length-aware method can decrease the
complexity from 2τ +1 to τ +1 and used expected edit distances to do early termination.
The extension-based method achieved higher performance and was 2–4 times faster
than the length-aware method. The reason is that the extension-based method can
avoid the duplicated computations on the common segments and it also used a tighter
bound to verify the left parts and the right parts. The Iterative method achieved the
best performance, as it can prune dissimilar candidate pairs quickly and avoid many
unnecessary computations. For example, on the Query Log 1 dataset, for τ = 8 the
naive method took 3, 500 seconds, the length-aware method decreased the time to
1500 seconds, the extension-based method reduced it to 600 seconds, and the Iterative
method further improved the time to about 250 seconds. On the DBLP Author+Title
dataset, for τ = 10, the elapsed time of the four methods were respectively 1800
seconds, 700 seconds, 475 seconds, and 100 seconds.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:26 G. Li et al.

 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012

 1 2 3 4

C
an

di
da

te
 S

iz
e

Threshold τ

EdJoin
Qchunk
TrieJoin

SegFilter

(a) DBLP Author(AvgLen=15)

 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011

 1 2 3 4 5 6 7 8

C
an

di
da

te
 S

iz
e

Threshold τ

EdJoin
Qchunk
TrieJoin

SegFilter

(b) Query Log 1(AvgLen=45)

 10000
 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012

 1 2 3 4 5 6 7 8 9 10

C
an

di
da

te
 S

iz
e

Threshold τ

EdJoin
Qchunk
TrieJoin

SegFilter

(c) DBLP Author+Title(AvgLen=105)

Fig. 20. Comparison of candidate sizes with state-of-the-art methods.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

E
la

ps
ed

 T
im

e(
s)

Threshold τ

Pre

Filter

Verify

EdJoin
Qchunk
TrieJoin

SegFilter

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e(
s)

Threshold τ

Pre

Filter
Verify

EdJoin
Qchunk
TrieJoin

SegFilter

(b) Query Log 1(AvgLen=45)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e(
s)

Threshold τ

Pre

Filter
Verify

EdJoin
Qchunk
TrieJoin

SegFilter

(c) DBLP Author+Title(AvgLen=105)

Fig. 21. Comparison of running time of preprocessing, filtering, verification with state-of-the-art methods.

7.3. Comparison with Existing Methods

In this section, we compare our method with state-of-the-art methods ED-JOIN [Xiao
et al. 2008a], QCHUNK-JOIN [Qin et al. 2011] and TRIE-JOIN [Wang et al. 2010]. As TRIE-
JOIN had multiple algorithms, we reported the best results. For ED-JOIN and QCHUNK-
JOIN, we tuned its parameter q and reported the best results. Notice that to avoid
involving false negatives, it requires to select a small q for a large edit-distance thresh-
old. As TRIE-JOIN was efficient for short strings, we downloaded the same dataset from
TRIE-JOIN homepage (i.e., Author with short strings) and used it to compare with TRIE-
JOIN. As ED-JOIN was efficient for long strings, we downloaded the same dataset from
ED-JOIN homepage (i.e., Author+Title with long strings) and used it to compare with
ED-JOIN.

Candidate Sizes. We first compare the candidate sizes of various methods. Figure 20
shows the results. Notice that TRIE-JOIN directly computed the answers and thus it
involved the smallest number of candidates. SEGFILTER generated smaller numbers of
candidates than ED-JOIN and QCHUNK-JOIN. This is attributed to our effective substring
selection techniques that can prune large numbers of dissimilar pairs. ED-JOIN and
QCHUNK-JOIN pruned dissimilar pairs based on the gram-based count filter. SEGFILTER

utilized the shared segments to prune dissimilar pairs. Since we can minimize the num-
ber of selected substrings and achieve high pruning power, SEGFILTER generates smaller
numbers of candidates. For example, on the DBLP Author+Title dataset, SEGFILTER had
1 billion candidates while ED-JOIN and QCHUNK-JOIN had about 10 billion candidates.

Running Time of Different Steps. ED-JOIN and QCHUNK-JOIN includes three steps:
preprocessing step, filter step and verification step. The preprocessing step includes
tokenizing records into q-grams, generating binary data, and sorting the binary data.
SEGFILTER contains two steps: filter step and verification step. TRIE-JOIN directly com-
putes the answers. We compared the running time of each step and Figure 21 shows

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:27

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

EdJoin
TrieJoin
Qchunk

SegFilter

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)
Threshold τ

EdJoin
TrieJoin
Qchunk

SegFilter

(b) Query Log 1(AvgLen=45)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

EdJoin
TrieJoin
Qchunk

SegFilter

(c) DBLP Author+Title(AvgLen=105)

Fig. 22. Comparison of the overall time with state-of-the-art methods.

the results (In the figure, we use different colors to distinguish different steps). For dif-
ferent thresholds, the preprocessing time in ED-JOIN and QCHUNK-JOIN was stable since
it only depended on the dataset size. With the increase of the thresholds, the filtering
time and the verification time also increased since large thresholds will lead to more
results. SEGFILTER involved less filtering time than ED-JOIN and QCHUNK-JOIN, because
we only needed to consider smaller numbers of segments and selected substrings while
they required to enumerate larger numbers of grams/chunks. SEGFILTER also involved
less verification time since it has smaller numbers of candidates and used effective
extension-based and iterative-based techniques. Notice that our extension-based and
iterative-based verification methods are designed for SEGFILTER and are not applicable
for ED-JOIN and QCHUNK-JOIN.

Overall Join Time. We compare the overall time, including preprocessing time, fil-
tering time and verification time. Figure 22 shows the results. On the DBLP Author
dataset with short strings, TRIE-JOIN outperformed ED-JOIN and QCHUNK-JOIN, and our
method was much better than them, especially for τ ≥ 2. The main reason is as follows.
ED-JOIN and QCHUNK-JOIN must use a smaller q for a larger threshold. In this way ED-
JOIN and QCHUNK-JOIN will involve large numbers of candidate pairs, since a smaller q
has rather lower pruning power [Xiao et al. 2008a]. TRIE-JOIN used the prefix filtering
to find similar pairs using a trie structure. If a small number of strings shared prefixes,
TRIE-JOIN had low pruning power and was expensive to traverse the trie structure.
Instead our framework utilized segments to prune large numbers of dissimilar pairs.
The segments were selected across the strings and not restricted to prefix filtering. For
instance, for τ = 4, TRIE-JOIN took 2500 seconds. SEGFILTER improved it to 700 seconds.
ED-JOIN and QCHUNK-JOIN were rather slow and even larger than 10,000 seconds.

On the DBLP Author+Title dataset with long strings, our method significantly out-
performed ED-JOIN, QCHUNK-JOIN and TRIE-JOIN, even in 2–3 orders of magnitude. This
is because TRIE-JOIN was rather expensive to traverse the trie structures with long
strings, especially for large thresholds. ED-JOIN needed to use a mismatch technique
and QCHUNK-JOIN needed to use a error estimation-based filtering in verification phase,
which were inefficient while our verification method was more efficient than exist-
ing ones. For instance, for τ = 8, TRIE-JOIN needed 15,000 seconds, QCHUNK-JOIN took
9500 seconds, ED-JOIN decreased it to 5000 seconds, and SEGFILTER improved the time
to 70 seconds.

Index Size. We compared index sizes on three datasets, as shown in Table IV. We can
observe that existing methods involve larger indices than our method. For example, on
the DBLP Author+Title dataset, ED-JOIN had 335 MB index, TRIE-JOIN used 90 MB,
and our method only took 2.1 MB. There are two main reasons. Firstly for each string
with length l, ED-JOIN generated l − q + 1 grams where q is the gram length, and

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:28 G. Li et al.

Table IV. Index Sizes (MB)

Data Sets Data ED-JOIN TRIE-JOIN QCHUNK-JOIN SEGFILTER

Sizes q = 4 q = 4 τ = 2 τ = 4 τ = 6 τ = 8

DBLP Author 8.7 25.34 16.32 8.06 1.15 1.92 3.49 4.58
Query Log 1 20 72.17 69.65 18.69 2.98 4.96 6.94 8.93
DBLP Author+Title 88 335.24 90.17 23.21 1.26 2.1 2.94 3.78

 0

 200

 400

 600

 800

 1 2 3 4 5 6

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=4
τ=3
τ=2
τ=1

(a) DBLP Author(AvgLen=15)

 0

 100

 200

 300

 400

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=8
τ=7
τ=6
τ=5
τ=4

(b) Query Log 1(AvgLen=45)

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=10
τ=9
τ=8
τ=7
τ=6
τ=5

(c) DBLP Author+Title(AvgLen=105)

Fig. 23. Scalability (Edit Distance).

our method only generated τ + 1 segments. Secondly for a string with length l, we
only maintained the indices for strings with lengths between l − τ and l, and ED-
JOIN kept indices for all strings. TRIE-JOIN needed to use a trie structure to maintain
strings, which had overhead to store the strings (e.g., pointers to children and indices
for searching children with a given character).

7.4. Scalability

In this section, we evaluate the scalability of our method. We varied the number of
strings in the dataset and tested the elapsed time.

7.4.1. Evaluating Edit Distance. Figure 23 shows the results using edit-distance function.
We can see that our method achieved nearly linear scalability as the number of strings
increases. For example, for τ = 4, on the DBLP Author dataset, the elapsed time for
400,000 strings, 500,000 strings, and 600,000 strings were respectively 360 seconds,
530 seconds, and 700 seconds. This is attributed to our effective segment filter.

7.4.2. Evaluating Normalized Edit Distance. To support normalized edit distance, TRIE-JOIN

and ED-JOIN needed to use the maximal length of strings to deduce the edit-distance
thresholds. If the length difference between strings is large, these two methods are
rather expensive and lead to low performance.9 We also compared with these two
state-of-the-art methods. However they are rather inefficient and cannot report the
results in 24 hours. Thus we do not show the results in our experiments. Figure 24
shows the results of our SEGFILTER-NED algorithm. We can see that our method scales
very well for the normalized edit distance and it achieves as high efficiency as on the
edit-distance function.

7.4.3. Evaluating R-S Join. We evaluate our similarity join algorithm to support R-S join.
(See Figure 25). We compared with TRIE-JOIN. As ED-JOIN and QCHUNK-JOIN focused on
self-join and the authors did not implement the R-S join algorithms, we did not show
their results. We increased the number of strings in CITESEERX Author, Query Log

9Notice that we cannot extend ED-JOIN to support normalized edit distance efficiently. This is because they
did not group the strings based on lengths. They used prefix filter and thus we cannot use our techniques to
deduce tighter bounds.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:29

 1

 10

 100

 1000

 1 2 3 4 5 6

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

δ=0.80
δ=0.85
δ=0.90
δ=0.95

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)
Numbers of Strings (*100, 000)

δ=0.80
δ=0.85
δ=0.90
δ=0.95

(b) Query Log 1(AvgLen=45)

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

δ=0.80
δ=0.85
δ=0.90
δ=0.95

(c) DBLP Author+Title(AvgLen=105)

Fig. 24. Scalability (Normalized Edit Distance).

 0

 100

 200

 300

 400

 500

 2 4 6 8 10

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=4
τ=3
τ=2
τ=1

(a) CITESEERX Author(AvgLen=20)

 0

 800

 1600

 2400

 3200

 4000

 2 4 6 8 10

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=8
τ=7
τ=6
τ=5
τ=4

(b) Query Log 2 (AvgLen=40)

 0

 100

 200

 300

 400

 500

 2 4 6 8 10

E
la

ps
ed

 T
im

e
(s

)
Numbers of Strings (*100, 000)

τ=10
τ=9
τ=8
τ=7
τ=6
τ=5

(c) CITESEERX Au-
thor+Title(AvgLen=107)

Fig. 25. R-S Join.

 1

 10

 100

 1000

 10000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

TrieJoin
SegFilter

(a) CITESEERX Author(AvgLen=20)

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

TrieJoin
SegFilter

(b) Query Log 2 (AvgLen=40)

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

TrieJoin
SegFilter

(c) CITESEERX Au-
thor+Title(AvgLen=107)

Fig. 26. Comparison of state-of-the-art R-S Join algorithms.

2, and CITESEERX Author+Title by 200,000 each time and respectively joined them
with DBLP Author, Query Log 1, and DBLP Author+Title. We evaluated the elapsed
time. Figure 26 shows the results. We can see that our method still scales well for
R-S join and outperformed TRIE-JOIN. For example, on the CITESEERX Author+Title
dataset. For τ = 8, the elapsed time for 0.2 million strings was about 33 seconds, while
for 1 million strings, the time was about 170 seconds. This is because our filtering
algorithms and verification algorithms can improve the performance.

8. RELATED WORK

String Similarity Join. There have been many studies on string similarity joins
[Gravano et al. 2001; Arasu et al. 2006; Bayardo et al. 2007; Chaudhuri et al. 2006;
Sarawagi and Kirpal 2004; Xiao et al. 2008a; Xiao et al. 2009; Qin et al. 2011; Vernica
et al. 2010]. The approaches most related to ours are TRIE-JOIN [Wang et al. 2010],

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:30 G. Li et al.

All-Pairs-Ed [Bayardo et al. 2007], ED-JOIN [Xiao et al. 2008a], QCHUNK-JOIN [Qin et al.
2011] and Part-Enum [Arasu et al. 2006]. All-Pairs-Ed is a q-gram-based method. It
first generates q-grams for each string and then selects the first qτ + 1 grams as a
gram prefix based on a pre-defined order. It prunes the string pairs with no common
grams and verifies the survived string pairs. ED-JOIN improves All-Pairs-Ed by using
location-based and content-based mismatch filters. It has been shown that ED-JOIN

outperforms All-Pairs-Ed [Bayardo et al. 2007]. QCHUNK-JOIN is a variant of All-Pairs-
Ed that utilizes an asymmetric signature scheme to index the q-gram and search the
q-chunks, and adopts an error estimation-based filtering. Although our techniques
utilize length difference to do pruning, they are different from the error estimation-
based filtering as follows. First, our position-aware substring selection technique is in
the filtering step that can prune large numbers of dissimilar string pairs. However the
error estimation-based filtering method is in the verification step, which only prunes
the candidate pairs one by one. Second, our length-aware verification technique can
improve the verification time for both similar string pairs and dissimilar strings pairs
while the error estimation-based filtering can only prune dissimilar pairs. Third, our
early termination technique can get much better estimation on edit distance than
the error estimation-based method. For example, consider a matrix entry M(i, j) for
string r and string s. They use two estimated values |i − j| and |(|r| − i|) − (|s| − j)|
to estimate the edit distance while we can get the accurate value of M(i, j) and only
use |(|r| − i|) − (|s| − j)| to estimate the edit distance. Fourth, our extension-based
verification technique only considers a matching segment while the error estimation-
based method requires to consider all matching grams. Thus the error estimation-based
method considers many more candidate pairs than our method. Also our extension-
based verification technique uses much tighter bounds to accelerate the verification
step. TRIE-JOIN uses a trie structure to do similarity joins based on prefix filtering.
Part-Enum proposed an effective signature scheme called Part-Enum to do similar
joins for hamming distance. It has been proved that All-Pairs-Ed and Part-Enum are
worse than ED-JOIN, QCHUNK-JOIN and TRIE-JOIN [Wang et al. 2010; Feng et al. 2012].
Thus we only compared with state-of-the-art methods ED-JOIN and TRIE-JOIN.

Gravano et al. [2001] proposed gram-based methods and used SQL statements for
similarity joins inside relational databases. Sarawagi and Kirpal [2004] proposed in-
verted index-based algorithms to solve similarity-join problem. Chaudhuri et al. [2006]
proposed a primitive operator for effective similarity joins. Arasu et al. [2006] devel-
oped a signature scheme that can be used as a filter for effective similarity joins. Xiao
et al. [2008b] proposed ppjoin to improve all-pair algorithm by introducing positional
filtering and suffix filtering. Xiao et al. [2009] studied top-k similarity joins, which can
directly find the top-k similar string pairs without a given threshold.

In addition, Jacox and Samet [2008] studied the metric-space similarity join. As
this method is not as efficient as ED-JOIN and TRIE-JOIN [Wang et al. 2010], we did not
compare with it in the article. Chaudhuri et al. [2006] proposed the prefix-filtering
signature scheme for effective similarity join. Recently, Wang et al. [2011] devised
a new similarity function by tolerating token errors in token-based similarity and
developed effective algorithms to support similarity join on such functions. Jestes et al.
[2010] studied the problem of efficient string joins in probabilistic string databases, by
using lower bound filters based on probabilistic q-grams to effectively prune string
pairs. Silva et al. [2010] focused on similarity joins as first-class database operators.
They proposed several similarity join operators to support similarity joins in databases.
Recently Vernica et al. [2010] studied how to support similarity joins in map-reduce
environments.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:31

Difference from Our Conference Version [Li et al. 2011b]. The significant additions in
this extended manuscript are summarized as follows.

—We proposed new optimization techniques to improve our verification method. Sec-
tion 5.3 was newly added. We also conducted a new experiment to evaluate our new
optimization techniques and show their superiority on real datasets. Figures 19–22
were newly added based on our new method.

—We discussed how to support normalized edit distance and how to support R-S join.
Section 6 was newly added. We also conducted experiments to evaluate our new
techniques and Sections 7.4.2 and 7.4.3 were newly added.

—We formally proved all the theorem and lemmas and the appendix was newly added.
We refined the article to make it easy to follow and added some new references.

Approximate String Search. The other related studies are approximate string search-
ing [Chaudhuri et al. 2003; Li et al. 2008; Hadjieleftheriou et al. 2008a; Li et al. 2011c;
Hadjieleftheriou et al. 2009; Zhang et al. 2010; Behm et al. 2011; Behm et al. 2009;
Yang et al. 2008; Wang et al. 2012; Li et al. 2013; Deng et al. 2013], which given a
query string and a set of strings, finds all similar strings of the query string in the
string set. Hadjieleftheriou and Li [2009] gave a tutorial to the approximate string
searching problem. Existing methods usually adopted a gram based indexing structure
to do efficient filtering. They first generated grams of each string and built gram based
inverted lists. Then they merged the inverted lists to find answers. Navarro [2001]
studied the approximate string matching problem, which given a query string and a
text string, finds all substrings of the text string that are similar to the query string.
Notice that these two problems are different from our similarity-join problem, which
given two sets of strings, finds all similar string pairs.

Approximate Entity Extraction. There are some studied on approximate entity ex-
traction [Agrawal et al. 2008; Chakrabarti et al. 2008; Wang et al. 2009; Li et al. 2011a;
Sun and Naughton 2011; Deng et al. 2012], which, given a dictionary of entities and
a document, finds all substrings of the document that are similar to some entities.
Existing methods adopted inverted indices and used different filters (e.g., length filter,
count filter, position filter, and token order filter) to facilitate the extraction.

Estimation. There are some studies on selectivity estimation for approximate string
queries and similarity joins [Hadjieleftheriou et al. 2008; Lee et al. 2007, 2009, 2011;
Jin et al. 2008].

9. CONCLUSION

In this article, we have studied the problem of string similarity joins with edit-distance
constraints. We proposed a new filter, the segment filter, to facilitate the similarity
join. We devised a partition scheme to partition a string into several segments. We
sorted and visited strings in order. We built inverted indices on top of the segments
of the visited strings. For the current string, we selected some of its substrings and
utilized the selected substrings to find similar string pairs using the inverted indices
and then inserted segments of the current string into the inverted indices. We devel-
oped a position-aware method and a multimatch-aware method to select substrings.
We proved that the multimatch-aware selection method can minimize the number of
selected substrings. We also developed efficient techniques to verify candidate pairs. We
proposed a length-aware method, an extension-based method, and an iterative-based
method to further improve the verification performance. We extended our techniques
to support normalized edit distance and R-S join. Experiments show that our method
outperforms state-of-the-art studies on both short strings and long strings.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

9:32 G. Li et al.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

AGRAWAL, S., CHAKRABARTI, K., CHAUDHURI, S., AND GANTI, V. 2008. Scalable ad-hoc entity extraction from text
collections. Proc. VLDB Endow. 1, 1, 945–957.

ARASU, A., GANTI, V., AND KAUSHIK, R. 2006. Efficient exact set-similarity joins. In Proceedings of the Interna-
tional Conference on Very Large Databases. 918–929.

BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In Proceedings of the
International World Wide Web Conference. 131–140.

BEHM, A., JI, S., LI, C., AND LU, J. 2009. Space-constrained gram-based indexing for efficient approximate
string search. In Proceedings of the International Conference on Data Engineering. 604–615.

BEHM, A., LI, C., AND CAREY, M. J. 2011. Answering approximate string queries on large data sets using
external memory. In Proceedings of the International Conference on Data Engineering. 888–899.

CHAKRABARTI, K., CHAUDHURI, S., GANTI, V., AND XIN, D. 2008. An efficient filter for approximate membership
checking. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 805–
818.

CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for online
data cleaning. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
313–324.

CHAUDHURI, S., GANTI, V., AND KAUSHIK, R. 2006. A primitive operator for similarity joins in data cleaning. In
Proceedings of the International Conference on Data Engineering. 5–16.

DENG, D., LI, G., AND FENG, J. 2012. An efficient trie-based method for approximate entity extraction with
edit-distance constraints. In Proceedings of the International Conference on Data Engineering. 141–152.

DENG, D., LI, G., FENG, J., AND LI, W.-S. 2013. Top-k string similarity search with edit-distance constraints. In
Proceedings of the International Conference on Data Engineering.

FENG, J., WANG, J., AND LI, G. 2012. Trie-join: a trie-based method for efficient string similarity joins. VLDB
J. 21, 4, 437–461.

GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2001. Approx-
imate string joins in a database (almost) for free. In Proceedings of the International Conference on Very
Large Databases. 491–500.

HADJIELEFTHERIOU, M., CHANDEL, A., KOUDAS, N., AND SRIVASTAVA, D. 2008a. Fast indexes and algorithms for
set similarity selection queries. In Proceedings of the International Conference on Data Engineering.
267–276.

HADJIELEFTHERIOU, M., KOUDAS, N., AND SRIVASTAVA, D. 2009. Incremental maintenance of length normalized
indexes for approximate string matching. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 429–440.

HADJIELEFTHERIOU, M. AND LI, C. 2009. Efficient approximate search on string collections. Proc. VLDB Endow.
2, 2, 1660–1661.

HADJIELEFTHERIOU, M., YU, X., KOUDAS, N., AND SRIVASTAVA, D. 2008b. Hashed samples: selectivity estimators
for set similarity selection queries. Proc. VLDB Endow. 1, 1, 201–212.

JACOX, E. H. AND SAMET, H. 2008. Metric space similarity joins. ACM Trans. Datab. Syst. 33, 2.
JESTES, J., LI, F., YAN, Z., AND YI, K. 2010. Probabilistic string similarity joins. In Proceedings of the ACM

SIGMOD International Conference on Management of Data. 327–338.
JIN, L., LI, C., AND VERNICA, R. 2008. Sepia: estimating selectivities of approximate string predicates in large

databases. VLDB J. 17, 5, 1213–1229.
LEE, H., NG, R. T., AND SHIM, K. 2007. Extending q-grams to estimate selectivity of string matching with low

edit distance. In Proceedings of the International Conference on Very Large Databases. 195–206.
LEE, H., NG, R. T., AND SHIM, K. 2009. Power-law based estimation of set similarity join size. Proc. VLDB

Endow. 2, 1, 658–669.
LEE, H., NG, R. T., AND SHIM, K. 2011. Similarity join size estimation using locality sensitive hashing. Proc.

VLDB Endow. 4, 6, 338–349.
LI, C., LU, J., AND LU, Y. 2008. Efficient merging and filtering algorithms for approximate string searches. In

Proceedings of the International Conference on Data Engineering. 257–266.
LI, G., DENG, D., AND FENG, J. 2011a. Faerie: efficient filtering algorithms for approximate dictionary-based

entity extraction. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
529–540.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints 9:33

LI, G., DENG, D., WANG, J., AND FENG, J. 2011b. Pass-join: A partition-based method for similarity joins. Proc.
VLDB Endow. 5, 3, 253–264.

LI, G., FENG, J., AND LI, C. 2013. Supporting search-as-you-type using sql in databases. IEEE Trans. Knowl.
Data Eng. 25, 2, 461–475.

LI, G., JI, S., LI, C., AND FENG, J. 2011c. Efficient fuzzy full-text type-ahead search. VLDB J. 20, 4, 617–640.
NAVARRO, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33, 1, 31–88.
QIN, J., WANG, W., LU, Y., XIAO, C., AND LIN, X. 2011. Efficient exact edit similarity query processing with

the asymmetric signature scheme. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1033–1044.

SARAWAGI, S. AND KIRPAL, A. 2004. Efficient set joins on similarity predicates. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 743–754.

SILVA, Y. N., AREF, W. G., AND ALI, M. H. 2010. The similarity join database operator. In Proceedings of the
International Conference on Data Engineering. 892–903.

SUN, C. AND NAUGHTON, J. F. 2011. The token distribution filter for approximate string membership. In
Proceedings of the International Workshop on Web and Databases.

UKKONEN, E. 1985. Algorithms for approximate string matching. Inf. Control 64, 1-3, 100–118.
VERNICA, R., CAREY, M. J., AND LI, C. 2010. Efficient parallel set-similarity joins using mapreduce. In Proceed-

ings of the ACM SIGMOD International Conference on Management of Data. 495–506.
WANG, J., LI, G., AND FENG, J. 2010. Trie-join: Efficient trie-based string similarity joins with edit-distance

constraints. Proc. VLDB Endow. 3, 1, 1219–1230.
WANG, J., LI, G., AND FENG, J. 2011. Fast-join: An efficient method for fuzzy token matching based string

similarity join. In Proceedings of the International Conference on Data Engineering. 458–469.
WANG, J., LI, G., AND FENG, J. 2012. Can we beat the prefix filtering?: an adaptive framework for similarity

join and search. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
85–96.

WANG, W., XIAO, C., LIN, X., AND ZHANG, C. 2009. Efficient approximate entity extraction with edit distance
constraints. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
759–770.

XIAO, C., WANG, W., AND LIN, X. 2008a. Ed-join: an efficient algorithm for similarity joins with edit distance
constraints. Proc. VLDB Endow. 1, 1, 933–944.

XIAO, C., WANG, W., LIN, X., AND SHANG, H. 2009. Top-k set similarity joins. In Proceedings of the International
Conference on Data Engineering. 916–927.

XIAO, C., WANG, W., LIN, X., AND YU, J. X. 2008b. Efficient similarity joins for near duplicate detection. In
Proceedings of the International World Wide Web Conference. 131–140.

YANG, X., WANG, B., AND LI, C. 2008. Cost-based variable-length-gram selection for string collections to
support approximate queries efficiently. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 353–364.

ZHANG, Z., HADJIELEFTHERIOU, M., OOI, B. C., AND SRIVASTAVA, D. 2010. Bed-tree: An all-purpose index structure
for string similarity search based on edit distance. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 915–926.

Received June 2012; revised November 2012; accepted February 2013

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 9, Publication date: June 2013.

