An Autonomous Materialized View Management
System with Deep Reinforcement Learning

Yue Han, Guoliang Li, Haitao Yuan, Ji Sun
Department of Computer Science, Tsinghua University, Beijing, China
{han-y19@mails. liguoliang@,yht16@mails.,sun-j16@mails. }tsinghua.edu.cn

Abstract—Materialized views (MVs) can significantly opti-
mize the query processing in databases. However, it is hard
to generate MVs for ordinary users because it relies on
background knowledge, and existing methods rely on DBAs
to generate and maintain MVs. However, DBAs cannot handle
large-scale databases, especially cloud databases that have
millions of database instances and support millions of users.
Thus it calls for an autonomous MV management system.
In this paper, we propose an autonomous materialized view
management system, AutoView. It analyzes query workloads,
estimates the costs and benefits of materializing queries as
views, and selects MVs to maximize the benefit within a space
budget. We propose a deep reinforcement learning model to
select high-quality MVs, which enriches the state representa-
tion with query and MVs’ embedding. Experimental results
show that our method outperforms existing studies in terms
of MV selection quality.

Index Terms—materialized views, database, deep learning,
deep reinforcement learning.

I. INTRODUCTION

Materialized views (MVs) are very important in DBMS that
utilize views to improve the query performance based on
the space-for-time trade-off principle. Specifically for online
analytical processing (OLAP), many queries share equivalent
sub-queries and there are many redundant computations
among these queries. MVs can alleviate this problem by
utilizing views to avoid such redundant computations.

However, it is hard to automatically generate MVs for
ordinary users [|10], [13], [[14]], because it relies on background
knowledge. Existing methods rely on DBAs to generate and
maintain MVs. However, DBAs cannot handle large-scale
databases, especially cloud databases that have millions of
database instances and support millions of users. Therefore,
it calls for an autonomous MVs management system, which,
given a query workload, selects potential queries (subqueries)
as views and uses the views to answer subsequent queries.

MV management systems have four main modules. (1)
MV candidate generation. It analyzes the query workload,
selects common sub-queries, and takes them as candidates
to generate MVs. (2) MV Cost/Benefit estimation. It esti-
mates the cost and benefit of materializing subqueries as
views, where the cost includes the space/time overhead and
the benefit is the saved execution time using the view to
optimize queries. (3) MV selection. It selects high-quality

*Guoliang Li is the corresponding author. This work was supported by
NSF of China (61632016,61925205,62041204), National Key R&D Program of
China (2020AAA0104500), Huawei, BNRist, and TAL education.

MV candidates to generate MVs based on the estimation
model, aiming to maximize the benefit within a given cost
budget. (4) MV-aware query rewriting. Given a new query,
it selects appropriate views and rewrites the query based on
the selected views. There are several challenges in these four
modules. First, MV selection relies on benefit estimation of
using a view to optimize a query, and existing methods [[1],
[12] do not consider the complicated effect of views on
queries and cannot capture the correlation between views
and queries. Second, traditional MV selection methods model
it as the knapsack problem and use greedy algorithms to
choose which MVs to materialize. However, the knapsack
problem relies highly on the estimation model and cannot
find high-quality views. Third, MV rewriting also relies on
the estimation model, but existing models depend on the cost
model of optimizers and cannot effectively estimate the cost
and benefit of using an MV to answer a query.

To address these challenges, we propose an end-to-end
autonomous MV management system, AutoView. It first ana-
lyzes the query workloads, extracts common subqueries, and
selects the subqueries with high frequency as MV candidates.
Then it estimates the benefits of MV candidates and selects
the candidates with the highest benefits as MVs. We use a
recurrent neural network (RNN) model, Encoder-Reducer,
to estimates queries and views and embed them as embedding
vectors. Next, to effectively select the MVs, we propose a re-
inforcement learning (RL) model, Encoder-Reducer Double
Deep Q-learning Network (ERDDQN), to select MVs. Finally,
for MV rewriting, we use the ERDDQN model to select MVs
to rewrite queries.

Contributions. We make the following contributions.

(1) We propose an autonomous materialized view manage-
ment system, AutoView, with deep reinforcement learning.
(2) We propose a reinforcement model to select MVs for ma-
terialization, and integrate the embedding vectors of queries
and MVs into the model.

(3) Our experimental results on real datasets showed that our
method significantly outperformed existing solutions.

II. AutoView OVERVIEW
A. Problem Formulation

MYV Selection. Given a set of SQL queries, @ = {q¢;}, we
aim to generate a set of views V' = {v;}, such that (1) the

I . .
| Database Schema title AS t | q1 q2 qs Queries |
! n movie_companies AS mc | |
[_movie_keyword] - , . -
: N mowe_ke o company_type AS ct ! 7|Tt.t|tle 7;‘-1.t|tle 7|Tt title :
| id id | info_type AS it | N X !
: kw mv_id movie_info_idx AS mi_idx! - / \ :
| kw_id movie_info AS mi) N\L ‘)
| P movie_keyword AS mk | ‘ mfo bottom 10 !
g Keynord AS k : T e :
X id . pdn year ‘top 250 LIK ““%sequel%' |
I info 2 i | EE 2005 AND 2010 " eaf> 005 |
| r}']v_ldd id | 1
1 if_tp_i Hit
J company_name BRI P gtcﬁ year e N T Sy W e T WMoV W _i
' d = : ‘vlw 'UZ 'U3| Views,
I'| name 1 ; ; ; ; 1 b N b= !
! oty code i | Execgtpn t|me. of dlﬁereht MV selgctlon plan's. : 7'('mv_id T info, T info, !
| mv id i : Query Origin With v; | With vy With v | With vy, vs | cpy_|d | mv_id, 7]< mv_id, |
: D D cpy._id | @ 10.67ms | 4.61lms | 139.79ms | 8.37ms 3.28ms | [N |m|nfo Oyﬂ'mlnfo :
i -, . B ~ G |
: End ™ cpy_tp_id : q2 0.39ms 0.26ms | 130.08ms X X | pdc mfo op 250 |
i 1 q3 169.12ms X 230.67ms | 167.14ms X : :
1 : size X 111MB 103MB 43MB 154MB | |
D ______ e e —_—_—————_ Lo o o o e ______ |
Fig. 1. MYV selection example.
{'l)l ,U3 } .
qq MV Candidate Generator. We analyze the workload to
Tt title find common subqueries for MV candidate generation, where

N O;nfo = 'top 250'
3‘ 'pdc’
U3

Query rewriting example.

Fig. 2.

total size of views in V' is within a space budgetﬂ and (2) the
performance of using views in V' to answer queries in) is
optimized. Figure [I| shows an example with three queries
Q = {q1,9,q3} and three views V = {vj,vq,v3}. The
execution time of different optimization plans are also shown
in Figure |1} The spaces occupied by vy, vs,vs are 111MB,
103MB and 43MB respectively. If the MV space budget is
50MB, we will materialize {v3} and utilize it to optimize
g3 with a benefit of (10.67-8.37)+(169.12-167.14)=4.28ms. If
the budget is 120MB, we will materialize {v;} and get
a benefit of (10.67-4.61)+(0.39-0.26)=6.19ms. If the budget
is 200MB, we will materialize {vy,v3} and get a benefit
of (10.67-3.28)+(0.39-0.26)+(169.12-167.14)=9.50ms. We do not
materialize vo, because it does not improve the performance.

Query Rewriting with MVs. Given a set of views V' = {v;}
and a query ¢, we select a subset of views, VE CV, and use
the views in V}, to answer query g, such that the performance
of answering ¢ with MVs in V' is optimized. For example,
given three MVs vy, v2,vs, query g; can be optimized using
v1 and vs, and the optimized plan is shown in Figure

B. System Overview

To address the MV generation and query rewriting prob-
lem with MVs, we propose an autonomous MV management
system as shown in Figure [3| The goal of AutoView is to
automatically generate MVs by analyzing the query workload
and utilize the MVs to optimize queries. The system includes
four modules, MV candidate generation, MV cost/benefit
estimation, MV selection, and MV-aware query rewriting.

!0Our method can also support the case that the total time of generating
views in V' is within a time constraint.

a subquery is a subtree of the syntax tree for relational
algebra. Common subqueries are the equivalent or similar
rewritten subqueries among different queries. Common sub-
queries with a high quality will be selected as MV candidates.
Equivalent subqueries will be rewritten in the same form [2],
, [E[] And subqueries that have similar selection conditions
will be merged into a large one. For example, “WHERE
country IN ('Sweden’, 'Norway’) GROUP BY country” and
“WHERE country IN (‘Bulgaria’) GROUP BY country” will
be merged into “WHERE country IN (‘Sweden’, 'Norway’,
‘Bulgaria’) GROUP BY country”. We discuss the details of
MV candidate generation in Section

MV Estimation. Let V' = {v;} denote the set of MV
candidates. This module estimates the saved execution time
(called benefit) from executing ¢; € @ by making use of a
set of views Vj, C V. The benefit of using V), to answer ¢;
can be calculated by the formula below:

B(Qi7 Vk) =tlg, — tc‘;k

(1)
where t,, is the execution time of g; without using views
and t}l/’c is the execution time of executing ¢; using V.

There are several ways to estimate the benefit. The most
straightforward way is utilizing the cost estimation of op-
timizer. The difference of the COST of a query and the
rewritten query can be the estimation of benefit. Due to that
optimizer has a large error on the estimation, we can use
deep learning model [8]] as cost estimation. Furthermore, we
propose an RNN model, Encoder-Reducer, to estimate the
benefit and embed queries and MVs. Encoder-Reducer will
be introduced in future works.

MV Selection. Given a space budget 7, this module selects
a subset of MV candidates to maximize the total benefit of
answering queries in () within the space budget. We model
this selection problem as an integer programming problem
and propose a reinforcement learning (RL) model to address
it. The details of MV selection are presented in Section [[V]

MV-aware Query Rewriting. Given a query, if the query
can be optimized using the MVs, we use our estimation model

MV Generation

Benefit Estimation

Encoder-
Reducer

Collect Data

Fig. 3.
to select the most appropriate views and rewrite the query
using the views. Subqueries in the query are replaced by the
MVs. An example of utilizing v; and vs to rewrite g; is shown
in Figure [2| 0ipn fo=rtop 2507 (it) X mi_idx is replaced by v
and the predicate “info = ‘top 250” is appended in case that
v3 is a superset of “info = ‘top 250”". The join order is also
reordered. (t X mc) X ct is reordered into t X (mc X ct),
and mc X Opind='pdc (ct) is replaced by vs.

C. Related Work

Traditional MV selection methods are usually heuristic
methods, while reinforcement learning (RL) methods are
introduced in recent researches. Jindal et al. [4] propose an
iteration based heuristic method, BigSubs, to select MVs.
However, it cannot use the experience of history workloads
and result in unstable results. Liang et al. [6]] propose an
RL method, DQM, to predict the benefit and learn a policy
for view creation and eviction. This method observes real
runtimes of queries in the DBMS instead of using benefit
estimation or heuristics. Thus, when the distribution of data
or workload changes, they rerun the workloads and retrain
the model that results in an expensive model training cost
in the cold-start step. Yuan et al. [12] propose an RL method
to select and create MVs for workloads. They regard the
whole MVs selection state as a fixed-length state of the
DON model [7]. Thus, it retrains the DQN model to fit new
workloads. Moreover, they use the assumption of infinity
space budget and cannot handle multiple views rewriting. To
address these problems, AutoView learns to estimate benefits
with query plans and has a better generalization ability.

III. ViEw CANDIDATES GENERATION

The first challenge of autonomous MV management is
to obtain important view candidates in the workload. Here
we take the benefit of a subquery as the importance of
materializing the subquery as a view candidate. Intuitively,
the benefit of a subquery is positively correlated to its
frequency and computational cost. There are two methods
to find high-beneficial subqueries. The first method searches
for subexpressions of the SQL text as MV candidates, but
this method has two limitations. (1) A subexpression of a
SQL may not be a valid subquery. (2) A good MV may not
be an explicit subexpression.

Estimation N

Benefit
[ol®
(919}

 Embedding

Benert
| \
Training LD]\

MV Selection Execution | Output

Selection | Recommendation |

‘ ‘Q1—>MV1 ‘

| ‘sz:MVZ‘ ‘

| R |

Experience | 1
ecl | Execution | | E E E E

DDON |
Training Materialize | Result

ffffff [

AutoView Framework.

The second method represents each SQL query as a tree-
structured query plan and finds high-beneficial subtrees.
Query plans in tree structure provide more choices for
selecting view candidates. However, each query may have
many available query plans for different join order. This
results in a large number of different subtrees. We keep
the query plan which is recommended by the optimizer,
because it has high possibility to contain a high-beneficial
MV. However, there are still a large number of subtrees. To
address this issue, we propose an efficient method to extract
common sub-expressions and generate MV candidates.

MYV Candidate Generation Framework. For each query,
we first extract the tree-structured physical query plan from
optimizers. We then detect the common subtrees, where two
nodes (subtrees) in the query plan tree are equivalent if the
two nodes have similar join/selection/projection conditions
and their children are equivalent. We can merge the two
nodes. Next, we calculate the benefit of each subtree, which
is the product of the number of queries that contain common
subtrees and the estimated benefit. Finally, we take the top
beneficial subtree as MV candidates. The challenge here
is to efficiently detect the common subtrees because it is
rather expensive to enumerate every subtree and check every
subtree pair.

Merging Similar Nodes. To efficiently detect common
subtrees and the corresponding MV for these subtrees, we
merge two subtrees into a new subtree once we detect them.
An merging example is shown in Figure [1} First, we try
to merge ¢; and g3 and detect common subtrees between
them. The purple subtrees, oinfo='top 250’ (it) X mi_idz,
have same join condition which is “ itid = mi_idx.it id”.
And their children are both “it where info="top 250’)" and
“mi_idx”, which are equivalent respectively. Thus, we merge
¢1 and g3 so that they share the same common subtrees.
Second, we merge g2 into the graph of ¢; and ¢3. Note
that the purple subtree in ¢, is not completely equal to that
in g; and g3, but it is worth merging them because using
one MV to optimize three queries is beneficial for saving
the storage, especially in the situation with a “GROUP BY”
clause. The result of the merged subtree should be a union
set of the two subtrees. Thus, the selection condition will
be “info=‘top 250’ OR info=‘bottom 10°”. Then, additional

filters, oin fo—'top 250 AN Tin fo—rvottom 107 are appended to
the corresponding queries to ensure correct execution results.

Merging Query Plan Trees. To find the high beneficial
subtrees, we merge all the query plans among the workload
into a Multiple View Processing Plan (MVPP) [11]. MVPP is
a directed acyclic graph that merges all the query plan trees.
In the graph, equivalent subtrees with the same structure
are merged into one subtree so that we can easily find the
common subtrees. We adopt a bottom-up manner to merge
the equivalent subtrees. First, two leaves are merged if they
use the same tables and have the same selection/projection
conditions. Second, we merge two internal nodes if (1) the
two nodes have the same selection/projection conditions and
(2) their children are equivalent, i.e., for each child of a node,
we can find an equivalent child of the other node and vice
versa. Iteratively, we merge the queries into the query graph.
Finally, we count the frequency of each node in the query
graph (i.e., the number of queries that merge into this node),
and take the node (ie., the corresponding subtree rooted at
the node) with high benefit as the MV candidates.
IV. MV SELECTION

Given a set of MV candidates and a query workload,
we select a subset of MV candidates to maximize the total
benefit while not exceeding a space constraint. We model this
problem as an integer programming problem. Let e;; € {0, 1}
denote whether we use v; to optimize ¢;, z; € {0,1}
denote whether v; will be materialized, and 7 be the space
constraint. We optimize:

Q| VI
argmaXZB(qi,Vl) s.t (ij|vj|) < 7, where
=1 j=1
eij S {Oa l}aVZ € [17 |QH7] S [17 ‘VH’
Vi= {Uj|eij =1,7 € [L,|V[]},Vi € [1,|Q]],
Tj = max{eij‘i € [17 |QH} Vi € [L |V|]

A. Benefit/Cost Estimation of MV Candidates

We estimate the execution time and space cost of each
MV candidate generated from the query plan graph in
Section [II} and prune low benefit MV candidates to optimize
the MV selection problem. Given the estimation results of MV
candidates, we attach a score, w,, to each MV candidate [[15].
w,, can be calculated by w, = fx(t‘& where f, is the
appearance frequency of the subtree (counted in the merged

query plan graph), t, is the execution time (estimated by

the subtree, t5cqn, is the time of scanning the result from
the disk (calculated by multiplying the size and the unit time
of disk accesses). We retain MV candidates with higher w,
until the space cost exceeds the budget.

B. DDON Model for MV Selection

It is expensive to use an ILP solver to solve the MV
selection problem because there are a large number of queries
and MVs. Thus, we utilize the deep reinforcement model
to address this problem. DDQN model is an effective model

Environment

[Q-Network }

(ool

Action
lQ(87 Cl())

| Select? |

| Statistics
.[. O .][...] E”°°der
- - == Reducer
Budget etc.|Benefit, etc. |dden State
Fig. 4. Encoder-Reducer DDQN Model.

among RL models, but there are two challenges: (1) The
number of variables of the MV selection problem is dynamic
varied among different workloads and it is hard for state
representation. (2) It is hard to encode the relation between
MVs, i.e., whether two MVs can be used jointly for optimizing
a query. To address the first challenge, we design an iterative
method for selecting MVs so that we can split the global state
into many fixed sub-states. To address the second challenge,
we design a new state representation method which can
include the rich information in queries and MVs. DDQN
model contains two parts, the agent and the environment.
The agent plays the “game” of solving the MV selection
problem, and the environment provides the simulation of
the problem-solving process and gives the rewards. Our
Encoder-Reducer DDQN model (ERDDQN), is shown in Fig-
ure The model has six main parts: environment, agent,
state, reward, action and policy.

Environment. It stores the global MV selection state and
calculates the total benefit during the iterative solving pro-
cedure. Environment models the global selection state as a
bipartite graph where nodes at the left side represent queries
in @, nodes at the right side represent views in V, and
the edges between them represent {e;;}. The environment
module provides observations for the agent module.

Agent. It consists of two neural networks and the experience
replay mechanism. The two neural networks can be seen as a
function W*(s, a) which approximates the action-value func-
tion W (s, a), where W(s,a) equals the expected feedback,
G, after choosing action a (changing e;; to 0 or 1) at state
s. G is positively correlated to the final total benefit. We
maximize the final total benefit by obtaining a high G.

Gy =rep1 +Tep2 + 7V 043 + (2)

where 7 is the reward, y is the decay and ¢ is the rounds of
the iteration.

Reward. To make the feedback positively correlated to the
final total benefit, we define the reward as the change of total
benefit after each action. Gy will be the max total benefit we
can achieve without the decay. With the decay, the more

steps we take in the solving procedure, the lower feedback
we get. Therefore, the model will achieve the optimal solution
as soon as possible to obtain higher feedback.

Action. At each iteration, environment takes an edge (g;, v;),
i.e., using v; to optimize ¢;, from all edges and asks agent
whether to use this edge. The answer is the action. If yes,
e;; for this pair will be set to 1, ie., putting this pair in the
global selection state. If not, e;; for this pair will be set to 0,
i.e., removing this pair from the global selection state.

Policy. Agent acts based on the policy of obtaining higher
feedback. Agent chooses the action with the highest feedback.

State. We propose a state representation that includes the
semantic vector outputted by the Encoder-Reducer model
besides the features extracted from the environment ob-
servation. This semantic vector provides rich information
about the pair (g;,v;) such as MV’s structure which can
be used to judge whether two MVs conflict on one query.
Note that traditional methods cannot handle the conflict
and cooperation problems because they regard each MV as
individual one. We estimate the MV size by multiplying its
estimated cardinality and its row width. We input MVs into
Encoder and obtain the estimated cardinality.

Solving Procedure. Environment and agent work iteratively.
Agent takes actions and changes the global selection state
according to the policy and observation of the environment.
Once the selection state converges, or we reach the maximum
iterations, the global selection state with the highest benefit
will be saved as the final solution.

Training. ERDDQN model trains with the experience replay
mechanism, which builds an experience pool and samples
experience tuples (s, as, Spy1,7141) for training, where s,
denotes the current state, a; denotes the action it chooses
at sy, s¢41 denotes the next state after applying a;, and
W*(st,as) denotes the estimated action-value of the Q-
network. Let [r be the learning rate. We update the Q-
network parameters by the iteration:

W*(s¢,ar) = W*(sg, ar)+Hlr[rep+y max W*(s¢41,a)—W* (s, at&l

®)
For each experience (s, a, St41, 7t+1), we use the estimated
action-value (r;41 +v max, W*(s¢y1,a)) at (t 4 1)-th round
to update W* (s, a;) at t-th round. Iteratively, the Q-network
approximates to the true action-value. To make the experi-
ence pool cover more possible states, we let the model choose
random action to take a random walk in the state space at
the early stage of training. The probability of taking random
action decreases from 0.9 to 0.1 during iterations.

V. EXPERIMENT
We have conducted a set of experiments to evaluate our

AutoView from two aspects. (1) The effectiveness of our MV
selection model, ERDDQN model. (2) The efficiency of our
query rewrite method.

A. Experimental Setting

Datasets. We use the real dataset IMDB with several
workloads. IMDB is designed in snowflake schema with

three tables, title (movie title), name (person name) and
movie companes. IMDB has a size of 3.7GB with 21 tables.
The largest table has a size of 1.4GB and 36 millions rows.

We use four query workloads-JOB [5]] for model training
and evaluation. The JOB workload contains 113 queries
with 16 joins at most. Given workloads, we generate MV
candidates and sample query-MVs pairs, and execute these
workloads to obtain ground truth of execution time and
cardinality. We split queries in each workload into training
and test dataset with the ratio 8:2. We split the training
dataset into training and validation dataset with the ratio
9:1 in the 10-fold cross-validation.

Environment. We use a machine with Intel(R) Xeon(R) CPU
E5-2630, 128GB RAM, and GeForce RTX 2080.

B. MVs Training Data

To improve the model generalization ability and bet-
ter benchmark the model’s performance. The training data
should satisfy the properties as follows:

(1) Containing complex queries. The dataset should con-
tain enough complex queries which provide optimization
possibility for MVs, e.g., complex queries should contain at
least 5 tables and 3 filter conditions.

(2) Containing queries with similar structure. To provide
redundant computation that MVs optimize, queries should
have 3 or more other queries with similar structure.

(3) Containing positive and negative samples. If V}
optimize ¢; with no performance improvement, (g;, V%) is
a negative sample; otherwise (g;, Vi) is a positive sample. A
robust dataset contains both positive and negative samples.

(4) Containing multiple optimization choices. To train
the selection ability of ERDDQN, the dataset contains queries
that can use different MVs, i.e., a query can be optimized by
multiple MVs and multiple MVs can be jointly used.

C. Effectiveness on MV Selection

To evaluate the performance of our MVs selection module,
e evaluate the module on different budgets and compare
our ERDDQN model with BigSubs and traditional algorithms.
(1) TopValue: A greedy algorithm, using the metric of sum
benefit for each MV. The sum benefit of an MV is the sum
of the benefit of using this MV answering each query. MVs
with top sum benefit will be selected within the budget.
(2) TopUValue: A greedy algorithm, using the metric of
unit benefit, sum benefit/size, for each MV. (3) TopFreq: A
greedy algorithm, using the metric of frequency for each
MV. (4) BigSubs [4]]: An iterative method. It optimizes views
and queries separately in each iteration. In each iteration, it
first flips selection state of views by a specified probability,
then select views to optimize queries using an integer linear
programming solver. (5) AutoView-NS: Our ERDDQN model
without the semantic vector in state representation from
Encoder-Reducer model. (6) AutoView: Our ERDDQN model
with the semantic vector from the Encoder-Reducer model.
All methods are based on our benefit/cost estimation.

B Original Query

5
10 I Rewritting
Rewritten Query
m
E
>
o
c
210
-

20a 20c 20b 16b 18c Tc 25c¢ 17f
Queries
Fig. 5. Example queries rewritten in JOB workload.

MV Selection Benefit Comparison

4001
w T eyt e
~ 3009 | Tl
=
=
(]
c
(]
Q2004
I ! AutoView
'9 1 —— AutoView-NS
1004 \ BigSubs
- - TopValue
< I
[\ --=- TopUValue
i | --- TopFreq
0 4

0 200 400 600 800 1000 1200 1400
Fig. 6. M\?%g%%gig\rlllla(,}omparison.

We compare the effectiveness of these methods on opti-
mizing the JOB workload under different budget size from
5MB to 2000MB. The result is shown in Figure [

AutoView vs Heuristics. AutoView outperforms TopValue,
TopUValue and TopFreq. The reason is two-fold. Firstly,
AutoView can estimate the benefit of utilizing multiple MVs
while the greedy methods cannot because it is expensive to
enumerate all the combination, which is exponential. Thus,
greedy methods approximate the benefit by summing up
the individual benefit which is not accurate. Secondly, the
performances of greedy methods are not stable during the
increase of budget while the AutoView grows stable. The
reason is that greedy methods are more likely to fall in local
optimum, and they select MVs with higher benefit or unit
benefit, but higher benefit leads to larger size that waste the
budget. While AutoView adjusts the earlier selection in the
subsequent iterations. When an MV results in local optimum,
ERDDQN model will prefer not to select this MV.

AutoView vs Bigsubs. AutoView outperforms BigSubs by
12.5%. The reason is two-fold. Firstly, BigSubs flips a view by
the probability that relies on the benefit and cost of this view.
The probability cannot well reflect the correlation between
views. While AutoView can capture the correlation between
views. Secondly, BigSubs may fall in local optimal. While
AutoView learns to select views, and avoids local optimal
solution as low rewards make the model to change the action.

AutoView vs AutoView-NS. AutoView outperforms
AutoView-NS 4 times on total benefit under the budget of
500MB, because AutoView-NS selects MVs that are in conflict
with each other so that some MVs become useless and lost its
benefit due to other MVs. However, AutoView can capture
the correlation between MVs, benefiting from the semantic

vectors of query and views in the state representation.
AutoView learns from the semantic vectors and tends to
avoid selecting MVs that are in conflict with existed ones.

Summary. Our ERDDQN model and semantic vector can
improve the quality of MV section.
D. Efficiency on Query Rewriting

We evaluate the latency of our query rewriting method.
We rewrite the queries in the JOB workload and compare
the latency of original queries with the total latency of
rewritten queries and rewriting. Figure [5| shows the result
of 20 queries. We observe that the query rewriting latency is
nearly a constant because it relies on the size of query/MV
plans and the number of available MVs which vary little
among queries/MVs. The average query rewriting latency in
JOB workload is 64.75ms which is small compared to the
slow queries. The slowest query in JOB workload is “20a”
with 9 joins and a latency of 154,902.81ms. It is optimized to
6303.36ms with a query rewriting latency of 65.28ms. Thus, it
is beneficial to rewrite slow queries and our query rewriting
method is efficient and has a low latency.

VI. CoNCLUSION
We proposed an autonomous materialized view generation
system AutoView. We proposed the DON model with the
semantic information of queries and MVs’ embedding that
leaded to higher and stable performance on MVs selection.
Experimental result showed that AutoView outperformed
existing methods.

REFERENCES

[1] R. Ahmed, R. G. Bello, A. Witkowski, and P. Kumar.
generation of materialized views in oracle. VLDB, 2020.

[2] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimiz-
ing queries with materialized views. In ICDE, pages 190-200, 1995.

[3] T. Dokeroglu, M. A. Bayir, and A. Cosar. Robust heuristic algorithms
for exploiting the common tasks of relational cloud database queries.
Appl. Soft Comput., 30:72-82, 2015.

[4] A.Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting subexpressions
to materialize at datacenter scale. PVLDB, 11(7):800-812, 2018.

[5] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann. How good are query optimizers, really? PVLDB, 2015.

[6] X. Liang, A. J. Elmore, and S. Krishnan. Opportunistic view material-
ization with deep reinforcement learning. CoRR, abs/1903.01363, 2019.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller. Playing atari with deep reinforcement
learning. CoRR, abs/1312.5602, 2013.

[8] J. Sun and G. Li. An end-to-end learning-based cost estimator. In
VLDB, 2019.

[9] Y. Tao, Q. Zhu, and C. Zuzarte. Exploiting common subqueries for

complex query optimization. In Collaborative Research, page 12, 2002.

S. Tian, S. Mo, L. Wang, and Z. Peng. Deep reinforcement learning-

based approach to tackle topic-aware influence maximization. Data

Science and Engineering, 5(1):1-11, 2020.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view

design in data warehousing environment. In VLDB, 1997.

H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han. Automatic view generation

with deep learning and reinforcement learning. In ICDE, 2020.

X. Zhou, C. Chai, G. Li, and J. SUN. Database meets artificial

intelligence: A survey. IEEE Transactions on Knowledge and Data

Engineering, pages 1-1, 2020.

X. Zhou, J. Sun, G. Li, and J. Feng. Query performance prediction for

concurrent queries using graph embedding. VLDB, 13(9):1416-1428,

2020.

D. C. Zilio et al. Recommending materialized views and indexes with

IBM DB2 design advisor. In ICAC, pages 180-188, 2004.

Automated

[11]
[12]
[13]

[14]

[15]

	introduction
	AutoView Overview
	Problem Formulation
	System Overview
	Related Work

	View Candidates Generation
	MV Selection
	Benefit/Cost Estimation of MV Candidates
	DDQN Model for MV Selection

	Experiment
	Experimental Setting
	MVs Training Data
	Effectiveness on MV Selection
	Efficiency on Query Rewriting

	Conclusion
	References

