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ABSTRACT

Modern location-based systems have stimulated explosive growth
of urban trajectory data and promoted many real-world applica-
tions, e.g., trajectory prediction. However, heavy big data processing
overhead and privacy concerns hinder trajectory acquisition and
utilization. Inspired by regular trajectory distribution on transporta-
tion road networks, we propose to model trajectory data privately
with a deep generative model and leverage the model to generate
representative trajectories for downstream tasks or directly sup-
port these tasks (e.g., popularity ranking), rather than acquiring
and processing the original big trajectory data. Nevertheless, it
is rather challenging to model high-dimensional trajectories with
time-varying yet skewed distribution. To address this problem, we
model and generate trajectory sequence with judiciously encoded
spatio-temporal features over skewed distribution by leveraging an
important factor neglected by the literature —the underlying road
properties (e.g., road types and directions), which are closely related
to trajectory distribution. Specifically, we decompose trajectory into
map-matched road sequence with temporal information and embed
them to encode spatio-temporal features. Then, we enhance trajec-
tory representation by encoding inherent route planning patterns
from the underlying road properties. Later, we encode spatial cor-
relations among edges and daily and weekly temporal periodicity
information. Next, we employ a meta-learning module to generate
trajectory sequence step by step by learning generalized trajec-
tory distribution patterns from skewed trajectory data based on
the well-encoded trajectory prefix. Last but not least, we preserve
trajectory privacy by learning the model differential privately with
clipping gradients. Experiments on real-world datasets show that
our method significantly outperforms existing methods.
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1 INTRODUCTION

Advances in vehicle-embedded sensors and mobile location-based
services have generated big trajectory data and boosted urban
trajectory data applications [13, 47].

Data analysts such as urban planners rely on accessible trajec-
tory data (e.g., data published by online car-hailing platforms !) to
generate insights for strategic planning. However, heavy trajectory
maintenance and processing overhead and privacy concerns hinder
these applications.

Specifically, data analysts do not have too much computing re-
source for maintaining and processing big trajectory data, thus
they want to conduct lightweight analysis. Compression-based and
sampling-based methods are commonly adopted to alleviate this
issue [7, 30, 53, 58]. Nevertheless, the former still suffers heavy
trajectory decompression and processing overhead, while the latter
is time-consuming for a large sampling ratio and has poor per-
formance for a small sampling ratio. Furthermore, these methods
raise privacy concerns because urban trajectories contain sensitive
individual information ( e.g., unique moving patterns) and are not
safe for publishing. Although there are some privacy-preserving
trajectory data publishing methods [18, 19], their trajectory model-
ing and privacy-preserving approaches have practical limitations.
First, they model raw trajectories into geo-grids sequence and ne-
glect that trajectories are constrained on road networks. Second,
they preserve privacy by adding noises to trajectory prefixes, while
trajectory length is varying, which significantly reduces data util-
ity (especially long trajectory with more accumulative noise). Be-
sides, anonymization methods are vulnerable to attackers with
background knowledge [45].

Inspired by the fact that trajectories are regularly generated on
a road network with underlying moving patterns, we propose to
model trajectory data with a deep generative model such that: (a)
the model is lightweight, (b) the model is of high utility to support
the downstream trajectory applications, and (c) the model preserves
individual privacy, to address the above limitations. However, there
are two challenges to model map-matched trajectories. (C1) It is
hard to model real-world trajectories because their spatial route
distribution is time-varying. External spatio-temporal features such
as road network points of interests (POIs) and weather information
are often adopted to enhance trajectory modeling [47]. Neverthe-
less, the underlying road network properties (e.g., road types and
road directions) which are critical for capturing trajectory rout-
ing patterns are overlooked in existing trajectory works. We show
that road properties are closely related to and thus important to
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Figure 1: Trajectory spatial distribution is closely related
to road types. Trajectory origins and destinations are more
likely to be on residential or tertiary roads, while trajectory
route pass more higher-level roads, e.g., primary roads.

model trajectory distribution with an example of trajectory spatial
distribution on different road types in Figure 1. (C2) It is hard to
model real-world trajectories because trajectory data are high di-
mensional with respect to the number of route edges and have very
skewed distribution on the road network [60]. Although prevalent
spatio-temporal graph convolutional models [39] are shown to be
effective on modeling common graph node or edge attributes, they
are not effective enough for modeling high-dimensional yet skewed
trajectories (will be shown in experiments).

To address the above challenges, we propose a deep generative
model named MTNet to effectively model high-dimensional yet
skewed trajectory data by fully leveraging the underlying road
properties. Firstly, in addition to spatial route edge and temporal
departure and travel time features of trajectory, we also collect the
important road properties from OpenStreetMap and encode them
into road meta knowledge to enhance spatio-temporal trajectory
representation, to address the challenge C1. Specifically, MTNet
decomposes a trajectory into a map-matched road sequence with
corresponding departure time and travel time of each passing road.
We (i) embed road, departure time slot and time-invariant influenc-
ing factors into hidden feature vectors; (ii) encode the underlying
road properties into road meta knowledge to capture inherent route
planning patterns; (iii) encode spatial correlations among edges
with graph embedding techniques [17]; and (iv) encode daily and
weekly temporal periodicity information with temporal graph[52].
Secondly, MTNet employs a knowledge-based meta-learning mod-
ule to generate high-dimensional trajectory step by step by learning
generalized trajectory distribution patterns from skewed trajecto-
ries, to address the challenge C2. Specifically, given an encoded
trajectory prefix and the corresponding road meta knowledge, MT-
Net generates a possible subsequent road with selection probability
and its travel time. By recursively taking as input the preceding
road, MTNet extends the encoded trajectory prefix and outputs a
subsequent road, until a complete trajectory is finally generated.
Last but not least, we preserve the privacy of trajectories for learn-
ing MTNet by adopting differentially private training techniques
with clipping gradients [1], where we control gradients from a
single trajectory as a whole and improve the utility.

Leveraging well-encoded spatio-temporal trajectory features
and inherent road meta knowledge based on the above designs,
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Table 1: Notations

Notation Definition
(lat,Ing, tstamp)y., Raw trajectory sequence
(x,td, tc)y. Map-matched trajectory sequence
x, td, tc Route edge, departure time and travel time
7(td) Discrete departure time slot of td
Wi, Wy, Wye Trajectory embedding matrices
xe, te Edge and departure time slot embedding vector
N, Number of departure time slots
L, L Raw and map matched trajectory sequence length
t Sequence generation step, ¢ € [1, L]
z Gaussian noise sampled from N/(0, 1)
dye,dte, dz Dimension of xe, te and z
wselt wsig Neural weights output from MetalLearner
h, K<, h'¢ hidden state of LSTMs, x and its travel time
dp,d, Dimension of h and of WSF? Wsi9_pX pic

MTNet can not only generate representative trajectories with close-
to-real-data statistics in intended granularities, but also directly
support multiple real-world trajectory applications [5, 48], without
further maintaining and processing a large scale trajectory data.
Specifically, we support (i) Trajectory popularity ranking [8, 49].
Given a candidate set of trajectories, MTNet can estimate the time-
dependent appearance probability (or popularity) for each of them.
(ii) Trajectory suffix prediction[28]. Given an input trajectory prefix,
MTNet can predict the most probable trajectory suffix. (iii) Time-
dependent travel time estimation [57]. Given a trajectory and a
departure time, MTNet can predict the travel time on each passed
road segment. Note that MTNet is designed for publishing trajec-
tory privately and periodically, which aims to support downstream
applications on historical trajectories conveniently and effectively.
We need to retrain the model to adapt to the new patterns when
confronted with sudden and drastic shifts such as COVID-19.

In summary, we make the following contributions with MTNet.
(1) We formalize map-matched trajectory modeling problem with
both spatio-temporal information, and formulate trajectory genera-
tive model for supporting trajectory applications (Section 2).

(2) We encode trajectory sequence with spatio-temporal features,
underlying road meta knowledge, spatial correlations among road
edges and temporal periodicity information, to enhance trajectory
modeling ability (Section 3.1 and 3.2).

(3) We propose a deep generative model named MTNet to model
skewed trajectory data based on the above well-encoded trajectory
features (Section 3.3). We leverage MTNet to generate synthetic
yet realistic trajectories for downstream applications and directly
support multiple trajectory applications (Section 3.4).

(4) We illustrate how to learn MTNet differential privately with
clipping gradients (Section 4).

(5) We conducted comprehensive experiments on two real-world
datasets. The results show that MTNet significantly outperforms
existing methods (Section 5).

2 PRELIMINARIES
2.1 Background

Raw Trajectory. A raw trajectory is a sequence of GPS points
with corresponding timestamps, denoted as (lat, Ing, tstamp)y., =
((lat, Ing, tstamp)1, (lat, Ing, tstamp)a, - - -, (lat, Ing, tstamp)r, ), in
which L, is the trajectory length. We use laty.r , Ingy.,, tstampy.p,
to denote latitude, longitude, timestamp sequences respectively.
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Figure 2: Satellite GPS based and Map-matched Trajectories

Example 1:[Raw Trajectory] Consider trajectory ((30.6751, 104.0597,
1477998947), - - -, (30.6708, 104.0620, 1477999132)) from origin s to
destination d in Figure 2 (a). Each (lat, Ing, tstamp); is a coordinate
with the timestamp when vehicle passes. The travel time from s to
d is timestamp at d minus timestamp at s, i.e., 185 seconds. O

Road Networks. A road network is a directed graph G = (V, E),
where V is the vertex set, and E is the edge set. Each x € Eis a
directed edge, i.e, a directed road segment. Here we use undirected
edges as an example for ease of presentation, and our method and
experiments are based on directed ones.

Map-matched Trajectory. A raw trajectory represented by times-
tamped GPS sequence can be matched to road networks, called
map-matched trajectory. A map-matched trajectory can be repre-
sented as (x, td, tc)1.p = ({x, td, tc)y, - - -, {x, td, tc)r ), where x; is a
road segment, td; is the departure time at the start point of x;, tc;
denotes the travel time (i.e, tc; = tdj+1 — td;), and L is the trajec-
tory sequence length. We denote the sequence of trajectory routes,
departure time, and travel time by x;.1, td., and tcy.r, respectively.

Example 2:[Map-matched Trajectory] Consider a map-matched
trajectory (D, tdo, teo), (63, tdy, ter), (@, tdy, tez)) in Figure 2(b).
The road network has four connected edges, i.e., xD, x@), x6) 5@,
Departure time td; and travel time tc;, t € {0, 1, 2} for each passed
edge in Figure 2 (b) are computed based on linear interpolations
with coordinates and timestamps in Figure 2 (a). Trajectory origins
and destinations are aligned to corresponding edge joints, with
offsets of fsets and of fsety. O

Differential Privacy. Differential privacy (DP) is a mathematical
property of a randomized algorithm to describe the level of privacy
preservation of individuals from the input dataset. Intuitively, DP
ensures that a user can only get aggregate information of the input
data, but cannot learn anything on a particular individual. Assume
any two neighboring trajectory datasets with only one different
trajectory. A randomized algorithm A achieves (¢, §)-DP if for all
output subset S of A and for any two neighboring trajectory datasets
D e D, D’ € D with only one different trajectory:

Pr[A(D) € S] < e°Pr[A(D’) € S] + 6 (1)
where privacy level is measured by € and , i.e., the smaller € and
d are, the stronger the privacy is. Gaussian mechanism is widely

used to implement DP. For example, given a function f : D — RY,
it adds noise from Gaussian distribution N(0, SJZ,O'Z), ie, A(D) =
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Figure 3: Trajectory Modeling and Utilization

f(D)+N(0, 512002), where Sy = maXpeighboring 0,0’ |f(D) = f(D')l2
is the Ly sensitivity of f and o is the noise scale. For € € (0, 1), if

0 > +/21In(1.25/6)/€, then A satisfies (e, §)-DP [10].

2.2 Trajectory Modeling and Utilization

We study the problem of trajectory modeling and utilization using
deep generative models with DP guarantee. We first model trajec-
tory distribution to quantify the utility of generated data. We then
propose trajectory generative model to model and support trajec-
tory generation. Finally, we discuss how to achieve DP guarantee.

Modeling Trajectory Distribution. Owing to various mixed influ-
encing factors (hidden variables), urban trajectories have complex
inherent patterns. Intuitively, a trajectory is generated step by step
from an origin edge to a destination edge with the corresponding
temporal information, where each edge is dependent on its trajec-
tory prefix. Consequently, given a trajectory dataset {(x, td, tc)1..},
its trajectory joint probability density function (PDF) can be formu-
lated as follows:

L
f((x,td, teyr.r) = f((x td, te)r) ]_[f((x td, te)s|(x, td, te)1:e—1)
t=2

origin edge

prefix dependent step ¢

L
= Pr(x1)f(tdi1]x1)f(te1|x1, tdr) - l_[ Pr(x¢|x1:t—1, tds) f (tce |xe, tdy)
t=2

where Pr(xi) is the probability distribution of the first edge x1,
f(tdy]x1) is the PDF of departure time td; at x1, f(tc1|x1, tdp) is the
PDF of travel time tc; on x; when depart at tdy, Pr(x;|x1:s—1, td;)
and f(tct|x;, td;) are the conditional distribution of ¢-th edge x; and
its travel time fc;, respectively. For Vt € [2, L], we have x; topologi-
cally constrained by it preceding edge x;_1, and td; = tdy—1 + tcy—1.
It is very hard to directly model the above unknown (hidden) joint
distribution Py = f({x, td, tc)1.1), as the distribution space grows
exponentially with respect to L. Thus, we propose to implicitly
approximate the real trajectory distribution with a deep generative
model. Formally, we learn a tractable generative model G to fit
the real urban trajectory generation Py, such that minimizing the
distribution distance between Py and G. In particular, we use a sym-
metric and smoothed measurement, Jensen-Shannon divergence
(JSD), to compute the distribution distance, i.e.,

Pa(X)
M

1+ 2B glos 201 @)

1
min EEXNPd [log



where X is a trajectory from the real dataset or generated by G,
and M = %(Pd(X) + G(X)). It will be factorized as route edge and
destination marginal distribution distances in Section 5.1. Figure 3
presents the trajectory modeling and utilization problem.
Formulating Trajectory Generative Model G. Intuitively, real-
world trajectory data are generated from various origins at specific
departure time. Based on this observation, to flexibly support syn-
thetic trajectory generation in different granularities and support
multiple trajectory applications simultaneously, we formulate G as
a conditional generative model with origin edge and departure time
(of the following edge) as input conditions. We factorize trajectory
sequence generation into step by step route edge and travel time
generation process. Specifically,

L
G((%, td, feyy.L|xo, tdy) = [ | G, ferlRo:e-1, td1r) ®3)
t=1
where Xy = x¢ and tAdl =
t € [1,L], based on the current trajectory prefix (X, td, fed1p—1,
it produces (generates) the next edge X; and the corresponding
travel time £c; stochastically, where %;_1 and fc;_; are generated
in step ¢t — 1, and t:i[ = tAdt,l + fc;—1. Note that the generated
trajectory length does not need to be exactly L, i.e., the route edge
generation process may stop earlier with some probability during
each step, where the sequence is padded with a stop flag. Besides,
random deviations during the generation process are simulated via
multinomial sampling.

tdi, i.e., input conditions. In each step

Example 3:[Trajectory Generation] Consider a trajectory starts
from xo = x¥) and arrives at its stop point at td; in Figure 2. Suppose
a model outputs G(x1 = x(3)|(x(1)), (td1)) = 83% with fc; = 525, and
G(x = —|(x(l)), (td1)) = 17% with fc; = 0s, where ‘~" means the
stop flag, and G’s output varies stochastically. We make a selection
by multinomial sampling, e.g., generate x(3 with fc; = 52s. O

Achieving DP. We train the model G with DP guarantee that
privatizes the access of each trajectory during model training by
clipping and perturbing model gradients with random noise, which
will be described in details in Section 4.

3 MTNET

Trajectories are hard to model due to high dimensions, complex cor-
relations among road edges and trajectories, and time-varying yet
highly skewed trajectory distributions. Nevertheless, there exists
inherent route planning patterns (hidden variables) on the underly-
ing road network that influence trajectory generation, e.g., moving
patterns between residential areas and working areas and route
planning patterns based on road capacities and geographical di-
rections. Based on this observation, we propose a deep generative
model named MTNet, which utilizes spatio-temporal feature em-
beddings and the inherent road knowledge of trajectory generation
based on meta learning. Figure 4 presents an overview of MTNet,
which is composed of the following four modules. (1) Trajectory
representation module (Figure 4 (b)) is for embedding spatial route
edge and temporal features, aiming to represent trajectory sequence
effectively. (2) Road knowledge encoding module (Figure 4 (c)) is
for encoding road edge properties, which introduces inherent route
planning features for enhancing trajectory prefix encoding and
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suffix generation. (3) Trajectory prefix encoding module (part of
Figure 4 (a)) is for encoding trajectory prefix, aiming to extract long-
term spatio-temporal dependency from high-dimensional trajectory
prefix. (4) Meta generator module (Figure 4 (d)) is for trajectory
route edge and its travel time generation, aiming to effectively sup-
port trajectory modeling and generation over skewed trajectory
data. Besides, the output is masked by road network topology con-
straints in Figure 4 (e), in order to improve generation efficiency
and quality.

3.1 Trajectory Representation

For trajectory modeling, the first problem is how to represent trajec-
tory sequence with spatio-temporal characteristics, i.e., trajectory
route edge and corresponding departure time and travel time infor-
mation. Specifically, we embed each discretely labelled road edge
into a low-dimensional vector to capture the geographical distribu-
tion features of road edges. We discrete departure time into time
slots and further embed it to capture the temporal distribution
features of trajectory data. We also embed time-invariant hidden
factors of travel time for each edge. These embeddings are concate-
nated with encoded road knowledge as unified input (Figure 4 (a)).

Edge Embedding. Trajectory route sequence is originally repre-
sented as discrete sequence of road edge labels, which cannot be
directly fed to MTNet for trajectory prefix encoding. For road net-
work G = (V,E), we may directly use one-hot encodings, which
generates a |E| dimensional vector and takes the position of a spec-
ified edge as 1 and others as 0. However, it leads to the curse of
dimensionality, as |E| is quite large. To overcome this issue, we
embed edges with matrix Wy € RIEIXdxe \where each x € E is
represented with a low-dimensional (dx) vector xe = Wy[x].

Time Embedding. Trajectory distribution varies in different time
slots, e.g., urban trajectories depart from residential area to working
area in the morning, and turn back in the evening. Besides, route
edge travel time is also time dependent, i.e., longer during peak
hours and shorter during off-peak hours. To model the variable
temporal distribution of trajectory data, we embed departure time
and make it an input of MTNet. Specifically, we discrete departure
time into N time slots for each day, where each time slot 7(td) €
[0, N;]. Further, we produce 7 * N time slots for a week to capture
the daily changes, which can also be applied to month or other
periods. For example, we discrete 86400s in each day into 48 time
slots, where each slot is half an hour in [0, 47], and we get 7 * 48
time slots for the whole week. For better representation ability, we
embed departure time slots with matrix W, € RIN<IXdze where a
departure time td is turned into low-dimensional vector Wz [z(td)].

Spatio-temporal Correlations Encoding. We adopt a popular
graph embedding method named node2vec [17] to pre-train and
initialize all embeddings of Wy, to embed spatial correlations among
edges. We adopt temporal graph [52, 57] to capture the temporal
periodicity information, where each node denotes the embedding
of either a neighboring time slot or a neighboring day. Besides, for
travel time of each edge, there exists stable yet complicated factors,
e.g., capacity, popularity and traffic lights. We maintain embedding
matrix Wi, € RINzIXde o model these time-invariant factors for
travel time generation, where we have travel time hidden state
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vector hi¢ = Wi [x] for each x € E. These embedding matrices are
further learned together with MTNet (see Section 4).

Example 4: [Trajectory Representation] In step t € [1, L], based
on %1 and fc;—q output from step ¢t — 1, we compute t;it = t}it_l +
fc;—1. Then we embed x;_; and th are into xe; = Wy [Xy—1] and
tdy = WT[T(t;it)] respectively, as input to MTNet (Figure 4 (a)). O

3.2 Trajectory Prefix Encoding

Road Knowledge Encoding. Despite embedded trajectory se-
quence itself, there exists semantic information of trajectory on
the underlying road network, which contains significant trajectory
distribution patterns. To discover these useful patterns, we collect
road properties from the road maps and encode them into infor-
mative formats. Then, we employ the road knowledge encoding
sub-module MKEncoding to concatenate encoded road edge prop-
erties and departure time information into road meta knowledge
(or knowledge in short), which assembles the time varying routing
patterns and serves to trajectory prefix encoding and the meta gen-
erator module. Specifically, we describe and encode the following
road edge properties, a few of which are neglected in the literature
(e.g., road types and directions). (1) Road length, which mainly af-
fects the travel time and routing strategies to avoid traffic lights,
is normalized into Z-score format. (2) Road type (or level), chosen
from {residential street, tertiary road, secondary road, primary road,
trunk road and motorway}, which correlates to route edge planning,
is encoded into one-hot format. (3) Geographical direction, from 0
to 2, which mainly affects the following route edge selection, is
also normalized into Z-score format. Besides, trigonometric value
format, e.g., sin, is appended for more effective representation. (4)
Max speed, which corrects trajectory speed errors causes by GPS
biases, is normalized into Z-score format. (5) Other properties, e.g.,
oneway and living-street tags, are encoded into one-hot format.

Example 5:[Road Knowledge Encoding] In step ¢ € [1, L] with cur-
rent route edge X;—1 and departure time tdy, suppose adjacent edge
set of ;-1 is {xa1, Xa2, - -+, Xak }» Xa1:qk in short. It outputs knowl-
edge mk; = MKEncoding (Wi[x;—1], W;[r(td;)]) for encoding
trajectory prefix, and mkg; = MKEncoding (Wy [x4i], WT[T(th)]),
Xai € Xq1.qk- for the meta generator (Figure 4 (d)). ]
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Trajectory Prefix Encoding. Based on the spatio-temporal tra-
jectory embedding and road knowledge for each route edge, we
further encode the trajectory prefix to capture the long-term spatio-
temporal correlation between the trajectory prefix and the trajec-
tory suffix to be generated. Particularly, we adopt long short-term
memories (LSTMs) — a typical kind of recurrent neural network
that can effectively encode long-term dependency of sequence data,
to encode the critical trajectory prefix. Besides, we use fully con-
nected feedforward network following LSTMs to extract useful
hidden features from encoded prefix for the next edge generation.
Note that we adopt LSTMs for its effectiveness and succinctness,
and more sophisticated recurrent neural modules that support step
by step encoding and generation can also be applied here to further
improve the encoding performance.

Example 6:[Trajectory Prefix Encoding] In step ¢ € [1, L], based on
hy—1 € R% for prefix Xo.;—2 with t?ilzt_l, and input (xe, te, z, mk);,
Recurrent steps from h;_; to hy, i.e., brings spatio-temporal fea-
tures of X;_1 and td; into the current state. With the following
feedforward network, it outputs h} € R% for % generation. O

3.3 Trajectory Generation with Meta Generator

There are hidden route planning patterns behind real-world urban
trajectory generation on the underlying road network, where each
road holds its own turning patterns according to its properties (or
knowledge). Based on this observation, we design the core func-
tional output module, i.e., meta generator module (Figure 4 (c)).
Leveraging the encoded road knowledge from Section 3.2, we pro-
pose a meta learning sub-module, named MetalLearner, to serve a
family of neural weights for trajectory generation, where weights
are optimized for each edge selection at any departure time slot.

Meta Learner. Metalearner captures road network route planning
patterns for each road edge based on the spatio-temporal knowledge
from MKEncoding, and adapts and serves optimized settings (neural
weights) for the output neural network, for each of the next-edge
candidates. From the meta learning perspective, whether to select
a specific edge candidate as the next edge to generate at a specific
departure time slot is seen as an individual sub-task. There are
different optimized output neural networks (with different neural
weights) for each sub-task, i.e., for each road edge and departure
time slot, where experiences (patterns) learned from edges with



abundant real samples can be easily adapted to edges with less
samples and improve the corresponding generation performance.
MetalLearner is implemented by a single-layer fully connected
feedforward network.

Example 7:[Meta Learner] For encoded spatio-temporal knowl-
edge mky; from MKEncoding, meta learner sub-module outputs
optimized (adapted) neural weights W,; = MetalLearner(mkg;). O

Output Neural Network. This sub-module is for generating route
and travel time with MaskedSoftmax and MaskedSigmoid func-
tions respectively (i.e., softmax and sigmoid functions with topology
mask in Figure 4 (e)). Specifically, for each step ¢ € [1, L], suppose
the next route edge candidates are x,.4% and the departure time
is td;. With prefix feature vector i} and travel time hidden state
vectors h(tfl:ak of x41.qk, it works as follows.

e Route edge generation. For each candidate edge x4; € X41.4k,
we get a score by the dot product of optimized neural weights
Wasl.of " and prefix feature vector h}. Then, all scores for adjacent
edge candidates are turned into selection probabilities based on
MaskedSoftmax function. Based on multinomial sampling over
these probabilities, we randomly choose one candidate as the
next generated edge, where there exists a stop flag (virtual edge)
used for trajectory early stop.

o Travel time generation. Travel time of currently selected edge
is produced by the dot product of the corresponding optimized
neural weights W;ilg and travel time state vector h.S, where the
result is passed through a sigmoid function to generate a rescaled
travel time tc; € [0, 1], for numerical stability.

Example 8:[Output Neural Network] For time step ¢t € [1,L], it

N soft
generates X; = MaskedSoftmax (W " .
on softmax score h’; . Waslf]f[,i € [1,k]. It also generates fe; =

. . sig N t
MaskedSigmoid(W ° . h;cl:ak,xt), where h'S = Wic[xa1:0x]. O

h’t‘), i.e., sampling based

Example 9:[Trajectory Generation Dataflow] We show a dataflow
example in Figure 5. x®) with fc1, and hy for prefix (x(l)) and t211:1
are given for t = 1. For t = 2, we input (xe, te)2 and mky for % and
tdy. mka:q3 are computed for adjacent edges (Figure 5 (a)). b5 for
prefix (x(l), x(3)) and tAdl;z is computed, where we update state to hy
(Figure 5 (b)). Then, W;f: J(Z and W;llg 3
Finally, £ and fc; are generated (Figure 5 (d)).

are computed (Figure 5 (c)).
O

3.4 Supporting Trajectory Applications

There are four mainstream applications on map-matched trajecto-
ries [47], i.e., trajectory clustering (e.g., popularity ranking), predic-
tion (e.g., trajectory suffix prediction), planning (e.g., travel time
estimation) and historical trajectory querying (e.g., anomaly detec-
tion). MTNet can support the first three types of trajectory analysis
applications except for querying historical trajectories, because
the generative model learns the inherent statistical patterns rather
than purely remembers historical trajectories, e.g., it overlooks the
occasional historical anomalies.

Trajectory Generation. MTNet learned from real big trajectory

data can be used to generate synthetic yet representative trajec-
tories that preserve the statistics in the original trajectory data.
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Thus we do not need to store and maintain the original large vol-
ume of trajectory data in normal use cases. We support trajectory
generation in different granularities based on the superior model
formulation in Equation 3, i.e., generate samples for any subset of
origin edges and any period of departure time. For example, given
a trajectory dataset, MTNet can generate synthetic trajectories
for each fixed origin, which achieves similar performance as the
original data on real-world travel time estimation task (empirically
evaluated in Section 5).

Directly Supporting Trajectory Applications. We formulate
MTNet to be able to directly support statistical trajectory analysis
without generating trajectories. We use the following applications
as examples to show how to use MTNet to support real applications.
(1) Trajectory popularity ranking. Given a set of trajectories, MT-
Net can be used to rank them by their time dependent popularity.
It inputs trajectory route candidates {x(.; } and departure time con-
dition td;. It computes probabilities MTNet(X; = x;|x0:r—1, tAdl;t),
Vt € [1, L], as rank values to compare time-dependent popularities.
(2) Trajectory suffix prediction. Given a trajectory prefix (e.g., an ori-
gin with departure time), MTNet searches the most promising suffix
by maintaining promising candidates set according to generation
probability in each step during the suffix generation process.
(3)Time-dependent travel time prediction. Given a trajectory with a
departure time, MTNet can directly estimate the travel time of each
route edge. Specifically, the input is a route x;.; and departure time
td; from x1, and xy.; is padded with x that is adjacent to x1, as
input condition. In step t = 1, we input xo and td;, MTNet outputs
fca1.ak of x1, Then in step t = 2, we input x; and tdy = tdy + fcy
and get fcy. We repeat above steps until we finish step ¢ = L, and
get the whole accumulated estimated travel time.

4 DIFFERENTIALLY PRIVATE MTNET

We introduce how to learn differentially private MTNet to effec-
tively and efficiently model noisy trajectory data while preserving
individual trajectory privacy. We set up the training loss function
with two parts: learning trajectory route distribution and the cor-
responding travel time distribution. For trajectory route, we use
negative log-likelihood (NLL) loss, shown in Equation 4, which is
the accumulated loss for each time step t € [1, L]. For travel time,
we use mean absolute loss (MAE) in Equation 5, which is the accu-
mulated travel time absolute error for each step ¢ € [1, L]. Note that
MAE (rather than mean square error (MSE)) is used here for improv-
ing the resistance to travel time outliers because MAE pays more
attention (gradients) to outliers that deviated from mean travel time,
e.g., when the vehicle idles or stops on roads for some reasons. We
use a hyper-parameter A to balance the influence of these two parts,
in Equation 6, where 6 denotes all trainable parameters, and we
optimize 6 to minimize the total loss L.

L
Lx = _EXO:LvtdI:L'“Pdatu [Z log ge(-’%t = xtlx():tfla tdl:t)] (4)
t=1

L
Lt =By rdypterp~paaral 2 ltct = Golfer|xor, tdrr)|] (5)
=1

©)

We adopt differentially private stochastic gradient decent method
(DPSGD) [1] to learn MTNet, where real trajectory route and travel

mginL =L+ AL
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Figure 5: MTNet Trajectory Generation Dataflow Example

Algorithm 1: Learning MTNet Differential Privately

Algorithm 2: MTNet-Forward

Input: Aligned trajectory routes: X = {xo.r }
Departure time sequences 79D = {tdy.1.}
Rescaled trajectory travel time 7C = {tcy..}
Sample size B and gradient norm bound C
1 X« ({xo.L-1} {tdiL});
Y — ({xpL} {tenr})s
Initialize trainable parameters 6 of MTNet;
while stop criteria is not met do
Uniformly sample (Xp, Yg) from (X, Y);
L = MTNet-Forward(Xg, YB);
7 g(i) « Vg L[i], fori € [1,B]; //
(i) — g(i)/max (1, 1982, // clip gradient
9 §(i) « (X (i) + N(0, a*C?1))/B; // add noise
0 =60 — ag(i); // a is learning rate
return MTNet;

(- S O I )

compute gradient

10

1

oy

time are used privately to train and guide trajectory generation.
Algorithm 1 shows the pseudo code. The input includes processed
trajectory dataset, where each trajectory is aligned to length L,
departure time for each route edge from the start point, and nor-
malized travel time for each whole edge. Firstly, the input dataset
is divided into input set X and output label set Y (lines 1-2). Then,
all trainable parameters, except Wy and W initialized with graph
embedding, are initialized with Xavier initialization [15] (line 3).
The next step is to learn MTNet privately with input set X and out-
put label set Y until MTNet converges (lines 4-8). In each iteration,
we uniformly sample a mini-batch B of trajectories and compute
the forward loss (line 5-6). The gradients with respect to MTNet
parameters are computed and clipped by Ly norm with threshold C
(lines 7-8). Gaussian noise is added to clipped gradients to privatize
the access of trajectories, with privacy level parameter o, before
MTNet is updated with gradient decent (line 9-10). We return the
learned privacy preserving MTNet (line 11). During the training
process, we employ the advanced RDP accounting technique [34]
for a tight estimation of privacy loss.

Algorithm 2 presents the explicit MTNet forward propagation
procedure. Trajectory route edge labels are transformed into embed-
ded representations (line 1). Departure time sequence is discretized
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Input: Xg : ({xo.L-1}, {tdi.L})
Yp : ({x1.L}, {tcrr})
1 {xerrL} = Wx[{x0.L-1}]; // embed route edge
2 {terr} = We[{z(td1.L)}]; // embed departure time slot
3 {mky.L} =MKEncoding({xer.L}, {terL});
4 Initialize L, =0, L; =0;
5 fort € [1,L] do
6 {h}} = Recurrent(Concat ({(xe, te,mk);}));
7 {xea1.ak } = Wx[Adjacent({x;—1})]; // adjacent edges
5| RS ) = Weelxanak]);
9 {mkgai.ak } = MKEncoding ({xeqi.ak}.tes);
{Wsoft}, {Wsig

10 gk gk} = Metalearner ({mkai.qak });
11 {%¢} = MaskedSoftmax({le":Z]z}, {hED);

12 | {fe} =MaskedSigmoid({WS12, Y. (R, ). (%))
13 Ly = Lo+ NLL({Xt }, {x£});3

u | Ly = L+ MAE({Fer), {ter});

15 return Ly + A L;;

into slots with function 7 and also transformed into embedded rep-
resentations (line 2). Spatio-temporal meta knowledge for input
road edges are encoded (line 3). Mini-batch training loss £, and
L; are initialized (line 4) for accumulation in each generation step
(lines 5-14). In each step ¢ € [1, L], the above three input parts are
concatenated and passed through Recurrent module (line 6). The
adjacent edges of current edge x;_1 are looked up and their travel
time hidden states and corresponding meta knowledge are com-
puted (lines 7-9). MetaLearner module produces corresponding
meta weights (line 10) for generating the next edge and its travel
time (lines 11-12), with the help of trajectory prefix feature vector
h, hic from Recurrent module and meta knowledge of x;_1’s ad-
jacent edges. Ly and L; are accumulated based on NLL and MAE
loss respectively (lines 13-14). Finally, we get the mini-batch loss
L by summing these two losses with a balancing factor A (line 15).

THEOREM 4.1. Algorithm 1 guarantees differential privacy.



Proor. For each training step (lines 4-10), the L2 gradient norm
of a trajectory is bounded by C (i.e., sensitivity) (line 8). Then, Gauss-
ian noise guarantees (g, §)-DP with respect to the sampled mini-
batch, i.e., satisfies Equation 1, by setting o = 4/21n(1.25/6)/¢ [10].
Next, each sampling training step guarantees (ge, gd)-DP with re-
spect to the whole data based on privacy amplification theorem [4],
where g is the sampling ratio. Finally, the DP learning process of G
guarantees DP trajectory generation and analysis, according to the
post-processing property of DP [10]. Curious readers may refer to
RDP [34] for a tight privacy loss accounting for overall training. O

Discussion. Intuitively, we protect individual privacy by learn-
ing population-level trajectory distribution statistics as more as
possible and individual-level information as less as possible. By
perturbing gradients with individual-level Gaussian noise, we ran-
domize individual-level sensitive information without sacrificing
the population-level statistics. Note that MTNet achieves high util-
ity by applying DP over each whole trajectory sequence, while the
literature perturbs coarse-grained location trajectory prefix mod-
eled on geo-grids, which neglects road constraints and reduces data
utility, especially for long trajectory with more accumulative noise.

5 EXPERIMENTS
5.1 Setup

Datasets. We used two real trajectory datasets: Chengdu and Xian?,
and there were 18.2 million and 11.6 million trajectories used for
evaluation, respectively. Table 2 showed the details.

Validation Metrics. We used the aforementioned Jensen-Shannon
divergence (JSD) measurement to capture and measure the distance
between real test data and synthetic trajectory route distribution.
Besides, we evaluated travel time generation error with MAE. More-
over, we evaluated the effectiveness of directly supporting trajectory
applications with popularity ranking and suffix prediction tasks,
and we evaluated the effectiveness of synthetic data based on travel
time estimation task. Specifically, we formulated JSD measurement
into route edge usage JSD (route JSD in short, Equation 7) and
destination JSD (Equation 8).

e Route JSD. Origin conditioned route edge usage distribution
quantifies detailed trajectory route edge distribution statistics.
We formulated route usage distribution distance by comparing
the usage percentage of each edge in real and synthetic trajec-
tory data for each origin edge xp, as shown in Equation 7. Note
that the upper bound of route JSD was proportional to average
trajectory sequence length rather than equal to 1, as there was
more than one route edges in a trajectory. To evaluate route JSD,
we generated equal-sized synthetic trajectories for each origin
edge in test data, compared them with real ones based on JSD
distance and computed average distance over all origin edges.

e Destination JSD. Destination distribution for each origin edge
was also a crucial statistics for modeling trajectory distribution
(e.g., concerning traffic flow direction patterns), and synthetic
data should keep the same destination distribution patterns with
the input dataset. We used synthetic data from the above route

Zhttps://gaia.didichuxing.com
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Table 2: Details of the Datasets

Road Network Chengdu Xi’an
Timespan 10/01 - 11/30, 2016 & 2018
# Edges 11, 606 13,022
# Trajectories 18.2 Million  11.6 Million
Avg. Sequence Length 23 28

JSD evaluation to further evaluate destination JSD, where we
computed average destination JSD distance over all origin edges.

Py(x € xl:L|x0)+
M

Gx € -’ACI:leO)]
M

1
RouteJSD(x) = 5 [Ep;(xexi.r|xo) 108
™)
Eg(xesy.Llxo) 108

Pg(xL|x0)

G(xL|x0)
T] ®
where P is real trajectory distribution, P;(xz|xp) is origin condi-
tioned probability that x is the destination, Py(x € x1.p—1|x0, XL)
is OD conditioned probability that x is used in trajectories, and
M = %(Pd +G). As JSD measures the distance between two distribu-
tions, the smaller the output value, the better the trajectory modeling
performance. Besides, xy, (or 1) above denoted the real destination
edge rather than padded stop flag used for alignment.

1
DES]SD(X()) = E [EPd(xL|x0) log +E§(*L|x0) log

Baselines. We compared MTNet with the following baselines:

e Ngram [42]. Trajectory route generation could be modeled by
classic Markov chain [37]. We implemented a third-order Markov
chain, named Ngram model. Note that continuous travel time
information could not be supported by Ngram.

e AutoSTG [39]. AutoSTG was a spatio-temporal graph convolu-
tional framework for traffic prediction. We adapted it to support
trajectory generation with a 2-layer LSTMs, where the number
of steps for diffusion convolution was set to 2 [27].

e CSSRNN [50]. CSSRNN was designed for map-matched trajec-
tory modeling and generation task. It leveraged masked LSTMs
for trajectory route edge generation. We extended it to support
extra travel time generation.

Our Methods. We implemented two methods MTNet and TNet.
The former used road knowledge and meta learning components
and the latter did not use them.

o MTNet. MTNet was the full version of our proposed model with
all optimization techniques as discussed in Section 3.

e TNet. TNet was implemented from MTNet by removing road
knowledge and meta learning. The reason of evaluating TNet was
to validate the superiority of spatio-temporal modeling approach
with temporal graph and the effectiveness of our trajectory se-
quence representation learning over baselines.

Default Framework Settings. Trajectory sequence length was
set as L = 20, according to the average trajectory length of the
datasets. The number of training epochs was set to 30, with early-
stop rule based on trajectory route JSD and patience of 5 epochs. In
addition, we applied DP of fixed privacy budget (¢ = 1,5 = 107°) to
MTNet. Hyper-parameter A was set to 0.1. The number of layers for
LSTMs and feedforward network was set to 2 and 1, respectively.
The dimension of parameters were set as follows: d, = 16, N; = 48,
dte = 32, dxe = 128, dy, = 128 and d,, = 32.
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Road Network Extraction and Processing. Road networks were
obtained from OpenStreetMap. Firstly, nodes, edges and their prop-
erties such as geographical geometry and road level were parsed
and modeled into a directed graph, where unreachable edges from
the main connected component were removed. Road length and ge-
ographical direction were computed based on its GPS coordinates.

Trajectory Data Pre-Processing. Geo-coordinates and times-
tamps of raw trajectories were map matched to road network, based
on the FMM algorithm [32, 51]. There are two issues for map match-
ing. First, as trajectories may not start and end at edge joints (e.g.,
x1 and x; may not be at edge joints), we compute the corresponding
travel time based on the offset ratio and omit offset details for ease
of presentation. Second, timestamps of the raw trajectory may not
be aligned with the road segments, and thus we cannot directly
calculate departure time td; and travel time tc;. To handle this, we
adopt linear interpolation based on road length to calculate the
departure time and travel time for each route edge. Trajectories
with lengths no larger than L were collected to compose the input
dataset, where trajectories with sequence length smaller than L
were padded with a stop flag. Continuous travel time values are are
normalized into Z-score format for numerical stability, which can
be scaled back to seconds. Trajectories were shuffled and split into
training data (80%) and test data (20%).

Environment Settings. Experiments were conducted on a Cen-
tOS 7.7 server with Cuda 10.0 and a Tesla V100 GPU with 32GBs
memory. Road network extraction and data pre-processing were
implemented in C++11 with Clang compiler. All trajectory methods
were implemented in Python 3.7 with PyPorch 1.2.

5.2 Evaluation on Different Settings

Evaluation on Number of Layers. We evaluated the impact of
the number of layers for MTNet, i.e., number of LSTMs and number
of feedforward layers after LSTMs. We varied #LSTMs in {1, 2, 3},
and number of feedforward layers in {0, 1, 2}. Figure 6 showed
the results. We observed that 2 layers of LSTMs were enough for
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Table 3: Model Sizes Comparison

Dataset Chengdu / Xi’an

Metric Ngram  AutoSTG CSSRNN  TNet  MTNet
#Params (M) -/- 1.6/1.8 1.6/1.8 1.8/2.0 1.6/1.8
Space (MBs) | 5.8/4.0 400+ 7.2/78  82/79 1.3/79

trajectory sequence encoding. And one single layer of feedforward
network achieved the best performance.

Evaluation on Dimension of Parameters. We evaluated the im-
pact of parameter dimensions on modeling trajectory data. Based on
the default settings, we varied optional Gaussian noise input with
dimension d, to simulate random deviations and to ease overfitting,
departure time slot and travel time hidden state embedding dimen-
sion d;e, route edge embedding dimension dy., encoded trajectory
prefix hidden state dimension dj and output neural weight dimen-
sion d, of Recurrent in {16, 32, 64, 128,256}. We also evaluated
number of departure time slots Ny € {12, 24, 48, 96, 192}. Figure 7
showed the results (x-axis ticks were omitted for number of de-
parture time slots). In summary, we set each parameter dimension:
dz =16, Ny = 48, dte = 32, dxe = 128, dy, = 128 and d,, = 32.
Evaluation on Balancing Route and Travel Time Error. We
evaluated the impact of hyper-parameter A which balanced the loss
between trajectory route and travel time during training, as shown
in Equation 6. A was varied in {10_4, 1073,1072, 10~1, 100, 101},
Figure 8 showed the results. We observed that A = 107! was a
good balance choice. Intuitively, larger A leads to lower travel time
MAE, but as the travel time was much simpler than trajectory route
distribution modeling, A = 10! made a considerable choice.

5.3 Performance Comparison with Baselines

To measure the effectiveness of modeling real trajectory data and
generating synthetic data with close-to-real-data statistics, we used
the origin edge and departure time conditions from the real data and
conducted trajectory generation evaluations. We compared MTNet
and TNet with baselines and evaluated the generation performance
on trajectory route and destination JSD (the smaller, the better), and
the corresponding travel time MAE. Table 3 showed the model sizes
(or # parameters) used during the following evaluations, where
all methods kept approximately equal sizes for fair comparisons.
Note that AutoSTG with graph convolution needed to input and
maintain graph adjacency information, thus it used larger space.

Performance Comparison. Based on the default settings, we
evaluated performance and compared with baselines by varying
sampled training data size in 25%, 50%, 75%, 100%. Figure 9 showed
the results, where Ngram did not support travel time generation and
hence did not show up in the corresponding sub-figure (also applied
to following evaluations). We made the following observations.
(1) MTNet significantly outperformed other models on trajectory
route and destination modeling. This was because MTNet effec-
tively represented, encoded and modeled trajectory data with road
knowledge based meta learning. Besides, TNet improved on tra-
jectory route and destination distribution modeling compared to
baselines, because trajectory route distributions were time depen-
dent and thus introducing spatio-temporal representation of trajec-
tory improved trajectory modeling ability compared to pure spatial
modeling formulation in baselines.

(2) MTNet and TNet outperformed baselines on travel time MAE.
This was because edge travel time was not constant but dependent
on departure time, and hence spatio-temporal representation based
and departure time conditioned modeling approaches of MTNet
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Table 4: Trajectory Scalability for Varying Length L

Dataset Chengdu/Xi’an

Metric L 20 40 60 80
Ngram | 3.12/3.00  7.37/7.07 9.26/10.1  9.64/11.5
Avg. | AutoSTG | 14.7/143  28.4/26.7 38.3/40.1  46.5/48.1
Route | CSSRNN | 0.71/0.51  2.10/1.85  2.74/2.90  2.90/3.32
JSD TNet 0.68/0.46  2.05/1.79  2.70/2.83  2.88/3.26
MTNet | 0.64/0.42 2.02/1.71 2.60/2.67 2.82/3.18
Ngram | 0.81/0.76  0.89/0.85  0.90/0.88  0.90/0.89
Avg. | AutoSTG | 1.00/0.99 1.00/1.00  1.00/1.00  1.00/1.00
Des. | CSSRNN | 0.27/0.24  0.44/0.46  0.45/0.53  0.45/0.54
JSD TNet 0.24/0.21  0.40/0.43  0.42/0.49  0.43/0.51
MTNet | 0.22/0.20 0.39/0.41 0.42/0.48 0.43/0.50
AutoSTG | 20.5/25.6  19.4/20.0  19.4/18.8  19.2/18.6
Travel | CSSRNN | 21.2/29.7  20.7/21.1  20.1/19.2  19.6/18.8
Time TNet 18.8/21.5 17.1/21.7  16.8/20.7  16.7/20.5
MAE(s) [ MTNet | 18.3/18.7 17.1/17.2 16.8/16.6 16.8/16.4

and TNet improved the quality. Besides, MTNet further reduced
travel time MAE compared to TNet, especially when the training
data volume was small, which showed that road knowledge was
helpful on modeling travel time. This was because road properties
such as length and capacity were effective to travel time modeling.
(3) All methods performed better with more training data but MT-
Net was much less data hungry and had better scalability on train-
ing data volume compared to other methods, i.e., suffered less per-
formance loss when reducing training data. It was because models
learned more sufficiently and improved generalization ability with
more training data, and MTNet with meta learning had highly adap-
tive modeling ability which learned inherent trajectory generation
patterns that migrated among route edges. Hence, MTNet eased
the data-hungry issue, i.e., using less training samples and less
computing resource while getting more stable performance.

(4) The performance difference across different methods was smaller
on Xi’an dataset. This was because Xi’an dataset had simpler road
network topology and less trajectory data, and thus it was easier
to model compared to Chengdu dataset.

(5) Ngram and AutoSTG performed bad on modeling trajectory
route and destination distribution. For Ngram with Markov prop-
erty, the generation process depended on a few preceding edges,
which was hard to support trajectory modeling with long-term cor-
relations (or dependencies) among route edges. Although AutoSTG
was proved effective on modeling time varying graph attributes
owned by all nodes or edges, it failed on modeling map-matched
trajectories because trajectories had highly skewed distribution,
where graph convolutional models were hard to converge.
Trajectory Length Scalability Comparison. We varied trajec-
tory length threshold L in {20, 40, 60, 80}, and evaluated modeling
scalability on L for all methods and compared their modeling ability.
Table 4 showed the results. We made the following observations.

982

—:— AutoSTG --- CSSRNN TNet —— MTNet

<

4x1071

Avg. Route JSD

Dest. JSD

Avg

3x107{\ TN

3

Travel Time MAE (s)

0 20 30 0 10 20 30

10
#Epochs
Figure 10: Training Efficiency Comparison (Chengdu)

(1) MTNet outperformed other methods for all L settings on tra-
jectory route and destination modeling and scaled well on varying
trajectory length. This was because spatio-temporal trajectory rep-
resentation, road knowledge and the meta learning module were
based on single route edge rather than the whole trajectory se-

quence with had varying lengths.

(2) MTNet and TNet outperformed baselines on travel time MAE. This
was because travel time was mainly influenced by hidden factors of
each edge and departure time information which was captured by
effective spatio-temporal trajectory representation strategies that
both used in MTNet and TNet.

(3) Trajectory route and destination JSD increased along with in-
creasing L. This was because trajectory distribution space grew
exponentially with respect to trajectory sequence length, i.e., there
were more potential roads and destinations involved.

(4) Average travel time MAE decreased along with increasing L. This
was because longer trajectory sequences tended to have more short
road segments with small travel time, which reduced the average
error of single road segment.

Training Efficiency Comparison. We visualized the average
route JSD, destination JSD, and travel time MAE during training
based on the more challenging Chengdu dataset (Xi’an dataset
with similar tendency was omitted). Figure 10 showed the results,
where AutoSTG that failed on modeling trajectory route and desti-
nation with highly skewed distribution was omitted. We made the
following observations.

(1) MTNet learned much faster than other methods. The conver-
gence rate of MTNet on route JSD, destination JSD, and correspond-
ing travel time were all fastest. This was because road network
knowledge based meta learning of MTNet was quite efficient, i.e., it
was able to extract effective routing and distribution patterns from
well represented and encoded trajectory data.

(2) Evaluation loss of TNet also decreased faster than baselines
on all three metrics. It verified that spatio-temporal trajectory rep-
resentation with temporal graph to capture temporal periodicity
information was more effective to model real-world trajectory data
with time varying patterns.

Utility Loss Evaluation with Differential Privacy. We evaluated
the utility loss brought by achieving DP with fixed privacy budget
(€ = 1,6 = 107°). Table 5 showed the results. We observed that
the utility loss brought by DP was negligible. This was because
map-matching reduced privacy sensitivity of trajectories, i.e., we
had abundant map-matched trajectories with high redundancy



Table 5: Utility Loss of MTNet with (¢ = 1,6 = 107°)-DP

Table 6: Popularity Ranking Accuracy (%)

(d) Whole Day-Fake (e) 12-15pm-Fake
Figure 11: Origin-fixed Trajectory Distribution (Chengdu)

(f) 21-24pm-Fake

for training and hence the statistical distribution could be fully
captured with DP guarantee. Besides, Gaussian mechanism eased
the overfitting of road travel time modeling.

Note that the above performance gain of MTNet based on JSD
statistics may not look very high compared to the following case
studies. This was because the marginal distribution (i.e., on destina-
tion and route edge) naturally weakens the distribution differences
as the distribution space is much smaller, while the real performance
differences between methods were larger as errors were amplified
(or accumulated) on prefix-dependent trajectory sequences.

5.4 Application Cases Study

Trajectory Generation in Different Granularities. We ran-
domly chose an origin edge from Chengdu dataset and generated
the same number of trajectories, whose departure time was consis-
tent with real ones. We visualized trajectories during the whole day,
12 —15pm and 21 — 24pm departure time slots for both the real data
and synthetic samples generated by MTNet. Figure 11 showed the
results, where edge usage density was described by edge color and
line width, i.e., from low density with light white and thin width
towards higher density with deeper red and bolder width. We made
the following observations.

(1) Synthetic trajectories by MTNet resembled the distribution of
real ones, i.e., real trajectories in the upper side had indistinguish-
able route density as synthetic ones in the lower side. Note that
a few occasionally generated tail edges were brought by learned
road turning patterns, which could be removed as their rank (i.e.,
density) were orders of magnitude lower than normal ones.

(2) Trajectories had different spatio-temporal distributions for dif-
ferent departure time slots, which were accurately captured by
MTNet. In particular, real trajectory distribution was different be-
tween 12 — 15pm and 21 — 24pm, and synthetic trajectories by
MTNet effectively captured the time varying distribution changes.
For example, the street towards residential neighborhoods in the
lower-left corner, was bold (i.e., busy) at night hours 21 — 24pm, but
thin during daily time 12 — 15pm.
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Dataset Chengdu / Xi’an Ngram AutoSTG CSSRNN TNet MTNet

Metric Avg. Route JSD  Avg. Des. JSD  Travel Time MAE (s) Chengdu 79.0 73.1 82.9 84.1 87.3
MTNet-DP 0.64/0.42 0.22/0.20 18.3/18.7 Xi’an 83.7 76.8 86.5 87.6 90.1
Without-DP 0.63/0.42 0.22/0.20 18.5/18.9 Table 7: Popularity Ranking Cases (Chengdu)

Real Route Usage (%)/Popularity Rank
Route A B C D
9am | 54/0.12 22/0.09 18/0.04 6/0.01
22pm | 81/0.29 14/0.07 0/0 5/0.03

Trajectory Popularity Ranking. We randomly chose 1,000 OD
pairs and sampled 10 departure time slots for each OD pair from the
test data. We randomly sampled two different trajectory routes for
each fixed time slot and OD pair, with their occurrence frequency
collected as popularity ground truth. We evaluated popularity rank-
ing consistency with these 10, 000 trajectory pairs and compared
the average accuracy with baselines (trajectory popularity rank-
ing was described in Section 3.4). Table 6 showed the results. We
observed that MTNet achieved 4% higher ranking accuracy than
baselines. This was because popularity ranking was affected by
trajectory route distribution, and MTNet outperformed baselines
on modeling route distribution of the original data (see Figure 9).
To reveal more details on time-dependent popularity ranking,
we randomly chose an OD edge pair from Chengdu dataset and ana-
lyzed its viable routes. We estimated expected popularities based on
learned MTNet, and showed the real route usage and corresponding
rank values in Table 7. We observed that for time slots 9pm and
22pm, the rank orderwasA - B—- C - DandA—>B—> D — C
respectively, consistent with the original route usage. And the rank
value difference ratio between routes was related to the route usage
ratio in real dataset. It was worth noting that if the route was not
used in the original dataset, MTNet outputted a very small value
closed to zero, e.g., route C at 22pm. Besides, it showed the time-
varying of route popularity captured by MTNet. For morning peak
9am, several routes for the same OD pair shared the traffic flow,
which was reflected by close rank values of A, B and C. However, for
late-night 22pm, traffic mostly passed through the primary roadway
A, with a rank value 0.29 that was much larger than other routes.

Trajectory Suffix Prediction. We randomly sampled 10, 000 tra-
jectory prefixes of length 5, and for each trajectory prefix with
a fixed departure time slot, we collected the most promising suf-
fix with the largest occurrence frequency from the test data. We
evaluated the suffix prediction performance (as described in Sec-
tion 3.4) and compared it with baselines, where beam search[12]
was used to maintain promising edge candidates set during the
generation process. Table 8 showed the results. We observed that
MTNet achieved the best prediction accuracy on both datasets (5%
higher than baselines), which was consistent with the route and
destination JSD evaluation results.

In particular, we focused on routes C and D from Table 7 that
both based on route prefix labeled as (3020, 3021, - - - 3088). For both
departure time in 9am and 22pm, we computed the expected suffix
with the maximum probability based on MTNet, i.e., (4722, 4711, 6314,
—) (i.e., suffix of C) and (2980, 6314, —) (i.e., suffix of D), where —
was the stop flag. We observed that based on the long-term spatio-
temporal encoding ability of MTNet, the predicted suffix was also
time dependent and consistent with the rank values in Table 7.

Trajectory Travel Time Estimation. We evaluated synthetic tra-
jectory data effectiveness on a popular trajectory application named



Table 8: Suffix Prediction Accuracy (%)

Ngram AutoSTG CSSRNN TNet MTNet
Chengdu 35.7 56.3 61.6 62.8 66.5
Xi’an 25.7 60.1 65.3 66.6 70.3
Table 9: Travel Time Estimation Error (MAE)
AutoSTG  CSSRNN  TNet MTNet Real Data
Chengdu 137s 157s 22.0s 13.3s 10.9s (27%)
Xi’an 144s 159s 55.1s 14.1s 11.2s (22%)

travel time estimation, which could also be directly supported with
MTNet as described in Section 3.4. It input a trajectory route and
estimated the travel time of each route edge. We split the real trajec-
tory datasets into training part (80%) and test part (20%). We built a
two-layer LSTM model for the travel time estimation task, where
edge embedding and hidden state dimension were set to 128. We
trained models on the task for 10 epochs: one with real training
data and others with equal-sized synthetic data generated based on
learned AutoSTG, CSSRNN, TNet and MTNet and respectively. We
evaluated these learned models on the test data. Table 9 showed
the results. We made the following observations.

(1) On synthetic data, MTNet outperformed baselines and achieved
close-to-real data performance (with only 2 - 3 seconds difference).
It showed that MTNet was more robust to model and recover tra-
jectory (or its travel time) data than baselines because MTNet made
full use of spatio-temporal road network knowledge based on deep
meta learning, which led to outstanding generalization ability.

(2) AutoSTG and CSSRNN performed 3 - 10x worse compared
to MTNet and TNet. It showed that spatio-temporal trajectory
representation and modeling approach was much more effective
for modeling continuous yet noisy time dependent travel time data.

6 RELATED WORK
6.1 Trajectory Modeling and Generation

Markov Models. Intuitively, sequential trajectories can be mod-
eled and generated with Markov models, which includes Markov
chains [43], hidden Markov models [3], and Markov decision pro-
cess [58]. Although these methods are able to model short term
transition probabilities which capture local sub-trajectories, they
are limited for generating complicated length varying trajecto-
ries [44], because short-term memory is not sufficient for modeling
complex trajectories with long-term dependencies.

Spatio-tmporal Graph Convolutional Networks. Graph convo-
lutional network (GCN) is effective to model local correlations of
graph node or edge features[24]. As road networks can be seen as
graph with time varying features, spatio-tmporal graph convolu-
tional networks (STGCN)[55] and graph attention techniques[59]
has became prevalent on modeling and predicting time varying
characteristics such as road traffic. In particular, AutoSTG[39] is
shown promising on prediction tasks of time varying attributes for
graph node or edge. However, skewed map-matched trajectories
are high dimensional with respect to graph edges. It is hard for
AutoSTG to model skewed trajectories like common edge attributes.
Recurrent Neural Networks (RNNs). RNN is effective in se-
quence generation problems [16], especially in NLP [13]. For ex-
ample, Long-Short Term Memory [20] can maintain long-term
dependency, which is useful for long trajectory sequence modeling.

984

Consequently, it is adopted to model and generate trajectory in
CSSRNN [50]. Nevertheless, CSSRNN neglects the essential tem-
poral information to model time-varying distribution statistics and
can only generate spatial trajectory road sequences. Furthermore,
it overlooks the important underlying road knowledge (e.g., road
capacity and direction) which contains useful routing patterns to
model high-dimensional trajectory data with skewed distribution.

Generative Adversarial Nets (GANs). GANs are popularly ap-
plied to spatio-temporal data [14], including trajectory genera-
tion [38], prediction [25], spatio-temporal events [23], time series
imputation[33], etc. [29] proposed to use GAN-based techniques to
generate location trajectories which preserve the summary proper-
ties of real trajectory data for analysis applications. However, as
real map-matched trajectories are road network constrained, this
approach is not applicable to generate map-matched trajectories.

Traffic Simulators. Extensive simulators on simulating traffic [2,
6, 9, 11, 22, 26, 31, 35, 56] are designed to simulate traffic with
user-defined properties, which are used for benchmarking and
analyzing traffic strategies and behaviors of moving objects with
given conditions [36]. Different from traffic simulators, we model
an existing trajectory dataset with close-to-real-data statistics, and
further generate trajectories for or directly supporting downstream
trajectory applications.

6.2 Meta Learning in Spatio-temporal Data

Meta learning is applied to spatio-temporal data recently [21, 46].
For example, ST-MetaNet [40, 41] predicts urban traffic with a
meta learning based sequence-to-sequence architecture, using meta
graph attention networks and meta RNNs. [54] studied the meta-
learning paradigm for spatio-temporal data from multiple cities
and utilized the long-period data for multiple city transfer learning
tasks on traffic and water quality prediction. However, the regular
mechanism of meta learning is splitting dataset into few-shot train-
ing and testing sub-datasets for meta and regular learning tasks
respectively. For trajectory generation, high dimensional trajectory
data is unique when compared to each other, i.e., no explicit tra-
jectory level patterns that can be directly transferred for classic
meta learning. Thus we borrow the learning to learn idea of meta
learning (i.e., generalization), and leverage the underlying spatio-
temporal road properties as meta knowledge to ideally support
trajectory distribution patterns adaptation among route edges.

7 CONCLUSION

We proposed a deep meta learning based generative model, named
MTNet, to support trajectory generation and analysis simultane-
ously with privacy guarantee. Extensive experiments showed that
MTNet modeled real trajectory data with high utility, preserving
original statistics and supporting real-world applications while
keeping privacy. Future research directions include (1) transferring
learned trajectory generation patterns to new road networks and
(2) improving the adaptability of MTNet for new data.
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