
Vector Database Management
Techniques and Systems

James Jie Pan1 Jianguo Wang2 Guoliang Li1
1Tsinghua University

2Purdue University

Modern DBMS Landscape

2

Modern DBMSs are designed for data that
humans can understand

SIGMOD'24 Tutorial

Relational/NewSQL NoSQL/Specialty

Business
Operations

Medical
Records

Financial
Timeseries

Geospatial
Vectors/Rasters

Social
Networks

Embeddings: Building Blocks of the Future

3
SIGMOD'24 Tutorial

More and more applications rely on deep-learning
embedding vectors that can only be

understood by machines

Classification
Segmentation

Semantic
Retrieval

Generation
Object

Detection
Pattern

Recognition
Forecasting

Reinforcement
LearningRecSys

Text Images GraphsSequences Audio Video

ResNet-50MiniLM-L6 MPNet-
Base CLIP VIT Whisper Multimodal

Receiver

Store embeddings in a database and retrieve
desired embeddings for whatever downstream task

Goal: Vector DBMS (VDBMS)

• Capabilities: similarity-based top-k/range retrieval,
hybrid attribute-vector retrieval, multi-modal (multi-
vector) retrieval

• Characteristics: read/write latency/throughput,
retrieval accuracy, scalability, availability,
consistency, fault tolerance, privacy & security,
elasticity

4SIGMOD'24 Tutorial

VDBMS
Embedding

Model

Example: LLMs + VDBMS

SIGMOD'24 Tutorial 5

VDBMS

Domain-
Specific

Knowledge
Data

Streams
Past Queries
/ Responses

RAG Retriever Semantic CacheLLM
Chatbot Service

Training
Corpus

• Lack of domain-specific knowledge
• Data freshness
• Monetary/time cost

Some of Today’s Commercial Applications

6SIGMOD'24 Tutorial

LLM Retrieval-
Augmented

Generation (RAG)
https://arxiv.org/abs/2312.10997

E-Commerce &
Recommendation

Systems

News Classification Photo/Video Search
& Deduplication

Threat
Detection

Writing
Assistant

Why is Building a VDBMS Hard?

7SIGMOD'24 Tutorial

Figure: Will Koehrsen

Embeddings are...

VS

• Huge (1024 x float64) → costly to move, clog storage
• Hard to retrieve without ambiguity
• Hard to index
• Costly to compare
• Hard to index together

with attributes

similar
to

Part 1: VDBMS Techniques

8SIGMOD'24 Tutorial

Data Manipuation
Similarity Search
Predicated Search
Multi-Vector Search

Table-Based
Tree-Based

Graph-Based

Cache / SIMD / GPU
Pre-Filter Post-Filter

Single-Stage

Multi-Index

Write Buffers

Index/
Data

WAL

Physical Storage (SSD / S3 / HDFS)

Query Processor Indexing Module

Query Optimizer / Executor

Storage Manager

Index/
Data

Index/
Data

Overview of Query Processing

9

Query
Definition

Similarity Score
• Metrical Scores
• Non-Metrical Scores
Query Type
• Data Manipulation
• Range Search
• (c,k)-Search
• Variants
Query Interface
• API, SQL

Vector Operators
• In/Up/Del
• Object Embedding
• Vector Math
• Vector Projection
Search Operators
• Table Scan, Top-K
• Index-Based Operators
Search Algorithms
• Brute-Force Search
• Index-Based Search

Operators &
Algorithms

SIGMOD'24 Tutorial

Data Manipuation
Similarity Search
Predicated Search
Multi-Vector Search

Query Processor

• High dimensionality
• Large data volume
• Low latency
• High accuracy

Query Definition: Similarity Scores

10

Non-Metrical Scores
• Inner Product, Cosine Similarity

Metrical Scores
• Metric axioms (id., positiv., sym., triangle ineq.)
• Hamming, Minkowski (Manhattan, Euclidean)

Similarity
Score

SIGMOD'24 Tutorial

• A function �:ℝ� ×ℝ� →ℝ indicating degree of similarity
• Similarity calculations are expensive

• Sq. Euclidean (D=1024 floats) takes 62us on my
machine (Intel i5 @ 2.3 GHz), about the same as SSD
random seek

Query Types: Data Manipulation

11SIGMOD'24 Tutorial

Query
Object

Embedding
Model

VDBMS

Object

Vector

Query
Vector

VDBMS

”Indirect” ”Direct”

• VDBMS interacts with embedding
model via plugin/add-on/extension

• More user friendly

• User is responsible for
producing embeddings

• More controllable (e.g.
custom embedding
model)

Query Types: Vector Search Queries

12SIGMOD'24 Tutorial

Query Variants: predicated, batched, multi-vector

13

Query Interfaces

SIGMOD'24 Tutorial

API-Based SQL-Based

√ Less impedance
Х Not portable

√ Potentially more portable
Х Impedance mismatch

Chroma API
count, add, get, peek, query,
modify, update, upsert,
delete

• CREATE TABLE items (... embedding vector(128));
• UPDATE items SET embedding = '[1,2,3]' WHERE id = 1;
• DELETE FROM items WHERE id = 1;
• SELECT * FROM items WHERE cat_id = 123 ORDER BY

embedding <-> '[3,1,2]' LIMIT 5;
• CREATE INDEX ON items USING hnsw...;

pgvector

Operators & Algorithms

14SIGMOD'24 Tutorial

GPU
Memory

Main
Memory

CPU /
SIMD GPU

Hardware-Accelerated
Search

Shard 1 Shard n...

Scatter
Gather

Distrib./Parallel Search

Vector
Dataset

Sc
an

 D
ire

ct
ion

Project
Project
Project

...

Results
Buffer

Bruteforce Search

Vector
Index

Index
Scan

Index-Based
Search

a
d

b
cq

q c b d a
Similarity

Project a
vector onto
similary score
with respect to
query vector
• O(D) for D-

dimensions

Characteristics of Search Algorithms

15SIGMOD'24 Tutorial

Performance
• Amount of visited vectors, similarity comparisons
Accuracy
• Recall: (true positives) / (true positives + false negatives)
• Recall@K

• Recall when k=K for k-NN, ANN (Li et al 2020)
• Proportion of queries where 1-NN is ranked in first k

results (Jegou et al 2011)
• Proportion of true nearest-neighbors within the first

K results of a k-NN or ANN query (K ≤ k) (RecSys)
• Precision: (true positives) / (true positives + false positives)

Challenges to Query Processing

SIGMOD'24 Tutorial 16

Query Semantics
(e.g. “Amazon”) Curse of Dimensionality

Score Selection Score Design
(e.g. Metric Learning)

Figure: Moll et al 2024

Figure: Cornell CS4780/CS5780 Lecture 2
(Fall 2018)

Distance Distance

Distance Distance

Fre
qu

en
cy

Fre
qu

en
cy

Fre
qu

en
cy

Fre
qu

en
cy

D=2 D=10

D=100 D=1k

Overview of Storage & Indexing

17SIGMOD'24 Tutorial

Table-Based
Tree-Based

Graph-Based
Multi-Index

Indexing Module

• High dimensionality
• Large data volume
• Low latency
• High accuracy
• Construction cost
• Storage cost
• Maintenance cost

Construction /
Search / Maint.

Construction
• Randomization
• Learned Partitions
• Navigable Partitions
Search
• Bucket Scan
• Defeatist Search
• Best-First Search
Maintenance
• Rebalancing

Logical Structure
• Tables
• Trees
• Graphs
Physical Structure
• Quantization
• Disk-Resident Indexes

Logical / Physical
Storage

Table-Based Indexes

18SIGMOD'24 Tutorial

Randomized
Partitioning

Figure: Gama et al, 2013

• Construction: O(DN);
• Search: O(DNc), 0 < c < 1

Locality-Sensitive Hashing
• Random Hyperplanes (E2LSH)
• Random Bits (Faiss IndexLSH)
• Random Balls (FALCONN)

Centroid-Based (Quantization)
• Nearest Centroid (SPANN, Faiss IVF*)
• Nearest Centroid Product (Faiss PQ)

Learned Hashing

Learned
Partitioning

Rely on
probability

amplification

Learn from
data

distribution

• Data Drift

Locality-Sensitive Hashing (LSH)

19Figure: Andoni & Indyk, 2008

Vec. g=(h1,h2)
a 11
b 21
c 23
d 44
e 42
f 42

d

e

ca

f

b

h1

h2

1

2

3

4

1
2

3
4

e.g. E2LSH
L=2, K=4

SIGMOD'24 Tutorial

More Pro
jectio

ns

(Increasing K)

More
 Hash

 Ta
ble

s

(In
cre

asi
ng

L)

Co
llis

ion
 Pr

ob
ab

ilit
y

of
 so

m
e

g j

Distance Distance

LSH Families
• “Hash Family”: For any r1 , r2 , x ∈ S, and q:

• if d(x, q) ≤ r1 , then collision prob. ≥ p1p1
• if d(x, q) ≥ r2 , then collision prob. ≤ p2

• Typically storage ~ O(DN1+ρ), search ~ O(DNρ) where
ρ =

푙��(1/�1)
푙��(1/�2)

• Interesting families:
• Hamming (Faiss IndexLSH) ρ=1/c
• Random hyperplans (E2LSH) ρ=1/c
• Spherical LSH (FALCONN) ρ=1/(2c2-1)

SIGMOD'24 Tutorial 20

Large is Better
Small is Better

qr1

r2=cr1

Learning to Hash (L2H)

21

Pairwise
Similarity -
Preserving

Deep
Supervised
Hashing, Liu et
al 2016

Multiwise
Similarity-
Preserving

kNN Hashing,
Ding et al 2015

Implicit
Similarity-
Preserving

Spherical Hashing, Heo
et al 2012

Reconstruction
Error-Minimizing

Quantization,
Wang et al 2018

SIGMOD'24 Tutorial

Quantization

22

Level
Quantization

Learned
Quantization

Uniform
(e.g. Faiss SQ)

Non-Uniform

k-Means
(e.g. Faiss IVFSQ)

Product
(e.g. Faiss PQ)

2 bits 4 bits 6 bits

16 bits

16
 b

its

2 bits

2
bit

s

4-Dimensional Vectors
m=2, k=4

Dims [1, 2] Dims [3, 4]
E.g.

c1,1
c1,2
c1,3
c1,4

c2,1
c2,2
c2,3
c2,4

U1= U2=

U = U1 X U2

Product Quantization

• Preserves dimensions, e.g. R4 = R2 X R2

• Faster training
• 4 centroids per subspace = 16 total codes
• k-means O(DN*k): 2(2N*4) = 16N vs 4N*16 = 64N

SIGMOD'24 Tutorial 23

c1,1
c1,2
c1,3
c1,4

c2,1
c2,2
c2,3
c2,4

U1= U2=

U = U1 X U2
Diminising Returns

Figure: Jegou et al 2011

Codeword Bits
Sq

. D
ist

or
tio

n

“IVFADC” Asymmetric Distance Comp.

Vector Centering

Sample + PQ

16 bits

16
 b

its

2 bits
2

bit
s

Coarse Quantization

Vector Residuals

Codebook

Bu
ck

et
s

Co
m

pr
es

se
d

En
tri

es

Index Search

ADC Lookup Table

• Bucketing for fast search
• Lookup cache
• Sampling from residuals

for faster training 24

Summary of Table-Based Indexes

SIGMOD'24 Tutorial 25

Randomization-Based Learning-Based

√ Theoretical guarantees
√ No rebalancing
Х High storage costs

E.g. Faiss IndexLSH, E2LSH,
FALCONN

E.g. L2H, SQ, PQ, IVFADC

√ Low storage costs
√ Low latency
Х Susceptible to data drift

d

e

ca

f

b

h1

h
21

2
3

4

1
2

3
4

Table-Based Indexes: Discussion
Advantages
√ Disk-friendly, E.g. LSH, SPANN
√ Readily supports in-distribution insert/update/delete
√ Easier to derive error bounds
Disadvantages
Х Hard to deal with queries near borders/corners

• How many buckets are adjacent to a corner
in a D-dimensional space?

SIGMOD'24 Tutorial 26

1D 2D
3D

Tree-Based Indexes

27SIGMOD'24 Tutorial

• Construction: O(DN log N)
• Search: O(D log N)

Axis-Aligned
• k-d Tree
• PKD-tree (Principal Components)
• FLANN

Randomized
• RPTree
• ANNOY

Recursive space partitioning Rely on probability
amplification

Fixed
• Medians
• Overlapping

Balanced
partitioning

Splitting PointsSplitting Planes

• Discernability

k-d Tree

28Figure: Silpa-Anan and Hartley, 2008

• O(DN1-1/D) search, O(DN log N) construction
• Tends toward O(DN) as D grows

SIGMOD'24 Tutorial

Principal Component Trees

29Figure: Silpa-Anan and Hartley, 2008 (bottom)SIGMOD'24 Tutorial

1.0 0.6

M
is

s
Ra

te

M
is

s
Ra

te Increasing
Trees

Vector
Rotation

k-d Tree
Construction

• More discernability by aligning to principal components
• No huge gains from multiple trees

Random Projection Trees

30

Random
Projections

Random
Rotations

Random
Splits

ANNOY (200
random trees)

FLANN (Principal
Components)
Ball Tree

7k

2k

Qu
er

ies
 p

er
 S

ec
on

d

1.00.5 0.75Recall
Source: ann-benchmarks.com

Figures: Dasgupta & Sinha 2013, Dasgupta & Freund 2008, Ram & Sinha 2019, McFee & Lanckriet 2011

Re
ca

ll

Large SpillNo Spill

Overlapping
Splits

Summary of Tree-Based Indexes

SIGMOD'24 Tutorial 31

Axis-Aligned Randomized

√ High recall for low dims.
Х Inflexible

E.g. k-d Tree, PKD-Tree,
FLANN

E.g. ANNOY, RPTree

√ High recall for high dims.
Х High storage (forests)

Tree-Based Indexes: Discussion
Advantages
√ Disk-friendly in principle (store together by leaf)
√ O(D log N) defeatist search
√ Supports in-distribution insert/update/delete
Disadvantages
Х Hard to keep balanced following data drift
Х Low recall for queries near leaf borders / corners

SIGMOD'24 Tutorial 32

Graph-Based Indexes

33

q

SIGMOD'24 Tutorial

Navigable Partitioning

k-Nearest Neighbor
Graphs (kNNGs)
• KGraph
• EFANNA

Monotonic Search
Networks (MSNs)
• FANNG
• NSG
• Vamana

Small-World Graphs
• NSW
• HNSW

Directly index the nearest
neighbors

Support greedy depth-
first search

Exploit navigational
small-world properties

• Construction: ranges from O(DN log N) to O(DN1+c)
• Search: O(D log N) or O(DNc)

Increasing Randomness

k-Nearest Neighbor Graphs (kNNGs)

34Figure: Paredes & Chavez, 2005

A. Sampled point
inside query ball →
check its neighbors

B. Point ball intersects
query ball → check
neighbors in the overlap

C. Point ball outside query
ball → prune near
neighbors of p

• O(1) search for queries in dataset, else O(DN1+c) via
sample and prune (see above)

Construction
• Exact: O(DN2)

SIGMOD'24 Tutorial

KGraph (NNDescent)

35

Construction
• Initialize random kNNG
• For each node, change any 2-hop neighbor into a 1-hop

neighbor if it is a new k-nearest neigbor
• Repeat until convergence

Figure: Dong et al, 2011SIGMOD'24 Tutorial

“A neighbor of a neighbor is likely to also be a neighbor”

Fast
convergence

Monotonic Search Networks (MSNs)

36

q

Entry Point

SIGMOD'24 Tutorial

Random
Search Trials

Fixed Search
Trials

“Greedy search is all you need”

Figures:
Delaunay
triangulation
(Wikipedia)

• Probe the graph by conducting searches
from a random entry point to a random
query point in the dataset, e.g. FANNG

• Designate a point as the
sole entry point for all
search trials, e.g. NSG,
Vamana

Fast ANN Graph (FANNG)

37

Construction
• O(N) trials, each trial O(Nc) to yield O(N1+c)
• Occlusion rule prunes redundant edges to limit out-degrees

Target Recall

Dataset Size
(Log Scale)

Di
sta

nc
e C

alc
ula

tio
ns

(Lo

g
Sc

ale
)

O(Nc), 0 < c < 1

Figure: Harwood & Drummond, 2016

Search Latency after 50N
Random Search Trials

SIGMOD'24 Tutorial

Navigating Spreading-Out Graph (NSG)

38

• Single source makes it easier to
establish monotonic search paths
from this node to all other nodes

• Spanning tree ensures connectivity
Construction
• O(N1+c log Nc)
Search
• ~O(log n) due to

higher quality
neighborhoods

Figure: Fu et al, 2019

“Navigating
Node”

NSG

FANNG

SIGMOD'24 Tutorial

Vamana/DiskANN

39

1Full-Precision Vector 1 ... R

R Neighbor IDs

1Full-Precision Vector 2 ... R
...

MinCandidate

ExpandFrontier

PQ Compressed
VectorsFrontier

SSD Storage

• Similar to NSG
• On-disk neighborhoods
• Edge traversal performed

in memory using
compressed vectors

SIGMOD'24 Tutorial

VamanaIndexScan

Small-World Graphs

40

• Small characteristic path lengths (short shortest-paths)
• High clustering (friend of a friend is also my friend)

Regular Random

Probability of Random Rewiring

Figure: Watts and Strogatz, Nature 1998SIGMOD'24 Tutorial

Small
Worlds

Clustering
Ratio

Length
Ratio

Navigable Small-World Graphs

41

• Not all small-world graphs permit O(log N) greedy search
• (In Kleinberg’s graph, only α=2 yields a navigable graph)

Figure: Kleinberg, Nature 2000

Navigable
Randomly add an edge
from u to v with probability
|u,v|1-α

SIGMOD'24 Tutorial

O(Nβ) Greedy Search
Complexity Parameter β

Random edge
probability α

Hierarchical Navigable Small-World
Graphs (HNSW)

42

• Simply inserting vectors one at a time, connecting
it to its k nearest neighbors already in the graph found via
search trial, is navigable and small-world

• Hierarchical levels mitigates high out-degrees

Figures: Malkov et al 2014, Malkov & Yashunin 2020

NSW

HNSW

Logscale

SIGMOD'24 Tutorial

Summary of Graph-Based Indexes

SIGMOD'24 Tutorial 43

Nearest-Neighbor Graphs Monotonic Search Networks
/ Small Worlds

√ O(1) offline search
√ Fast approx. construction
Х Slow for online queries

E.g. KGraph (NNDescent)

E.g. FANNG, NSG, Vamana, HNSW

√ ~O(log N) online search
Х Slow construction

Graph-Based Indexes: Discussion
Advantages
√ Empirically state-of-art throughput/recall
Disadvantages
Х Hard to adapt to disk
Х Hard to support updates for many graphs

• For HNSW: accuracy degradation issue
Х Long construction times for graphs based on search
trials (incl. HNSW)

SIGMOD'24 Tutorial 44

Summary of Indexes

SIGMOD'24 Tutorial 45

Index
Type

Search
Efficiency

Search
Accuracy

Write
Friendliness

Disk
Friendliness

Table-Based

Tree-Based

Graph-Based

Index Type Construction
Efficiency

Storage
Efficiency

Ease of
Maintenance

Table-Based

Tree-Based

Graph-Based

Challenges to Storage & Indexing

SIGMOD'24 Tutorial 46

Index Variety Capabilities

Index Selection Index Design

Examples:
• Disk-Resident Indexes
• Concurrent Indexes
• Distributed Indexes
• Indexes for Predicated Queries
• Etc.

E.g. How to handle workload shift?

Overview of Query Optimization

47SIGMOD'24 Tutorial

Plan
Enumeration

Plan
Selection

Plan Types
• Naive
• Pre-Filtering
• Post-Filtering
• Single-Stage Filtering

Cost-Based
• Cost Model
• Operator Costs
Rule-Based
• Rule Design

Predicated Vector Search Query
e.g. select * from items where price < $10 order by

simTo(query) limit k

Plan Types for Predicated Queries

48

Vector
Index Scan

Intersect

Attr.Index
Scan

AND/OR

Attr.Index
Scan...

Clause 1 Clause n...

Vector Index
Filtered Scan

“Whitelist” Query

Attr.Index
Scan

AND/OR

Attr.Index
Scan...

Clause 1 Clause n...

Project

Top-K

Table Scan

Project

Attr.Index
Scan

AND/OR

Attr.Index
Scan...

Clause 1 Clause n...

Top-KBrute-
Force

Single
-Stage

Pre-
Filtering

Post-
Filtering

Summary of Plan Types

SIGMOD'24 Tutorial 49

Plan Type Advantages Disadvantages
Brute-Force √ Exact (100% Recall) Х High latency for weak filters

Pre-Filtering √ Exact (100% Recall),
efficient for strong
filters

Х High latency for weak filters

Post-Filtering √ Efficient (Native
vector search speed &
native attribute filter
speed)

Х Low accuracy risk (e.g. empty
intersection). Mitigation: collect (αk)
similar vectors, not just k. E.g. ADBV

Single-Stage
Filtering

√ No loss of recall,
often more efficient
than pre-filtering

Х Possibly high latency for strong
filters. Mitigation for graph-based
indexes: Encourage visiting satisfying
vectors, e.g. FilteredDiskANN, HQANN,
NHQ; Increase reachability, e.g.
ACORN; Decrease failures via
partitioning, e.g. Milvus

Plan Enumeration
Predefined, e.g. Weaviate, Milvus, ADBV
• Use a single predefined plan for all predicated queries,

e.g. Weaviate, Pinecone
• Predefine multiple plans and select which plan to use

at query time, e.g. ADBV, Milvus
Automatic, e.g. PASE, pgvector
(PostgreSQL)
• Let the optimizer automatically enumerate plans

• Post-filter low-accuracy risk is real!

50SIGMOD'24 Tutorial

Plan Selection
Rule-Based, e.g. Qdrant, Vespa
• Simple to implement
• Depends on accurate selectivity estimates
Cost-Based, e.g. ADBV, Milvus
• Select based on a cost model
• Generally more flexible
• Depends on accurate operator cost estimates

51SIGMOD'24 Tutorial

Rule-Based Plan Selection

52SIGMOD'24 Tutorial

Dataset
SizeBruteforce

Single-Stage Pre-FilterSelect-
ivity

StrongWeak

Small

Large

Est.
SelectivityPost-Filter

Pre-Filter Real
Selectivity

Weak

Weak

Medium

Bruteforce
Strong

Strong

Rule-Based

Example: Qdrant and Vespa

Cost-Based Plan Selection in ADBV

53

• Pre-Filter k-NN Scan

• Single-Stage PQ Filtered Scan

• Single-Stage VGPQ Filtered Scan

• Post-Filter VGPQ Scan

SIGMOD'24 Tutorial

Challenges to Query Optimization

54SIGMOD'24 Tutorial

Cost Estimation

Single-Stage
• May be difficult to estimate

cost of Vector Index Filtered
Scan (i.e. backtracking)

Post-Filtering
• Hard to take into account

low-accuracy risk

pashkinelfe
Pavel Borisov

I suppose the case when post-
filtering depletes all (or most)
of ann-found tuples is
completely legit. Though
considering how often are the
related complaints I'd suggest it
to be mentioned in
readme/manual explicitly.

Source: pgvector Issue #263

Overview of Query Execution

55SIGMOD'24 Tutorial

Hardware
Acceleration Data Manipulation

Data Transfers
• CPU Cache
HW Parallelism
• SIMD/GPU

Execution Mode
• Immediate
• Deferred

Distributed Query
Processing

Partitioning
• Random/Uniform
• Attribute-Based
• Learned
Consistency
• Strong
• Eventual

Hardware Acceleration

56

Data Transfers
• CPU Cache: “Query blocks” keep query

vectors cache-resident while assigning
threads to data vectors keeps data
vectors cache-resident, e.g. Milvus

Data/Task Parallelism
• SIMD/GPU for IVFADC, e.g. Faiss

• Parallelize lookups by keeping the
lookup table inside the SIMD register
and simulate lookups via SIMD shuffle
(also avoids memory retrieval)

• Parallelize summations over registers

SIGMOD'24 Tutorial

ADC Lookup Table

Data Manipulation
Streaming Updates
• Some indexes support in/up/del, e.g. HNSW
• Vearch: use tombstone deletes to avoid disconnecting

the graph + periodic garbage collection
Batched Updates
• Perform in/up/del inside a fast-writeable slow-

readable structure which also participates in search
• Reconcile into the slow-writeable fast-readable

structure at a convenient time

57SIGMOD'24 Tutorial

Fast Slices with Slow Segments

58

Manu Vector Database

Fast TTI Index
(e.g. IVFFlat)

Fast TTI Index
(e.g. IVFFlat)

Growing Slice
(not indexed)

…Full Slices
HNSW

HNSW HNSW

“Growing” Segment “Sealed” Segments

Inserts

HNSW

• HNSW is built over the growing segment once full,
and then the temporary slices are discarded

Tombstones

Deletes

SIGMOD'24 Tutorial

Log-Structured Merge (LSM) Tree

59

Milvus Vector Database

Level K

Segment K,1 Segment K,nK
...HNSW HNSW

Level 0
Memory Table

Level 1

Segment 1,1 Segment 1,n1
...HNSW HNSW

…

Merge +
Build HNSW

Merge +
Build HNSW

• HNSW built during segment compaction
• Tombstones are reconciled during compaction
SIGMOD'24 Tutorial

In-Memory HNSW with Disk-Resident Index

60

ADBV

• Designed for massive TB+ datasets
• HNSW serves as the fast-writeable structure while

disk-resident VGPQ is the slow-writeable structure

Disk

Inserts

Tombstones

Deletes

HNSW

VGPQ

Pangu Distributed Storage System
Periodic
Merge

SIGMOD'24 Tutorial

Distributed Query Processing
Partitioning
• By attribute if available, e.g. ADBV
• By k-means cluster, e.g. ADBV
• By memory availability, e.g. Vald
• By uniform hashing
Consistency
• Eventual consistency

• By quorum, e.g. Weaviate
• By timestamp delta, e.g. Manu

• Strong consistency
• Concurrent HNSW via internal locks, e.g. Vearch

61SIGMOD'24 Tutorial

Scatter-Gather Search

62

Worker

Local Shards/Replicas

Worker

Local Shards/Replicas

Coordinator
Worker

Selection
Top-K

Rerank

...

• Hard to know beforehand which workers to select
• k-means partitioning can reduce searched

partitions but needs rebalancing

SIGMOD'24 Tutorial

Part 2: Commercial VDBMSs

63SIGMOD'24 Tutorial

Native Extended

Search Engines / Libraries

VDBMS Types and Capabilities

• Basic vector search capability,
similar to Mostly-Vector systems

• Comprehensive capabilities, similar
to Mostly-Mixed systems

64SIGMOD'24 Tutorial

Native
Systems

Extended
Systems

Search
Engines

&
Libraries

Mostly-
Vector
Mostly-
Mixed

NoSQL

Relational

Search
Engines

Libraries

• Embedded at application-level
• Offers specific functionality, e.g.

a single vector index

• Limited query/index types, mainly
read-heavy, limited or no
predicated queries

• Multiple query/index types, mixed
workloads, predicated + attribute-
only queries

65

Source: ann-benchmarks.com
1.00.5 0.75

50k
10k

1k

Qu
er

ies
 p

er
 S

ec
on

d

Vearch
Milvus
Redis

Weaviate, Vald
Qdrant

pgvector

Native Mostly-Vector

Extended Relational

• Native systems “tend
to” outperform
extended systems

• This view is already
being challenged.
Zhang et al ICDE’24:
“...there is no
fundamental
limitation in
using a relational
database (e.g.,
PostgreSQL) to
support efficient
vector data
management”

SIGMOD'24 Tutorial

VDBMS Performance

Design Considerations

66

Database Management
(Distributed QP, Failure Recovery,

Storage Management, Query
Optimizer)

Vector Search
Capability

(Operators, Indexes, Plans,
Interface)

System Type Examples Features Implementation
Native Mostly-
Vector

Pinecone,
Vearch

Distributed QP, Failure
Recovery

Shards/reps, shared-
storage persistence

Native Mostly-
Mixed

Milvus,
Weaviate

Distributed QP, Failure
Recovery, Storage
Management

Shards/reps, WAL,
LSM-Tree

Extended
NoSQL

Redis, Vespa Single Query/Index
Types

Bolt on HNSW

Extended
Relational

PASE, ADBV Multi. Query/Index
Types, Operators

Tight Integration

SIGMOD'24 Tutorial

Native Mostly Vector

API serves as
query interface

Stream Processor
triggers vector

indexing
Blob Storage holds
persistent replicas

for backup/recovery

Pods (shards)
and replicas for
scatter-gather &

availability

Example:

Advantages
√ Low-latency searches, high search throughput
Limitations
Х Systems with graph-based index may struggle with writes
Х Systems with table-based index may struggle with latency/accuracy

67Figure: pinecone.ioSIGMOD'24 Tutorial

Other Mostly Vector Systems
• Vald: Architecturally similar to Pinecone, except uses

NGT graph index
• Vearch

• Li et al Middleware 2018: Architecturally similar,
except uses table-based index and supports
predicated search via post-filtering

• Latest version: Adds support for attribute-only
indexes/queries, pre-filtering, multiple index types
(HNSW, IVFPQ)

• EuclidesDB/Chroma: On-premise centralized

68SIGMOD'24 Tutorial

Native Mostly Mixed
Example:

Advantages
√ Many supported query types, can be configured for both read-heavy and
write-heavy workloads
Limitations
Х Can be resource-intensive due to more sophisticated storage/recovery

69

More query
capabilities and
index types

Hardware
accelerators for
different index scans

More sophisticated
storage to support
fast writes in
addition to reads

Figure: Wang et al “Milvus: A purpose-built vector data management system”. SIGMOD 2021SIGMOD'24 Tutorial

Native Mostly Mixed

Advantages
√ Many supported query types, can be configured for both read-heavy and
write-heavy workloads
Limitations
Х Can be resource-intensive due to more sophisticated storage/recovery

70Figure: Wang et al “Milvus: A purpose-built vector data management system”. SIGMOD 2021SIGMOD'24 Tutorial

Example:

Other Mostly Mixed Systems
• Weaviate

• Targeted at documents over a graph model;
supports both vector search and traditional graph
queries via GraphQL

• HNSW + LSM-Tree, used for raw records + inverted
index over keywords and attributes

• Pre-filtering for predicated search queries
• Qdrant: rule-based optimizer for predicated queries
• NucliaDB/Marqo

71SIGMOD'24 Tutorial

Extended NoSQL
Example: RedisVL

Advantages
√ High-performance vector search, similar to Native Mostly-Vector
√ Combined vector search + non-vector capabilities
Limitations
Х As with Mostly-Vector, performance is tied to specific workload 72

Index Manager (HNSW)

API/CLI

VectorQuery FilterQuery
RangeQuery CountQuery

Operators

Redis Vector LibraryRedis

Key Value

Other NoSQL Systems
• Vespa

• Document model
• SQL-like query language for complex big data

analytics
• Rule-based optimizer for predicated queries

• Cosmos DB: proprietary vector index
• MongoDB: HNSW bolt-on
• Neo4j: HNSW bolt-on
• Cassandra: HNSW bolt-on

73SIGMOD'24 Tutorial

Extended Relational
Example: PASE

Advantages
√ Adaptable to different types of workloads
√ As with Ext NoSQL systems, offers diverse capabilities
Limitations
Х May suffer performance overhead (e.g. page indirection) 74

IndexAmRoutine

Raw Data Tables

Index Interface

Index Storage

IVFFlat

HNSW

Figure from Yang et al
“PASE...”. SIGMOD 2020

Other Relational Systems
• pgvector: similar to PASE
• AnalyticDB+V

• Relational OLAP DBMS over disaggregated
compute-storage

• Adds indexing and fast-slow write structures for
supporting real-time read/writes over slow-
updateable vector indexes, plus accuracy-aware
cost estimation model for ANN

• SingleStoreDB: Adds sim. scores to enable brute-
force vector search

• ClickHouse, MyScale

75SIGMOD'24 Tutorial

Search Engines and Libraries

Search Engines

76

Lin et al “Vector Search with OpenAI
Embeddings: Lucene Is All You Need” (2023)
arXiv:2308.14963

Apache Lucene
(HNSW added in Lucene 9.0)

Elasticsearch OpenSearch Solr

Libraries: Meta Faiss, hnswlib, ANNOY, Microsoft
SPTAG, KGraph, E2LSH, FALCONN, etc.
SIGMOD'24 Tutorial

Benchmarks
• Surprisingly few benchmarks
• ann-benchmarks.com

• Real implementations, highly implementation-
dependent

• Li et al TKDE 2020
• Idealized implementations

77

Li et al “Approximate nearest neighbor search on high
dimensional data — Experiments, analyses, and

improvement.” IEEE Trans. Knowl. Data Eng. 32(8),
1475–1488 (2020)

SIGMOD'24 Tutorial

Summary of Vector Database Systems

SIGMOD'24 Tutorial 78

• Retrieval methods
• Storage methods
• Recovery methods
• Elasticity, availability,

consistency, security

• Latency
• Throughput, scalability

Part 3: Challenges and Open
Problems

79SIGMOD'24 Tutorial

Score Design/Selection
A particular score may not return maximally relevant
results, even under high recall:

80

“The total prod [negative user feedback] rate are 7.3%, 32.6%, and 43.1%
at top 1, 3, and 5... roughly 70% are generated by the EBR node during the
retrieval stage”

Wang et al “Integrity and junkiness failure handling for embedding-based retrieval: A
case study in social network search”. SIGIR 2023

SIGMOD'24 Tutorial

Disk-Friendly/Distributed Indexes
Graphs are slow for disk-resident datasets

81

Start Neighborhood 1 Neighborhood 2 Finish

Entry Point Selection Graph Traversal Termination

x1 x2 x3 x4 Disk Layout

40k
10k

1k

Qu
er

ies
 p

er
 S

ec
on

d

1.00.5 0.75
Recall

HNSW
IVF

ANNOY

Source: ann-benchmarks.com

Meanwhile, trees/tables are disk-friendly but have
worse QPS/recall

SIGMOD'24 Tutorial

Update-Friendly Graphs
Accuracy degradation following series of updates

82

HNSW
Vamana

Batch Number

Effect of Repeated Delete-Reinsert Cycles

Singh et al “FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for
Streaming Similarity Search” 2021. arXiv 2105.09613

SIGMOD'24 Tutorial

Easy-to-Build Graphs
• O(DN log N) still too high for huge N (billions)
• ANN_SIFT1B (128 dimensions):

• Vamana single: 2 days @ 1100 GB peak memory
• Vamana merged: 5 days @ 64 GB peak memory

• 200M subset of ANN_SIFT1B:
• HNSW, ef=500: 5.6 hours @ 64 GB peak memory

83

Sources:
• Malkov & Yashunin “Efficient and robust approximate nearest neighbor search using hierarchical navigable

small world graphs” IEEE Trans. Pattern Anal. and Mach. Intell. 2020
• Subramanya et al “DiskANN: Fast accurate billion-point nearest neighbor search on a single node”.

NeurIPS 2019

SIGMOD'24 Tutorial

New Capabilities
• Multi-Vector Search

• NRA only works with bounded scores (e.g. cosine)
• Incremental k-NN
• Secure k-NN
• VDBMS Benchmark

84SIGMOD'24 Tutorial

Thanks!

85SIGMOD'24 Tutorial

Q and A

