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Modern DBMS Landscape
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Modern DBMSs are designed for data that 
humans can understand
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Relational/NewSQL NoSQL/Specialty

Business
Operations

Medical
Records

Financial
Timeseries

Geospatial 
Vectors/Rasters

Social
Networks



Embeddings: Building Blocks of the Future
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More and more applications rely on deep-learning 
embedding vectors that can only be 

understood by machines

Classification
Segmentation

Semantic 
Retrieval

Generation
Object 

Detection
Pattern

Recognition
Forecasting

Reinforcement 
LearningRecSys

Text Images GraphsSequences Audio Video

ResNet-50MiniLM-L6 MPNet-
Base CLIP VIT Whisper Multimodal 

Receiver



Store embeddings in a database and retrieve 
desired embeddings for whatever downstream task

Goal: Vector DBMS (VDBMS)

• Capabilities: similarity-based top-k/range retrieval, 
hybrid attribute-vector retrieval, multi-modal (multi-
vector) retrieval

• Characteristics: read/write latency/throughput, 
retrieval accuracy, scalability, availability, 
consistency, fault tolerance, privacy & security, 
elasticity
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VDBMS
Embedding 

Model



Example: LLMs + VDBMS
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VDBMS

Domain-
Specific 

Knowledge
Data

Streams
Past Queries 
/ Responses

RAG Retriever Semantic CacheLLM
Chatbot Service

Training 
Corpus

• Lack of domain-specific knowledge
• Data freshness
• Monetary/time cost



Some of Today’s Commercial Applications
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LLM Retrieval-
Augmented 

Generation (RAG)
https://arxiv.org/abs/2312.10997

E-Commerce & 
Recommendation 

Systems

News Classification Photo/Video Search 
& Deduplication

Threat
Detection

Writing
Assistant



Why is Building a VDBMS Hard?
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Figure: Will Koehrsen

Embeddings are...

VS

• Huge (1024 x float64) → costly to move, clog storage
• Hard to retrieve without ambiguity
• Hard to index
• Costly to compare
• Hard to index together

with attributes

similar
to



Part 1: VDBMS Techniques
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Data Manipuation
Similarity Search
Predicated Search
Multi-Vector Search

Table-Based
Tree-Based

Graph-Based

Cache / SIMD / GPU
Pre-Filter Post-Filter

Single-Stage

Multi-Index

Write Buffers

Index/
Data

WAL

Physical Storage (SSD / S3 / HDFS)

Query Processor Indexing Module

Query Optimizer / Executor

Storage Manager

Index/
Data

Index/
Data



Overview of Query Processing
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Query
Definition

Similarity Score
• Metrical Scores
• Non-Metrical Scores
Query Type
• Data Manipulation
• Range Search
• (c,k)-Search
• Variants
Query Interface
• API, SQL

Vector Operators
• In/Up/Del
• Object Embedding
• Vector Math
• Vector Projection
Search Operators
• Table Scan, Top-K
• Index-Based Operators
Search Algorithms
• Brute-Force Search
• Index-Based Search

Operators & 
Algorithms
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Data Manipuation
Similarity Search
Predicated Search
Multi-Vector Search

Query Processor

• High dimensionality
• Large data volume
• Low latency
• High accuracy



Query Definition: Similarity Scores

10

Non-Metrical Scores
• Inner Product, Cosine Similarity

Metrical Scores
• Metric axioms (id., positiv., sym., triangle ineq.)
• Hamming, Minkowski (Manhattan, Euclidean)

Similarity
Score
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• A function �:ℝ� ×ℝ� →ℝ indicating degree of similarity
• Similarity calculations are expensive

• Sq. Euclidean (D=1024 floats) takes 62us on my 
machine (Intel i5 @ 2.3 GHz), about the same as SSD 
random seek



Query Types: Data Manipulation
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Query 
Object

Embedding 
Model

VDBMS

Object

Vector

Query 
Vector

VDBMS

”Indirect” ”Direct”

• VDBMS interacts with embedding 
model via plugin/add-on/extension

• More user friendly

• User is responsible for 
producing embeddings

• More controllable (e.g. 
custom embedding 
model)



Query Types: Vector Search Queries
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Query Variants: predicated, batched, multi-vector
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Query Interfaces
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API-Based SQL-Based

√ Less impedance
Х Not portable

√ Potentially more portable
Х Impedance mismatch

Chroma API
count, add, get, peek, query, 
modify, update, upsert, 
delete

• CREATE TABLE items (... embedding vector(128));
• UPDATE items SET embedding = '[1,2,3]' WHERE id = 1;
• DELETE FROM items WHERE id = 1;
• SELECT * FROM items WHERE cat_id = 123 ORDER BY 

embedding <-> '[3,1,2]' LIMIT 5;
• CREATE INDEX ON items USING hnsw...;

pgvector



Operators & Algorithms
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GPU 
Memory

Main 
Memory

CPU / 
SIMD GPU

Hardware-Accelerated 
Search

Shard 1 Shard n...

Scatter
Gather

Distrib./Parallel Search

Vector 
Dataset

Sc
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Results 
Buffer

Bruteforce Search

Vector 
Index

Index 
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Index-Based 
Search
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Project a 
vector onto 
similary score 
with respect to 
query vector
• O(D) for D-

dimensions



Characteristics of Search Algorithms
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Performance
• Amount of visited vectors, similarity comparisons
Accuracy
• Recall: (true positives) / (true positives + false negatives)
• Recall@K

• Recall when k=K for k-NN, ANN (Li et al 2020)
• Proportion of queries where 1-NN is ranked in first k 

results (Jegou et al 2011)
• Proportion of true nearest-neighbors within the first 

K results of a k-NN or ANN query (K ≤ k) (RecSys)
• Precision: (true positives) / (true positives + false positives)



Challenges to Query Processing
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Query Semantics
(e.g. “Amazon”) Curse of Dimensionality

Score Selection Score Design
(e.g. Metric Learning)

Figure: Moll et al 2024

Figure: Cornell CS4780/CS5780 Lecture 2 
(Fall 2018)
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Overview of Storage & Indexing
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Table-Based
Tree-Based

Graph-Based
Multi-Index

Indexing Module

• High dimensionality
• Large data volume
• Low latency
• High accuracy
• Construction cost
• Storage cost
• Maintenance cost

Construction / 
Search / Maint.

Construction
• Randomization
• Learned Partitions
• Navigable Partitions
Search
• Bucket Scan
• Defeatist Search
• Best-First Search
Maintenance
• Rebalancing

Logical Structure
• Tables
• Trees
• Graphs
Physical Structure 
• Quantization
• Disk-Resident Indexes

Logical / Physical 
Storage



Table-Based Indexes
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Randomized 
Partitioning

Figure: Gama et al, 2013

• Construction: O(DN);
• Search: O(DNc), 0 < c < 1

Locality-Sensitive Hashing
• Random Hyperplanes (E2LSH)
• Random Bits (Faiss IndexLSH)
• Random Balls (FALCONN)

Centroid-Based (Quantization)
• Nearest Centroid (SPANN, Faiss IVF*)
• Nearest Centroid Product (Faiss PQ)

Learned Hashing

Learned 
Partitioning

Rely on 
probability 

amplification

Learn from 
data 

distribution

• Data Drift



Locality-Sensitive Hashing (LSH)

19Figure: Andoni & Indyk, 2008
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LSH Families
• “Hash Family”: For any r1 , r2 , x ∈ S, and q:

• if d(x, q) ≤ r1 , then collision prob. ≥ p1p1 
• if d(x, q) ≥ r2 , then collision prob. ≤ p2

• Typically storage ~ O(DN1+ρ), search ~ O(DNρ) where 
ρ = 

푙��(1/�1)
푙��(1/�2)

• Interesting families:
• Hamming (Faiss IndexLSH) ρ=1/c
• Random hyperplans (E2LSH) ρ=1/c
• Spherical LSH (FALCONN) ρ=1/(2c2-1)
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Large is Better
Small is Better

qr1

r2=cr1



Learning to Hash (L2H)
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Pairwise
Similarity -
Preserving

Deep 
Supervised 
Hashing, Liu et 
al 2016

Multiwise
Similarity-
Preserving

kNN Hashing, 
Ding et al 2015

Implicit
Similarity-
Preserving

Spherical Hashing, Heo 
et al 2012

Reconstruction
Error-Minimizing

Quantization,
Wang et al 2018

SIGMOD'24 Tutorial



Quantization
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Level 
Quantization

Learned 
Quantization

Uniform
(e.g. Faiss SQ)

Non-Uniform

k-Means
(e.g. Faiss IVFSQ)

Product
(e.g. Faiss PQ)

2 bits 4 bits 6 bits

16 bits

16
 b

its

2 bits

2 
bit

s

4-Dimensional Vectors
m=2, k=4

Dims [1, 2] Dims [3, 4]
E.g.

c1,1
c1,2
c1,3
c1,4

c2,1
c2,2
c2,3
c2,4

U1= U2=

U = U1 X U2



Product Quantization

• Preserves dimensions, e.g. R4 = R2 X R2

• Faster training
• 4 centroids per subspace = 16 total codes
• k-means O(DN*k): 2(2N*4) = 16N vs 4N*16 = 64N
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c1,1
c1,2
c1,3
c1,4

c2,1
c2,2
c2,3
c2,4

U1= U2=

U = U1 X U2
Diminising Returns

Figure: Jegou et al 2011
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“IVFADC” Asymmetric Distance Comp.

Vector Centering

Sample + PQ

16 bits
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Codebook
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Index Search

ADC Lookup Table

• Bucketing for fast search
• Lookup cache
• Sampling from residuals 

for faster training 24



Summary of Table-Based Indexes
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Randomization-Based Learning-Based

√ Theoretical guarantees
√ No rebalancing
Х High storage costs

E.g. Faiss IndexLSH, E2LSH, 
FALCONN

E.g. L2H, SQ, PQ, IVFADC

√ Low storage costs
√ Low latency
Х Susceptible to data drift
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Table-Based Indexes: Discussion
Advantages
√ Disk-friendly, E.g. LSH, SPANN
√ Readily supports in-distribution insert/update/delete
√ Easier to derive error bounds
Disadvantages
Х Hard to deal with queries near borders/corners

• How many buckets are adjacent to a corner 
in a D-dimensional space?
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1D 2D
3D



Tree-Based Indexes
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• Construction: O(DN log N)
• Search: O(D log N)

Axis-Aligned
• k-d Tree
• PKD-tree (Principal Components)
• FLANN

Randomized
• RPTree
• ANNOY

Recursive space partitioning Rely on probability 
amplification

Fixed
• Medians
• Overlapping

Balanced 
partitioning

Splitting PointsSplitting Planes

• Discernability



k-d Tree

28Figure: Silpa-Anan and Hartley, 2008

• O(DN1-1/D) search, O(DN log N) construction
• Tends toward O(DN) as D grows
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Principal Component Trees
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Construction

• More discernability by aligning to principal components
• No huge gains from multiple trees



Random Projection Trees
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Random 
Projections

Random 
Rotations

Random 
Splits

ANNOY (200 
random trees)

FLANN (Principal 
Components)
Ball Tree

7k
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1.00.5 0.75Recall
Source: ann-benchmarks.com

Figures: Dasgupta & Sinha 2013, Dasgupta & Freund 2008, Ram & Sinha 2019, McFee & Lanckriet 2011
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Summary of Tree-Based Indexes

SIGMOD'24 Tutorial 31

Axis-Aligned Randomized

√ High recall for low dims.
Х Inflexible 

E.g. k-d Tree, PKD-Tree, 
FLANN

E.g. ANNOY, RPTree

√ High recall for high dims.
Х High storage (forests)



Tree-Based Indexes: Discussion
Advantages
√ Disk-friendly in principle (store together by leaf)
√ O(D log N) defeatist search
√ Supports in-distribution insert/update/delete
Disadvantages
Х Hard to keep balanced following data drift
Х Low recall for queries near leaf borders / corners
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Graph-Based Indexes
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q
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Navigable Partitioning

k-Nearest Neighbor 
Graphs (kNNGs)
• KGraph
• EFANNA

Monotonic Search 
Networks (MSNs)
• FANNG
• NSG
• Vamana

Small-World Graphs
• NSW
• HNSW

Directly index the nearest 
neighbors

Support greedy depth-
first search

Exploit navigational 
small-world properties

• Construction: ranges from O(DN log N) to O(DN1+c)
• Search: O(D log N) or O(DNc)

Increasing Randomness



k-Nearest Neighbor Graphs (kNNGs)

34Figure: Paredes & Chavez, 2005

A.  Sampled point 
inside query ball → 
check its neighbors

B.  Point ball intersects 
query ball → check 
neighbors in the overlap

C.  Point ball outside query 
ball → prune near 
neighbors of p

• O(1) search for queries in dataset, else O(DN1+c) via 
sample and prune (see above)

Construction
• Exact: O(DN2)
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KGraph (NNDescent)
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Construction
• Initialize random kNNG
• For each node, change any 2-hop neighbor into a 1-hop 

neighbor if it is a new k-nearest neigbor
• Repeat until convergence

Figure: Dong et al, 2011SIGMOD'24 Tutorial

“A neighbor of a neighbor is likely to also be a neighbor”

Fast 
convergence



Monotonic Search Networks (MSNs)
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q

Entry Point
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Random 
Search Trials

Fixed Search 
Trials

“Greedy search is all you need”

Figures: 
Delaunay 
triangulation 
(Wikipedia)

• Probe the graph by conducting searches 
from a random entry point to a random 
query point in the dataset, e.g. FANNG

• Designate a point as the 
sole entry point for all 
search trials, e.g. NSG, 
Vamana



Fast ANN Graph (FANNG)
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Construction
• O(N) trials, each trial O(Nc) to yield O(N1+c)
• Occlusion rule prunes redundant edges to limit out-degrees

Target Recall

Dataset Size 
(Log Scale)

Di
sta

nc
e C

alc
ula

tio
ns

 
(Lo

g 
Sc

ale
)

O(Nc), 0 < c < 1

Figure: Harwood & Drummond, 2016

Search Latency after 50N 
Random Search Trials
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Navigating Spreading-Out Graph (NSG)
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• Single source makes it easier to 
establish monotonic search paths 
from this node to all other nodes

• Spanning tree ensures connectivity
Construction
• O(N1+c log Nc)
Search
• ~O(log n) due to

higher quality
neighborhoods

Figure:  Fu et al, 2019

“Navigating 
Node”

NSG

FANNG
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Vamana/DiskANN
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1Full-Precision Vector 1 ... R

R Neighbor IDs

1Full-Precision Vector 2 ... R
...

MinCandidate

ExpandFrontier

PQ Compressed 
VectorsFrontier

SSD Storage

• Similar to NSG
• On-disk neighborhoods
• Edge traversal performed 

in memory using 
compressed vectors
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VamanaIndexScan



Small-World Graphs
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• Small characteristic path lengths (short shortest-paths)
• High clustering (friend of a friend is also my friend)

Regular Random

Probability of Random Rewiring

Figure: Watts and Strogatz, Nature 1998SIGMOD'24 Tutorial

Small
Worlds

Clustering 
Ratio

Length 
Ratio



Navigable Small-World Graphs
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• Not all small-world graphs permit O(log N) greedy search
• (In Kleinberg’s graph, only α=2 yields a navigable graph)

Figure: Kleinberg, Nature 2000

Navigable
Randomly add an edge 
from u to v with probability 
|u,v|1-α

SIGMOD'24 Tutorial

O(Nβ) Greedy Search 
Complexity Parameter β

Random edge 
probability α



Hierarchical Navigable Small-World 
Graphs (HNSW)
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• Simply inserting vectors one at a time, connecting 
it to its k nearest neighbors already in the graph found via 
search trial, is navigable and small-world

• Hierarchical levels mitigates high out-degrees

Figures: Malkov et al 2014, Malkov & Yashunin 2020

NSW

HNSW

Logscale
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Summary of Graph-Based Indexes
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Nearest-Neighbor Graphs Monotonic Search Networks 
/ Small Worlds

√ O(1) offline search
√ Fast approx. construction
Х Slow for online queries

E.g. KGraph (NNDescent)

E.g. FANNG, NSG, Vamana, HNSW

√ ~O(log N) online search
Х Slow construction



Graph-Based Indexes: Discussion
Advantages
√ Empirically state-of-art throughput/recall
Disadvantages
Х Hard to adapt to disk
Х Hard to support updates for many graphs

• For HNSW: accuracy degradation issue
Х Long construction times for graphs based on search 
trials (incl. HNSW)
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Summary of Indexes

SIGMOD'24 Tutorial 45

Index 
Type

Search 
Efficiency

Search 
Accuracy

Write 
Friendliness

Disk 
Friendliness

Table-Based

Tree-Based

Graph-Based

Index Type Construction
Efficiency

Storage 
Efficiency

Ease of 
Maintenance 

Table-Based

Tree-Based

Graph-Based



Challenges to Storage & Indexing
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Index Variety Capabilities

Index Selection Index Design

Examples:
• Disk-Resident Indexes
• Concurrent Indexes
• Distributed Indexes
• Indexes for Predicated Queries
• Etc.

E.g. How to handle workload shift?



Overview of Query Optimization
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Plan 
Enumeration

Plan
Selection

Plan Types
• Naive
• Pre-Filtering
• Post-Filtering
• Single-Stage Filtering

Cost-Based
• Cost Model
• Operator Costs
Rule-Based
• Rule Design

Predicated Vector Search Query
e.g. select * from items where price < $10 order by 

simTo(query) limit k



Plan Types for Predicated Queries
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Vector 
Index Scan

Intersect

Attr.Index 
Scan

AND/OR

Attr.Index 
Scan...

Clause 1 Clause n...

Vector Index 
Filtered Scan

“Whitelist” Query

Attr.Index 
Scan

AND/OR

Attr.Index 
Scan...

Clause 1 Clause n...

Project

Top-K

Table Scan

Project

Attr.Index 
Scan

AND/OR

Attr.Index 
Scan...

Clause 1 Clause n...

Top-KBrute-
Force

Single
-Stage

Pre-
Filtering

Post-
Filtering



Summary of Plan Types
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Plan Type Advantages Disadvantages
Brute-Force √ Exact (100% Recall) Х High latency for weak filters

Pre-Filtering √ Exact (100% Recall), 
efficient for strong 
filters

Х High latency for weak filters

Post-Filtering √ Efficient (Native 
vector search speed & 
native attribute filter 
speed)

Х Low accuracy risk (e.g. empty 
intersection). Mitigation: collect (αk) 
similar vectors, not just k. E.g. ADBV

Single-Stage 
Filtering

√ No loss of recall, 
often more efficient 
than pre-filtering

Х Possibly high latency for strong 
filters. Mitigation for graph-based 
indexes: Encourage visiting satisfying 
vectors, e.g. FilteredDiskANN, HQANN, 
NHQ; Increase reachability, e.g. 
ACORN; Decrease failures via 
partitioning, e.g. Milvus



Plan Enumeration
Predefined, e.g. Weaviate, Milvus, ADBV
• Use a single predefined plan for all predicated queries, 

e.g. Weaviate, Pinecone
• Predefine multiple plans and select which plan to use 

at query time, e.g. ADBV, Milvus
Automatic, e.g. PASE, pgvector 
(PostgreSQL)
• Let the optimizer automatically enumerate plans

• Post-filter low-accuracy risk is real!
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Plan Selection
Rule-Based, e.g. Qdrant, Vespa
• Simple to implement
• Depends on accurate selectivity estimates
Cost-Based, e.g. ADBV, Milvus
• Select based on a cost model
• Generally more flexible
• Depends on accurate operator cost estimates

51SIGMOD'24 Tutorial



Rule-Based Plan Selection
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Dataset 
SizeBruteforce

Single-Stage Pre-FilterSelect-
ivity

StrongWeak

Small

Large

Est. 
SelectivityPost-Filter

Pre-Filter Real 
Selectivity

Weak

Weak

Medium

Bruteforce
Strong

Strong

Rule-Based

Example: Qdrant and Vespa



Cost-Based Plan Selection in ADBV
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• Pre-Filter k-NN Scan

• Single-Stage PQ Filtered Scan

• Single-Stage VGPQ Filtered Scan

• Post-Filter VGPQ Scan

SIGMOD'24 Tutorial



Challenges to Query Optimization
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Cost Estimation

Single-Stage
• May be difficult to estimate 

cost of Vector Index Filtered 
Scan (i.e. backtracking)

Post-Filtering
• Hard to take into account 

low-accuracy risk

pashkinelfe
Pavel Borisov 

I suppose the case when post-
filtering depletes all (or most) 
of ann-found tuples is 
completely legit. Though 
considering how often are the 
related complaints I'd suggest it 
to be mentioned in 
readme/manual explicitly.

Source: pgvector Issue #263



Overview of Query Execution
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Hardware 
Acceleration Data Manipulation

Data Transfers
• CPU Cache
HW Parallelism
• SIMD/GPU

Execution Mode
• Immediate
• Deferred

Distributed Query 
Processing

Partitioning
• Random/Uniform
• Attribute-Based
• Learned
Consistency
• Strong
• Eventual



Hardware Acceleration
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Data Transfers
• CPU Cache: “Query blocks” keep query 

vectors cache-resident while assigning 
threads to data vectors keeps data 
vectors cache-resident, e.g. Milvus

Data/Task Parallelism
• SIMD/GPU for IVFADC, e.g. Faiss

• Parallelize lookups by keeping the 
lookup table inside the SIMD register 
and simulate lookups via SIMD shuffle 
(also avoids memory retrieval)

• Parallelize summations over registers

SIGMOD'24 Tutorial

ADC Lookup Table



Data Manipulation
Streaming Updates
• Some indexes support in/up/del, e.g. HNSW
• Vearch: use tombstone deletes to avoid disconnecting 

the graph + periodic garbage collection
Batched Updates
• Perform in/up/del inside a fast-writeable slow-

readable structure which also participates in search
• Reconcile into the slow-writeable fast-readable 

structure at a convenient time
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Fast Slices with Slow Segments

58

Manu Vector Database

Fast TTI Index
(e.g. IVFFlat)

Fast TTI Index
(e.g. IVFFlat)

Growing Slice
(not indexed)

…Full Slices
HNSW

HNSW HNSW

“Growing” Segment “Sealed” Segments

Inserts

HNSW

• HNSW is built over the growing segment once full, 
and then the temporary slices are discarded

Tombstones

Deletes
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Log-Structured Merge (LSM) Tree
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Milvus Vector Database

Level K

Segment K,1 Segment K,nK
...HNSW HNSW

Level 0
Memory Table

Level 1

Segment 1,1 Segment 1,n1
...HNSW HNSW

…

Merge + 
Build HNSW

Merge + 
Build HNSW

• HNSW built during segment compaction
• Tombstones are reconciled during compaction
SIGMOD'24 Tutorial



In-Memory HNSW with Disk-Resident Index
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ADBV

• Designed for massive TB+ datasets
• HNSW serves as the fast-writeable structure while 

disk-resident VGPQ is the slow-writeable structure

Disk

Inserts

Tombstones

Deletes

HNSW

VGPQ

Pangu Distributed Storage System
Periodic 
Merge
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Distributed Query Processing
Partitioning
• By attribute if available, e.g. ADBV
• By k-means cluster, e.g. ADBV
• By memory availability, e.g. Vald
• By uniform hashing
Consistency
• Eventual consistency

• By quorum, e.g. Weaviate
• By timestamp delta, e.g. Manu

• Strong consistency
• Concurrent HNSW via internal locks, e.g. Vearch
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Scatter-Gather Search
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Worker

Local Shards/Replicas

Worker

Local Shards/Replicas

Coordinator
Worker

Selection
Top-K

Rerank

...

• Hard to know beforehand which workers to select
• k-means partitioning can reduce searched 

partitions but needs rebalancing
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Part 2: Commercial VDBMSs
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Native Extended

Search Engines / Libraries



VDBMS Types and Capabilities

• Basic vector search capability, 
similar to Mostly-Vector systems

• Comprehensive capabilities, similar 
to Mostly-Mixed systems
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Native 
Systems

Extended 
Systems

Search 
Engines 

& 
Libraries

Mostly-
Vector
Mostly-
Mixed
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Search 
Engines

Libraries

• Embedded at application-level
• Offers specific functionality, e.g. 

a single vector index

• Limited query/index types, mainly 
read-heavy, limited or no 
predicated queries

• Multiple query/index types, mixed 
workloads, predicated + attribute-
only queries
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Source: ann-benchmarks.com
1.00.5 0.75

50k
10k

1k

Qu
er

ies
 p

er
 S

ec
on

d

Vearch
Milvus
Redis

Weaviate, Vald
Qdrant

pgvector

Native Mostly-Vector

Extended Relational

• Native systems “tend 
to” outperform 
extended systems

• This view is already 
being challenged. 
Zhang et al ICDE’24: 
“...there is no 
fundamental 
limitation in 
using a relational 
database (e.g., 
PostgreSQL) to 
support efficient 
vector data 
management”
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Design Considerations
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Database Management
(Distributed QP, Failure Recovery, 

Storage Management, Query 
Optimizer)

Vector Search 
Capability

(Operators, Indexes, Plans, 
Interface)

System Type Examples Features Implementation
Native Mostly-
Vector

Pinecone, 
Vearch

Distributed QP, Failure 
Recovery

Shards/reps, shared-
storage persistence

Native Mostly-
Mixed

Milvus, 
Weaviate

Distributed QP, Failure 
Recovery, Storage 
Management

Shards/reps, WAL, 
LSM-Tree

Extended 
NoSQL

Redis, Vespa Single Query/Index 
Types

Bolt on HNSW

Extended 
Relational

PASE, ADBV Multi. Query/Index 
Types, Operators

Tight Integration
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Native Mostly Vector

API serves as 
query interface

Stream Processor 
triggers vector 

indexing
Blob Storage holds 
persistent replicas 

for backup/recovery

Pods (shards) 
and replicas for 
scatter-gather & 

availability

Example:

Advantages
√ Low-latency searches, high search throughput
Limitations
Х Systems with graph-based index may struggle with writes
Х Systems with table-based index may struggle with latency/accuracy
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Other Mostly Vector Systems
• Vald: Architecturally similar to Pinecone, except uses 

NGT graph index
• Vearch

• Li et al Middleware 2018: Architecturally similar, 
except uses table-based index and supports 
predicated search via post-filtering

• Latest version: Adds support for attribute-only 
indexes/queries, pre-filtering, multiple index types 
(HNSW, IVFPQ)

• EuclidesDB/Chroma: On-premise centralized
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Native Mostly Mixed
Example:

Advantages
√ Many supported query types, can be configured for both read-heavy and 
write-heavy workloads
Limitations
Х Can be resource-intensive due to more sophisticated storage/recovery
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More query 
capabilities and 
index types

Hardware 
accelerators for 
different index scans

More sophisticated 
storage to support 
fast writes in 
addition to reads

Figure: Wang et al “Milvus: A purpose-built vector data management system”. SIGMOD 2021SIGMOD'24 Tutorial



Native Mostly Mixed

Advantages
√ Many supported query types, can be configured for both read-heavy and 
write-heavy workloads
Limitations
Х Can be resource-intensive due to more sophisticated storage/recovery
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Example:



Other Mostly Mixed Systems
• Weaviate

• Targeted at documents over a graph model; 
supports both vector search and traditional graph 
queries via GraphQL

• HNSW + LSM-Tree, used for raw records + inverted 
index over keywords and attributes

• Pre-filtering for predicated search queries
• Qdrant: rule-based optimizer for predicated queries
• NucliaDB/Marqo
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Extended NoSQL
Example: RedisVL

Advantages
√ High-performance vector search, similar to Native Mostly-Vector
√ Combined vector search + non-vector capabilities
Limitations
Х As with Mostly-Vector, performance is tied to specific workload 72

Index Manager (HNSW)

API/CLI

VectorQuery FilterQuery
RangeQuery CountQuery

Operators

Redis Vector LibraryRedis

Key Value



Other NoSQL Systems
• Vespa

• Document model
• SQL-like query language for complex big data 

analytics
• Rule-based optimizer for predicated queries

• Cosmos DB: proprietary vector index
• MongoDB: HNSW bolt-on
• Neo4j: HNSW bolt-on
• Cassandra: HNSW bolt-on
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Extended Relational
Example: PASE

Advantages
√ Adaptable to different types of workloads
√ As with Ext NoSQL systems, offers diverse capabilities
Limitations
Х May suffer performance overhead (e.g. page indirection) 74

IndexAmRoutine

Raw Data Tables

Index Interface

Index Storage

IVFFlat

HNSW

Figure from Yang et al 
“PASE...”. SIGMOD 2020



Other Relational Systems
• pgvector: similar to PASE
• AnalyticDB+V

• Relational OLAP DBMS over disaggregated 
compute-storage

• Adds indexing and fast-slow write structures for 
supporting real-time read/writes over slow-
updateable vector indexes, plus accuracy-aware 
cost estimation model for ANN

• SingleStoreDB: Adds sim. scores to enable brute-
force vector search

• ClickHouse, MyScale
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Search Engines and Libraries

Search Engines
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Lin et al “Vector Search with OpenAI 
Embeddings: Lucene Is All You Need” (2023) 
arXiv:2308.14963

Apache Lucene
(HNSW added in Lucene 9.0)

Elasticsearch OpenSearch Solr

Libraries: Meta Faiss, hnswlib, ANNOY, Microsoft 
SPTAG, KGraph, E2LSH, FALCONN, etc.
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Benchmarks
• Surprisingly few benchmarks
• ann-benchmarks.com

• Real implementations, highly implementation-
dependent

• Li et al TKDE 2020
• Idealized implementations
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Li et al “Approximate nearest neighbor search on high 
dimensional data — Experiments, analyses, and 

improvement.” IEEE Trans. Knowl. Data Eng. 32(8), 
1475–1488 (2020)
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Summary of Vector Database Systems
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• Retrieval methods
• Storage methods
• Recovery methods
• Elasticity, availability, 

consistency, security

• Latency
• Throughput, scalability



Part 3: Challenges and Open 
Problems
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Score Design/Selection
A particular score may not return maximally relevant 
results, even under high recall:
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“The total prod [negative user feedback] rate are 7.3%, 32.6%, and 43.1% 
at top 1, 3, and 5... roughly 70% are generated by the EBR node during the 
retrieval stage”

Wang et al “Integrity and junkiness failure handling for embedding-based retrieval: A 
case study in social network search”. SIGIR 2023
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Disk-Friendly/Distributed Indexes
Graphs are slow for disk-resident datasets
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Source: ann-benchmarks.com

Meanwhile, trees/tables are disk-friendly but have 
worse QPS/recall
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Update-Friendly Graphs
Accuracy degradation following series of updates
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HNSW
Vamana

Batch Number

Effect of Repeated Delete-Reinsert Cycles

Singh et al “FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for 
Streaming Similarity Search” 2021. arXiv 2105.09613
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Easy-to-Build Graphs
• O(DN log N) still too high for huge N (billions)
• ANN_SIFT1B (128 dimensions):

• Vamana single: 2 days @ 1100 GB peak memory
• Vamana merged: 5 days @ 64 GB peak memory

• 200M subset of ANN_SIFT1B:
• HNSW, ef=500: 5.6 hours @ 64 GB peak memory
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Sources:
• Malkov & Yashunin “Efficient and robust approximate nearest neighbor search using hierarchical navigable 

small world graphs” IEEE Trans. Pattern Anal. and Mach. Intell. 2020
• Subramanya et al “DiskANN: Fast accurate billion-point nearest neighbor search on a single node”. 

NeurIPS 2019
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New Capabilities
• Multi-Vector Search

• NRA only works with bounded scores (e.g. cosine)
• Incremental k-NN
• Secure k-NN
• VDBMS Benchmark
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Thanks!
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Q and A


