
The VLDB Journal (2024) 33:1591–1615
https://doi.org/10.1007/s00778-024-00864-x

REGULAR PAPER

Survey of vector database management systems

James Jie Pan1 · Jianguo Wang2 · Guoliang Li1

Received: 12 October 2023 / Revised: 7 June 2024 / Accepted: 24 June 2024 / Published online: 15 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years.
But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more.
Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand
vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new
data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly
review these techniques and systems. We start by identifying five main obstacles to vector data management, namely the
ambiguity of semantic similarity, large size of vectors, high cost of similarity comparison, lack of structural properties that
can be used for indexing, and difficulty of efficiently answering “hybrid” queries that jointly search both attributes and vectors.
Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization
and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and
indexing, techniques include vector compression, namely quantization, and partitioning techniques based on randomization,
learned partitioning, and “navigable” partitioning; for query optimization and execution, we describe new operators for hybrid
queries, as well as techniques for plan enumeration, plan selection, distributed query processing, data manipulation queries,
and hardware accelerated query execution. These techniques lead to a variety of VDBMSs across a spectrum of design and
runtime characteristics, including “native” systems that are specialized for vectors and “extended” systems that incorporate
vector capabilities into existing systems. We then discuss benchmarks, and finally outline research challenges and point the
direction for future work.

Keywords Vector data management · Similarity search · k nearest neighbor · Approximate nearest neighbor · Nearest
neighbor index

1 Introduction

The rise of large language models (LLMs) [68] for tasks
like information retrieval [33], along with the growth of
unstructured data for applications such as e-commerce and
recommendation platforms [61, 122, 130], calls for new
vector database management systems (VDBMSs) that can

B Guoliang Li
liguoliang@tsinghua.edu.cn

James Jie Pan
jamesjpan@tsinghua.edu.cn

Jianguo Wang
csjgwang@purdue.edu

1 Department of Computer Science and Technology, Tsinghua
University, Beijing, China

2 Department of Computer Science, Purdue University, West
Lafayette, Indiana, USA

deliver traditional capabilities such as query optimization,
transactions, scalability, fault tolerance, privacy, and secu-
rity, but for unstructured data.

For LLMs specifically, commercial LLM-based chatbots
are known to suffer from hallucinations, high usage costs,
and forgetfulness, which can all be potentially addressed by
VDBMSs. For example to address hallucinations and for-
getfulness, one solution is retrieval-augmented generation
(RAG), where prompts and answers are augmented with
information retrieved from a VDBMS [33, 75].1 To address
high usage costs, commercial VDBMSs such as Zilliz2 offer
a semantic cache [36] where a user prompt is first checked
against aVDBMSfor similar prompts before a costly submis-
sion to the chatbot. Aside from LLMs, there are also many
non-LLM applications, including image and video search,

1 See also http://arxiv.org/abs/2402.01763.
2 http://zilliz.com/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00864-x&domain=pdf
http://orcid.org/0000-0002-1398-0621
http://arxiv.org/abs/2402.01763
http://zilliz.com/

1592 J. Jie et al.

Fig. 1 Components of a VDBMS

drug discovery, facial and voice recognition, recommenda-
tion systems for e-commerce, and others [113].

As unstructured data are not represented by attributes
from a fixed schema, they are retrieved not through struc-
tured queries but through similarity search [90]. To support
this type of search, entities such as images and documents
are first encoded into D-dimensional feature vectors via an
embedding model before being stored inside a VDBMS. The
dual-encoder or dense retrievalmodel [40, 70] describes this
process.

Consequently, as shown in Fig. 1, the modules in a
VDBMS consist of a query processor, which includes query
definitions, logical operators, their physical implementa-
tions, and the query optimizer; and the storage manager,
which maintains the search indexes and manages the phys-
ical storage of the vectors. The designs of these modules
affect the characteristics and features of the VDBMS. Some
applications, such as those based on LLMs, are read-heavy,
requiring high query throughput and low latency. Others,
such as e-commerce, are also write-heavy, requiring high
write throughput, in addition to transaction isolation require-
ments and data consistency. There are also several different
query types, such as predicated or non-predicated vector
queries, that require different operators and query planning.
Moreover, cloud-based VDBMSs like Zilliz, Weaviate [1],
Pinecone [2], and others may aim to provide high scalabil-
ity and elasticity along with availability and fault tolerance.
Given an application, developing a suitable VDBMS there-
fore requires understanding the landscape of techniques and
how they affect the system.

While there are mature techniques for processing struc-
tured data, this is not the case for vector data. We present

five key obstacles. (1)Ambiguous SearchCriteria.Structured
queries use boolean predicates to precisely capture the intent
of the user query, but vector queries rely on semantic similar-
ity that is hard to unambiguously state.Whilemany similarity
scores exist, a chosen score may not align precisely with user
intent. (2) Expensive Comparisons.Attribute predicates (e.g.
<, >, =, and ∈) can mostly be evaluated in O(1) time, but a
similarity comparison typically requires O(D) time, where
D is the vector dimensionality. (3) Large Size. A structured
query usually only accesses a small number of attributes,
making it possible to design read-efficient storage structures
such as column stores. But vector search requires full feature
vectors, moreover a single vector may even span multiple
data pages, making disk retrievals more expensive while also
straining memory. (4) Lack of Structural Properties. Struc-
tured attribute data possess certain properties, such as being
sortable or ordinal, that lend themselves to traditional index-
ing techniques. But vectors have no equivalent properties,
making it hard to adapt attribute index design principles
to vectors.3 (5) Incompatibility with Attributes. Structured
queries over multiple attribute indexes can use simple set
operations (e.g. ∪, ∩) to collect intermediate results into the
final result set. But vector indexes typically stop after finding
k most similar vectors, and combining these with the results
from an attribute index scan can lead to fewer than expected
results. On the other hand, modifying the scan to account
for attribute predicates can degrade index performance. How
to efficiently and effectively support these “hybrid” queries
remains unclear.

There are now a variety of techniques that have been
developed around these issues, aimed at achieving low query
latency, high result quality, and high throughput while sup-
porting large numbers of vectors. Some of these are results
of decades of study on similarity search. Others, including
hybrid query processing, indexes based on vector com-
pression, techniques based on hardware acceleration, and
distributed architectures are based on recent work. In this
paper, we start by surveying these techniques from the per-
spective of a generic VDBMS, dividing them into those that
apply to query processing and those that apply to storage
and indexing. Query optimization and execution are treated
separately from the core query processor. Following these
discussions, we apply our understanding of these techniques
to characterize existing VDBMSs.
Query Processing The query processor mainly deals with
how to specify the query criteria and how to execute search
queries. For the former, a variety of similarity scores, query
types, and query interfaces are available. For the latter, a
number of vector and search operators are available, in addi-

3 Note that systems for certain types of vector retrieval, such as time
series or spatial databases, can often exploit correlations and patterns in
the series [53] as well as low-dimensional indexing techniques [103].

123

Survey of vector database management systems 1593

tion to search algorithms. We discuss the query processor in
Sect. 2.
Storage and IndexingThe storagemanagermainly deals with
how to organize and store the vector collection to support effi-
cient and accurate search, predominantly through indexes.
We classify indexes into table-based indexes such as E2LSH
[47], SPANN [43], and IVFADC [66], that are generally
easy to update; tree-based indexes such as FLANN [92],
RPTree [45, 46], and ANNOY [3] that aim to provide log-
arithmic search; and graph-based indexes such as KGraph
[51], FANNG [64], andHNSW [85] that performwell empir-
ically but are less understood theoretically.

To address the difficulty of indexing vector collections,
existing indexes rely on randomization [28, 46, 47, 51, 65,
92, 111, 120], learned partitioning [66, 86, 92, 107, 124],
and what we refer to as “navigable” partitioning [50, 84, 85].
To deal with large storage size, several techniques have been
developed for indexes over compressed vectors, including
quantization [66, 86, 108, 127, 130], as well as disk-resident
indexes [43, 60]. We discuss indexing in Sect. 3.
Query Optimization The query optimizer mainly deals with
plan enumeration, plan selection, and physical execution. To
support hybrid queries, several hybrid operators have been
developed based on what we refer to as “block-first” scan
[60, 122, 130] and “visit-first” scan [133]. There are several
techniques for enumeration and selection, including rule and
cost-based selection [122, 130]. We discuss optimization in
Sect. 4.
Query Execution For execution, many VDBMSs take advan-
tage of distributed architectures to scale out vector search.
There are also several techniques aimed at supporting high
throughput updates, namely based on maintaining fast and
slow writeable structures. To speed up local queries, storage
locality of large vectors can be exploited to design hardware
accelerated operators, taking advantage of capabilities such
as processor caches [122], SIMD [31, 32, 122], and GPUs
[67]. We discuss execution in Sect. 5.
Current Systems We classify existing VDBMSs into native
systems which are designed specifically around vector man-
agement, including Vearch [77], Milvus [122], and Manu
[61]; extended systems which add vector capabilities on
top of an existing NoSQL or relational data management
system, including AnalyticDB-V (ADBV) [130] and PASE
[136]; and search engines and librarieswhich aim to provide
search capability only, such as Apache Lucene [4], Elastic-
search [5], and Meta Faiss [6]. Native systems tend to favor
high-performance techniques targeted at specific capabili-
ties, while extended systems tend to favor techniques that
are more adaptable to different workloads but are not neces-
sarily the fastest. We survey current systems in Sect. 6.
Related Surveys A high-level survey is available that mostly
focuses on fundamental VDBMS concepts and use cases
[112]. Likewise, some tutorials are available that focus

specifically on similarity search [100, 101]. We complement
these works by focusing on specific problems and techniques
related to vector data management as a whole. Surveys are
also available covering data types that are related to vectors,
such as time series and strings [52, 53], but not supported by
VDBMSs.

For the remaining sections, we briefly discuss benchmarks
in Sect. 7, followed by a summary of research challenges and
open problems in Sect. 8. We conclude the survey in Sect. 9.

2 Query processing

Query processing in a VDBMS starts from a query definition
describing the nature of the query.Once a query is received by
the system, a number of operators are executed over the data
collection to process the query. In particular, search oper-
ators find and retrieve relevant vectors from the collection,
and the characteristics of the operator depends on the search
algorithm.

2.1 Query definition

Themain feature of vector search queries is a similarity score
ranking vectors that the user intends to retrieve. There are also
several query types, including data manipulation queries and
other forms of search queries. Queries are conveyed through
a query interface.

2.1.1 Similarity scores

A similarity score f : R
D × R

D → R maps two D-
dimensional vectors, a and b, onto a scalar, f (a,b). For
some scores, larger values indicate greater similarity. For
other scores that are based on distance functions,4 values
closer to 0 indicate greater similarity. Table 1 lists several
common scores.

Definition 1 (Hamming) d(a,b) = ∑n
i=1 δai bi , where δ is

the Kronecker delta.

Table 1 Common similarity scores

Type Score Metric Complexity Range

Sim Inner Prod ✗ O(D) R

Cosine ✗ O(D) [−1, 1]

Dist Minkowski ✓ O(D) R
+

Hamming ✓ O(D) N

4 A distance function obeys themetric axioms of identity (d(a, a) = 0),
positivity (d(a,b) > 0 if a �= b), symmetry (d(a,b) = d(b, a)), and
triangle inequality (d(a, c) ≤ d(a,b) + d(b, c) for any three vectors
a,b, c).

123

1594 J. Jie et al.

The Hamming distance counts the number of differing
dimensions between vectors a and b. Other similarity scores
start from the inner product, typically the dot product.

Definition 2 (Inner Product) f (a,b) = ∑n
i=1 aibi ,

or f (a,b) = 〈a,b〉 = a · b. Quantity √〈a, a〉 defines the
magnitude, ‖a‖. Euclidean distance between a and b is given
by ‖a − b‖. The dot product projects a onto b, scaling the
result by the magnitude of b. If magnitude is unimportant,
a and b can be normalized by â = a/‖a‖ and b̂ = b/‖b‖.
Then,

Definition 3 (Cosine Similarity) f (a,b) = 〈â, b̂〉
or f (a,b) = 〈a,b〉

‖a‖‖b‖ , equivalent to the angle between a and b.
Arbitrary p-norms, ‖x‖p = (|x1|p . . . |xD|p)1/p, induce the
Minkowski distance which generalizes Euclidean distance.

Definition 4 (Minkowski) The p-order Minkowski distance
is d(a,b) = (

∑n
i=1 |ai − bi |p)1/p.

All positive and integer values of p yield metrics.

2.1.2 Query types

A VDBMS supports data manipulation queries that insert,
update, and delete vectors to and from the collection as well
as vector search queries that aim to return a subset of the
collection satisfying the search criteria.
Data Manipulation Queries In traditional database systems,
data ismanipulateddirectly.But in aVDBMS, feature vectors
represent actual entities, and they can bemanipulated directly
or indirectly.

An embedding model maps real-world entities (e.g.
images) to feature vectors. Under direct manipulation, users
freely manipulate the values of the vectors, and maintaining
the model is the responsibility of the user. This is the case for
systems such as PASE [136] and pgvector [7]. For indi-
rect manipulation, vectors are hidden from users. The vector
collection appears as a collection of entities, not vectors, and
users manipulate the entities. The VDBMS is responsible for
themodel,which canbeuser-provided, for example through a
user-defined function (UDF) as in Vald [8], or selected from
a menu of pre-trained models. Pinecone [2], for instance,
supports a large number of pre-trained *2vec models5 by
connecting to special providers6 via REST API. There is
extensive literature on designing embedding models, and we
refer interested readers to [98].

To process data manipulation queries over vectors, dif-
ferent techniques exist depending on the storage structure.

5 E.g. http://github.com/MaxwellRebo/awesome-2vec.
6 E.g. http://huggingface.co.

Fig. 2 Basic search queries

Most VDBMSs heavily rely on vector indexes, and we dis-
cuss how to update these indexes in Sect. 3. At the same time,
some VDBMSs adopt distributed architectures or utilize fast
and slow storage structures in addition to indexes.We discuss
data manipulation techniques for these systems in Sect. 5.
Basic Search Queries As shown in Fig. 2, there are several
types of searchqueries, but not allVDBMSs support all types.
Search queries can be viewed as either similarity maximiza-
tion or equivalently as distance minimization with respect to
a query vector, q. We take the latter for the following defini-
tions.

Most VDBMSs support “nearest neighbor” queries where
the aim is to retrieve vectors from a collection S that are
physical neighbors of q in the vector space. These queries
may aim to return exact or approximate nearest neighbors,
and may also specify the number of neighbors to return. We
refer to these as (c, k)-search queries, where c indicates the
approximation degree and k is the number of neighbors.

Out of these, most VDBMSs support the approximate
k-nearest neighbors (ANN) query, which returns k vectors
from S that are within a radius, centered over q, of c times
the distance between q and its closest neighbor.

Definition 5 (ANN) Find a k-size subset S′ ⊆ S such that
d(x′,q) ≤ c(minx∈S d(x,q)) for all x′ ∈ S′.

Recent efforts have focused on c > 1, k > 1, as it supports
a variety of modern applications7.

On the other hand, a range query is parameterized by a
radius, r , instead of the number of neighbors.

Definition 6 (Range) Find {x ∈ S | d(x,q) ≤ r}.

7 Other combinations of c and k have been historically important but
are less prevalent in the modern literature. For the special case k = 1,
this query has been called approximate nearest neighbor search which
we abbreviate as ANNS and is covered extensively in [29].When c = 1,
this is known as an exact query. The case c = 1, k = 1 corresponds
to nearest neighbor search (NNS) [65], and when c = 1, k > 1, the
query is popularly called a k-nearestneighbors (k-NN) query. We note
that there is also a large literature on themaximum inner product search
(MIPS) problem, which is the NNS query but over inner products. We
refer interested readers to [114] for an overview.

123

http://github.com/MaxwellRebo/awesome-2vec
http://huggingface.co

Survey of vector database management systems 1595

Range queries can be useful when the goal is to return all
items within a similarity threshold, not just the top-k. For
example, in a biological tissue database a range query can
be used to return all images of cells with a similar cell type
[41].

Some VDBMSs also support variations on these basic
query types.
Predicated Search Queries In a predicated search query,
or “hybrid” query, each vector is associated with a set of
attribute values, and a boolean predicate over these values
must evaluate to true for each record in the result set.8 These
queries are prevalent in item recommendation systems for
e-commerce. For example:

Example 1 A hybrid k-NN query written in SQL is:

select * from items where price < 100
order by distance(query) limit k;

Here, distance is a distance function parameterized by
the vectorized query, and every member of the result set
must satisfy the conditions of being among the k nearest and
of obeying the predicate, price < 100.
Batched Queries For batched queries, a number of queries
are revealed at once and the VDBMS can answer them in
any order. These queries are especially suited to hardware-
accelerated techniques [67, 122].
Multi-Vector Queries Some VDBMSs also support multi-
vector search queries via aggregate scores. Sometimes, a
single real-world entity is represented by multiple vectors.
For example for facial recognition [122], a face may be
represented by multiple images taken from different angles,
leading tom feature vectors x1 . . . xm9.Onewayof approach-
ing this problem is to use an aggregate score that defines how
to combine individual scores f (x1,q) . . . f (xm,q) to yield
a single value that can be compared. Examples are the mean
aggregate 1/m

∑m
i=1 f (xi ,q) and the weighted sum.

2.1.3 Query interfaces

Later on in Sect. 6, we classify existing VDBMSs into native
systems that are designed specifically around vector data
management and extended systems that add vector capabili-
ties on top of an existing NoSQL or relational system.

8 This type of query is called differently in different systems. In some
VDBMSs such as [130], this is called a “hybrid” query. In others such
as [9], this is called a “filtered” query.
9 As another example, some VDBMSs such as [1] offer a “hybrid”
search, not to be confused with the search in Note 8, that combines
dense feature vectors with sparse term vectors. The sparse vector is
scored separately, e.g. by weighted term frequency, and then combined
with the feature vector similarity score to yield a final aggregate score.

For query interfaces, native and NoSQLVDBMSs tend to
rely on simple APIs with a small number of permitted oper-
ations10. On the other hand, extended VDBMSs built over
relational systems tend to take advantage of SQL extensions.
In pgvector [7], a k-NN or ANN query is expressed as:

select * from items order by
embedding <-> [3,1,2] limit 5;

The syntax R < − > s returns the Euclidean distance
between all the tuples of R and vector s, and other distance
functions are supported via other symbols.

Similarly, range queries are expressed using where:

select * from items where
embedding <-> [3,1,2] < 5;

2.2 Operators

Queries are processed by executing a number of operators. A
vector operator acts on individual vectors or the collection
as a whole while a search operator finds and retrieves certain
vectors from the collection based on the query definition.
Vector Operators Data manipulation queries are handled
using insert, update, and delete vector operators. Typically
vectors are stored in a single logical table, and a data
manipulation operator modifies the table. Physically, the
implementations of these operators depends on the underly-
ing structure. For example, the physical table may be stored
locally, inmemory or on disk, or distributed across shards and
replicas. The table can also be stored within an index. Each
structure requires corresponding operators that can act on the
structure. Some VDBMSs also support an embedding oper-
ator that takes an entity, such as a document or image, and
produces a vector representation of the entity. These systems
typically expose a set of record-level operators for indirect
manipulation instead of exposing raw vector operators. Most
VDBMSs also support linear algebraic operators and simple
arithmetic operators for calculating similarity scores.
Search Operators To answer search queries, most VDBMSs
implement a projection operator that projects each vector
onto its similarity score against a query vector. For range
queries, the operatormay additionally push satisfying vectors
into the result set upon calculating the score. For (c, k)-search
queries, the operator can be combined with a sort operator in
order to retrieve the highest scoring vectors, or be combined
with a top-k data structure such as a priority queue.

10 For example, Chroma [10] offers a PythonAPI with nine administra-
tive commands (e.g. list_collections) in addition to nine data
commands: count, add, get, peek, query, modify, update,
upsert, and delete.

123

1596 J. Jie et al.

Projection is sufficient for answering all range or (c, k)-
search queries, and it can also be used in combination with
a predicate checking operator to answer predicated queries
[11]. But for an N -size collection, the complexity of answer-
ing a query using projection is dominated by the O(DN)

similarity calculations, potentially leading to long query
latencies. To speed up the search, most VDBMSs rely on
index-based search operators. In Sect. 3, we introduce the
most common index structures along with respective scan
operators. Then in Sect. 4, we describe how special “hybrid”
operators can be used in combination with indexes to speed
up predicated queries.

2.3 Search algorithms

A number of search algorithms exist with different accuracy
and performance characteristics11. For example, a brute-
force search via projection offers exact query answers but
with O(DN) complexity while index-based search offers
approximate answers but usually sub-linear complexity.
Some VDBMSs let the user choose the algorithm while
others choose the algorithm automatically via an optimizer,
discussed further in Sect. 4.

Similarity search has a long history and many theo-
retical results are known, especially for low-dimensional
vectors12. For high-dimensional vectors, locality-sensitive
hashing (LSH) [65] is perhaps themostwell understood tech-
nique. But more recent efforts aimed at addressing certain
limitations of LSH have led to other techniques, including
tree and graph-based indexes that will be discussed in Sect. 3.

2.4 Discussion

The primary difference between a VDBMS and other
database systems is the reliance on a similarity score. Given
the same vector collection, different scores can lead to differ-
ent rankings, and how closely the ranking matches the user

11 Accuracy is usually defined in termsof precision and recall. Precision
is the ratio between the number of relevant results in the result set over
the size of the result set, and recall is defined as the number of retrieved
relevant results over all possible relevant results. For example in a k-NN
query, the precision is k′/|S′|, where k′ is the number of true nearest
neighbors in S′, and the recall is k′/k. Performance is usually defined
in terms of query latency and throughput.
12 Algorithmswith O(log N) query times and O(N) storage are known
for D = 1 (e.g. binary search trees) and D = 2 [80]. For the latter case,
k-d trees [37] are particularly well known, and the query complexity is
O(

√
N). For D ≥ 3, sub-linear search performance is much harder to

obtain. In the general case, k-d trees offerO(DN 1−1/D) query complex-
ity [73],which tends towardO(DN) as D grows.On the other hand, [87]
offers O(DO(1) log N) query complexity but requires super-polynomial
O(NO(D)) storage. The modern belief is that even a fractional power
of N query complexity cannot be obtained unless storage cost is worse
than NO(1)DO(1) [29, 104].

intent13 depends on the choice of score, presenting a chal-
lenge for score selection in addition to score design. Note
that in most existing VDBMSs, vectors are stored in single
collections and there is no support for join.
Score Selection If all the vectors have unit magnitude, then
cosine angle is equal to dot product, and the Euclidean dis-
tance is proportional to both. In this case, the industry practice
is to use cosine similarity as it is easier to calculate compared
to Euclidean distance. But when vectors do not possess unit
magnitude, it may not be obvious which score to use. The
choice also depends on the nature of the embeddings them-
selves. For example, one use case recommends using dot
product in order to capture item popularity, as the particular
embeddingmodel is known to yield long vectors for frequent
items14,15.

User intent is also conveyed through an embedding vector
(i.e. the query vector) that allows for similar ambiguity as the
choice of score, leading to the idea of query semantics [112].
Hence, we imagine that future solutionswill bemore holistic,
considering this problem fromall aspects beyond score selec-
tion. For example, EuclidesDB [12] allows users to conduct
the same search but over multiple embedding models and
scores in order to identify the most semantically meaning-
ful settings. As another example, [91] proposes interactively
refining the query vector to achieve better semantic align-
ment.
Score Design The fact that different scores lead to different
rankings opens the question of whether there is an “opti-
mal” score that depends on the collection and workload. This
question has led to the idea of learned scores. Applying a
linear transformation over the vector space adjusts the rela-
tive proximities of the vectors without changing the vectors
themselves. The distance of two vectors in the transformed
space can be calculated using the Mahalanobis formula,16

and finding a suitable transformation is one of the goals of
metric learning [25, 88, 118, 139].

There is also awell-known fact that when D grows beyond
around 10 dimensions, and when the dimensions are inde-
pendent and identically distributed (IID), the cosine angles
and Euclidean distances between the two farthest and two
nearest vectors approach equality as the variance nears zero

13 As a simple example, consider items of different shapes and colors.
A user may intend for items with similar shapes to be considered more
similar than items with similar colors.
14 http://developers.google.com/machine-learning/clustering/
similarity/measuring-similarity.
15 See also [113] where geometric distance yields different rankings
depending on the meaning of the feature dimensions.
16 For any positive semi-definite matrix M, d(a,b) =√

(a − b)�M(a − b).

123

http://developers.google.com/machine-learning/clustering/similarity/measuring-similarity
http://developers.google.com/machine-learning/clustering/similarity/measuring-similarity

Survey of vector database management systems 1597

[39]. The effect of this curse of dimensionality is that vectors
become indiscernible.17

Fortunately for many real-world datasets, the intrinsic
dimensionality18 is sufficiently low or the vectors are not
IID, avoiding the curse. Even so, there have been attempts at
attacking the curse which have led to using other Minkowski
distances, such as the Manhattan distance (p = 1) or the
Chebyshev distance (p = ∞), in an effort to recover dis-
cernability [26, 89].

3 Indexing

While all (c, k)-search and range queries can be answered by
brute-force search, the O(DN) complexity is prohibitive for
large D and N . Instead, vector indexes speed up queries by
minimizing the number of comparisons. This is achieved by
partitioning S so that only a small subset is compared, and
then arranging the partitions into structures that can be easily
explored.

Unlike attribute indexes, vector indexes cannot take
advantage of structural properties such as being sortable or
ordinal. To achieve high accuracy, these indexes rely on novel
techniques which we refer to as randomization, learned par-
titioning, and navigable partitioning. The large physical size
of vectors also leads to use of compression, namely a tech-
nique called quantization, as well as disk resident designs.
Additionally, the need to support predicated queries has led
to special hybrid operators for indexes, which we discuss in
Sect. 4.
Partitioning Techniques

– Randomization exploits probability amplification to dis-
criminate similar vectors from dissimilar ones.

– Learning-based techniques partition S along hidden
internal structure.

– Navigable indexes are designed so that different regions
of S can be easily traversed.

Some indexes require regular maintenance to ensure effi-
cient and accurate search. Themaintenance characteristics of
a vector index depend highly on the data-dependency19 of the
partitioning strategy. Some partitioning strategies are data-
independent, where the partitioning rules are independent of
S20. But the majority are data-dependent, meaning that they
derive from the distribution of S. For example, some indexes
partition S into k-means clusters that must be found before-
hand. If subsequent updates to the index alter the distribution,

17 A diagram is given in [93].
18 A formal definition is given in [45].
19 This term appears in [103] in the context of spatial databases.
20 E.g. a spatial grid.

then it may eventually become unbalanced, degrading effi-
ciency and recall. In many cases, these indexes can only be
maintained by peroidically rebuilding the index.
Storage Techniques

– Quantization involves a function, called a quantizer,
which maps a vector onto a more space-efficient rep-
resentation. Quantization is usually lossy, and the aim is
to minimize information loss while simultaneously min-
imizing storage cost.

– Disk resident designs additionally aim to minimize the
number of I/O retrievals in contrast to memory resident
indexes which only minimize the number of compar-
isons.

In this section,we examine themain techniques for several
common indexes. One particular index may use a combina-
tion of techniques, and so we classify indexes based on their
structure and then point out which techniques are used in
which index. There are three basic structures: tables divide
S into buckets containing similar vectors; trees are a nest-
ing of tables; and graphs connect similar vectors with virtual
edges that can then be traversed. All of these structures are
capable of achieving high query accuracy but with different
construction, search, and maintenance characteristics. Fol-
lowing these technical details, in the closing discussion we
offer recommendations to VDBMS users and conclude with
open problems.

3.1 Tables

The main consideration for table-based indexes is the design
of the bucketing hash function. Themost popular table-based
indexes for VDBMSs tend to use randomization and learned
partitions, as shown in Table 2. For randomization, tech-
niques based on LSH [27–29, 47, 65, 74, 83] are popular
due to robust error bounds. For learned partitions, learning-
to-hash (L2H) [124] directly learns the hash function, and

Table 2 Representative table-based indexes

Type Index Hash function

LSH E2LSH [47] Rand. hyperplanes

IndexLSH Rand. bits

FALCONN [28] Rand. balls

L2H SPANN [43] Nearest centroid

Quant SQ Nearest discrete value

PQ Nearest centroid product

IVFSQ Nearest centroid

IVFADC [66] Nearest centroid

123

1598 J. Jie et al.

indexes based on quantization [66, 86, 108, 127, 130] typi-
cally uses k-means [38] to learn clusters of similar vectors.

Each of these indexes have similar construction and search
characteristics. For construction, each vector is hashed into
one of the buckets, and the complexity is O(DN 1+ε), 0 ≤
ε ≤ 1. For LSH, each vector is hashed multiple times, lead-
ing to ε > 0. For quantization-based approaches, k-means
multiplies the complexity by a constant factor. For search,
q is hashed onto a key and then the corresponding bucket is
scanned. Hashing is generally on the order of O(D). Usually
only a small fraction of S is scanned, yielding a complexity
of O(DN ε), including the cost of hashing and bucket scan.

For data manipulation queries, table-based indexes sup-
port vector insertion using the same hash functions used
during construction, and vector deletion is handled by a
search followed by physical deletion. But for data-dependent
indexes, the hash functions themselves may need to be re-
learned following a series of out-of-distribution updates,
requiring the index to be rebuilt. All the nearest-centroid
methods listed in Table 2 are data-dependent as they all
depend on k-means clustering. Once new centroids are dis-
covered, all the vectors in S must be reinserted into the new
buckets, otherwise query accuracymay suffer as near vectors
may no longer occupy the same buckets.

3.1.1 Locality sensitive hashing

Locality sensitive hashing [65, 74] provides tunable per-
formance with error guarantees, but it can require high
redundancy in order to boost accuracy, increasing query and
storage costs relative to other techniques.

In a “family” of hash functions H = {h : S → U }, if
d(x,q) ≤ r1, then PrH (h(x) = h(q)) ≥ p1, and if d(x,q) ≥
r2, then PrH (h(x) = h(q)) ≤ p2, for any r1, r2, x ∈ S, and
q. A tunable familyG = {g : S → UK } is derived by letting
g(x) return the concatenation of hi (x) for i between 1 and
some constant K .

The table is constructed by hashing each x ∈ S into each
of the L hash tables using g1 . . . gL . Typically, L is set to
L = O(1/pK1) with K set to �log1/p2 N� [29].21 Letting
ρ = log(1/p1)/ log(1/p2) yields L = O(Nρ/p1). The
storage complexity is O(LDN) which is O(DN 1+ρ) after
substitution. In the practical case where p1 > p2, the value
of ρ is between 0 and 1.

When a query appears, it is hashed using the L hash func-
tions sampled from G, and collisions are kept as candidate
neighbors. The candidates are then re-ranked or discarded
based on true distances to q. The query complexity is domi-
nated by the L hash evaluations, which is O(DNρ).

21 The exact value depends on accuracy and performance needs of the
application [27].

When r1 is set to minx∈S d(x,q) and r2 is set to cr1, the c
guarantee is relative to the minimum distance. This is useful
when the query is static across the workload, but is hard to
generalize over dynamic online queries. Hence for an index
designed around some given hash family, not all queries may
have similar candidate sets, making it hard to control pre-
cision and recall. Multi-probe LSH [83] is one attempt at
addressing this issue by scanning multiple buckets at a time,
thereby spreading out the search.

We mention a few popular LSH schemes. The first two
are data-independent and require no rebalancing. In E2LSH,
each g is an O(D) projection onto a random hyperplane.
This achieves ρ < 1/c [47]. The IndexLSH scheme is
based on binary projections [6]. There have also been efforts
at designing data-dependent hash families to yield lower ρ.
FALCONN implements an LSH hash family based on spheri-
cal LSH [28]. The dataset is first projected onto a unit ball and
then recursively partitioned into small overlapping spheres.
The ρ value is 1/(2c2 − 1). Other families are given in [29].

3.1.2 Learning to hash

Learning-based techniques aim to directly learn suitable
mappings without resorting to hash families. For exam-
ple, spectral hashing [131] designs hash functions based on
the principal components of the similarity matrix of S. In
[105], hash functions are modeled using neural networks. In
SPANN [43], vectors are hashed to the nearest centroid fol-
lowing k-means. These techniques tend to require lengthy
training and are sensitive to out-of-distribution updates, and
they are not widely supported in VDBMSs. We point readers
to [124] for a survey of techniques.

While many vector indexes are meant to reside in memory
in order to take advantage of fast reads and writes, SPANN
is designed to be disk-resident, and hence it employs several
techniques for minimizing costly I/O. In order to support
fast look-ups, hash keys are stored in memory while buckets
are stored on disk. To control the amount of I/O per query,
a hierarchical bucketing scheme modulates the final bucket
sizes. Buckets overlap based on relative neighborhood rules
[115] in order to reduce I/O for queries located near bucket
boundaries.

3.1.3 Quantization

One of the main criticisms of LSH is that the storage cost can
be large due to the use ofmultiple hash tables. For in-memory
VDBMSs, large memory requirements can be impractical.
While some efforts aim at reducing these storage costs [140],
other efforts have targeted vector compression using quanti-
zation [66, 108].

Many of these techniques use k-means centroids as hash
keys. A large K number of centroids canmodulate the chance

123

Survey of vector database management systems 1599

Fig. 3 In this example from [127], each 4-dimensional vector is divided
into two 2-dimensional sub-spaces

of collisions, keeping buckets reasonably small and speeding
up search. Normally, k-means terminates once a locally opti-
mal set of centroids is found, with complexity O(DN · K)

per iteration.
But large values of K make k-means expensive. Prod-

uct quantization exploits the fact that the cross product of m
number of (D/m)-dimensional spaces is a space of D dimen-
sions, so that by setting U = ∏m

j=1Ui , then U ∈ R
D when

Uj ∈ R
D/m . This means that to yield a count of K centroids,

only K 1/m centroids need to be found per Uj . Moreover as
each Uj belongs to a lower dimensional space, the running
time of k-means per Uj is reduced. The new complexity is
O(m)O(Dm NK 1/mi).

In practice, each Uj is constructed via k-means over the

collection of sub-vectors {(xi) j D/m
i=(j−1)D/m+1 | x ∈ S}22, and

the set of all Uj is known as the “codebook”. Vector x is
then quantized by splitting it into m sub-vectors, x′

j , find-
ing the nearest centroid in Uj to x′

j for each j ∈ 1 . . .m,
and then concatenating these centroids. Each vector is thus
stored using m log2(D/m) bits, and the time complexity is
O(m)O(DK 1/m). An example is shown in Fig. 3.

Various techniques such as Cartesian k-means [94], opti-
mized PQ (OPQ) [58], hierarchical quantizers [135], and
anisotropic quantizers [62] have been developed based on
this idea, offering around 60% better recall in the best cases
at the cost of additional processing. A survey of these tech-
niques is given in [86]. The storage cost can also be reduced
by constant factors [127]. There are also efforts at designing
quantizers using techniques other than k-means. For exam-

22 The notation (xi)Di=1 expands to x1x2 . . . xD .

Fig. 4 Construction of an IVFADC index

ple, [57] selects points along the surface of a hypersphere to
serve as the codebook, deriving bounds on the quantization
error.

We describe some quantization-based indexes. Faiss [6]
supports a number of “flat” indexes where each vector is
directly mapped onto its compressed version, without any
bucketing. The standard quantizer index, SQ, performs a bit-
level compression, for instance by mapping 64-bit doubles
onto 32-bit floats. The PQ index directly maps each vector
onto its PQ code. For IVFSQ, the vectors are compressed
using SQ and bucketed to their nearest centroid. Even with
product quantization, training a PQ quantizer over S can still
be time consuming. To reduce this cost, IVFADC first buckets
vectors using k-means over a small number of centroids, and
then trains a PQ quantizer by sampling a few vectors from
each of the buckets. To allow a single quantizer to apply to
all the buckets, each vector x is subtracted from its bucket
key, resulting in a “residual” vector R(x) which is then used
to train the quantizer. The full workflow is shown in Fig. 4.
During search, queryq is directly compared against the quan-
tized vectors in the bucket that qmaps onto. As q itself is not
quantized, the comparison is referred to as an “asymmetric
distance computation” (ADC).

For IVFADC, many distance calculations are likely to be
repeated during bucket scan since many vectors may share
the same PQ centroids. These calculations can be avoided
by first computing ‖q j − c‖2 for all c ∈ Uj and for all
j ∈ 1 . . .m,whereq j is the j th sub-vector ofq [86]. This pre-
processing step takesO(m)O(Dm K ′), where K ′ is the number
of centroids in Uj . But afterwards, ADC can be performed
using justm look-ups, reducing bucket scan from O(DN) to
O(mN).

Example 2 Below is the ADC look-up table when U is
divided into m subsets, and where each subset contains K ′

123

1600 J. Jie et al.

Table 3 Representative tree-based indexes

Index Splitting plane Splitting point

k-d tree [37] Axis parallel Median

PKD-tree [107] Principal dim Median

FLANN [92] Random principal dim Median

RPTree [45, 46] Random plane Median + offset

ANNOY [3] Random plane Random median

centroids. Here, q j is the j th sub-vector of query q, and c ji
is the i th centroid in the j th subset of U .

U1︷ ︸︸ ︷
d(q1, c11) · · · d(q1, c1K ′)

...
. . .

...

d(qm, c11) · · · d(qm, c1K ′)

, · · · ,

Um︷ ︸︸ ︷
d(q1, cm1) · · · d(q1, cmK ′)

...
. . .

...

d(qm, cm1) · · · d(qm, cmK ′)

We mention one other technique. In ADBV [130], each
bucket is further divided into finer sub-buckets in order to
avoid accessing multiple full buckets. The resulting structure
is called a “Voronoi Graph Product Quantization” (VGPQ)
index.

3.2 Trees

For tree-based indexes, the main consideration is the design
of the splitting strategy used to recursively split S into a
search tree.

A natural approach is to split based on distance. The
main techniques includes pivot-based trees [42, 143], such
as VP-tree [137] and M-tree [44], k-means trees [92], and
trees based on deep learning [76]. Other basic techniques are
described in [106]. But while these trees are effective for low
D, they suffer from the curse of dimensionality when applied
to higher dimensions.

High-D tree-based indexes tend to rely on randomiza-
tion for performing node splits. In particular, “Fast Library
for ANN” (FLANN) [13, 92] combines randomization with
learned partitioning via principal component analysis (PCA),
extending the PKD-tree technique from [107], and “ANN
Oh Yeah” (ANNOY) [3] is similar to the random projections
tree (RPTree) from [45, 46]. These trees are summarized in
Table 3.

The generic tree construction algorithm, from [45], is
restated below:

procedure MakeTree(S)
if |S| ≤ τ then return Leaf
end if
Rule ← ChooseRule(S)

LeftTree ← MakeTree({x ∈ S | Rule(x) is true})
RightTree ← MakeTree({x ∈ S | Rule(x) is false})

return (Rule,LeftTree,RightTree)
end procedure

The complexity is characteristically O(DN log N), ignoring
any preprocessing costs. More precise bounds for several
trees are given in [102].

Most trees are able to return exact query results by per-
forming backtracking, where neighboring leaf nodes are also
checked during the search. However, this is inefficient [129],
leading to a technique called defeatist search [46]. In this
procedure, the tree is traversed down to the leaf level, and
all vectors within the leaf covering q are returned immedi-
ately as the nearest neighbors. While defeatist search does
not guarantee exact results, there is no backtracking, and the
complexity is O(D log N).

For data manipulation queries, insertions require O(D
log N) on average and O(DN) in the worst case. But all
of the indexes in Table 3 are data-dependent. Splitting planes
are derived directly from S and node splits are determined
during construction, and so far there are nomethods for rebal-
ancing nodes after a number of out-of-distribution updates.

3.2.1 Non-random trees

Many high-D trees derive from k-d tree which splits along
medians while rotating through dimensions:

procedure ChooseRule(S)
i ← l mod D where l is the current depth
Rule := (xi ≤ median({yi | y ∈ S}))
return Rule

end procedure
This rule has the effect of fixing the splitting planes parallel
to the dimensional axes [45, 102].

3.2.2 Random trees

If certain dimensions explain the variance more than others,
then the intrinsic dimensionality is lower than D. But in this
case, k-d tree is unable to partition along these dimensions,
leaving it susceptible to the curse of dimensionality. This
limitation has led to the discovery of more adaptive splitting
strategies.
Principal Component Trees A principal component tree is a
k-d tree that is constructed by first rotating S so that the axes
are aligned with the principal components of S. The princi-
pal dimensions need to be found beforehand using principal
component analysis (PCA). The complexity of this step is
O(D2N + D3). In PKD-tree, the splitting plane is selected
by rotating through the principal dimensions [107]. To try to
find better splits, FLANN [92] splits along random principal
dimensions instead of strictly rotating through.
RandomProjection TreesOn the other hand, random splitting
planes can be used to adapt to the intrinsic dimensionality

123

Survey of vector database management systems 1601

without expensive PCA. RPTree [45, 46] extends the idea
of randomly rotated trees explored in [117] by introducing
random splits in addition to random splitting planes. The
principle follows from spill trees [81], where partitions are
allowed to overlap. In RPTree, perturbed median splits sim-
ulate the effects of overlapping splits but with less storage
cost. The splitting rule is [46]:

procedure ChooseRule(S)
u ← A vector from the unit sphere
β ← A number from [0.25, 0.75]
v ← The β fractile of πu(S)

Rule := (x · u ≤ v)

return Rule
end procedure

The values of u, β, and v are uniformly chosen at random.
The operation πu(S) performs a projection of S onto u. Vari-
able v represents the perturbed median split, with β = 0.5
yielding the true median. Instead of splitting on the β frac-
tile, ANNOY splits along the median of two random values
sampled from πu(S), which is simpler to compute. Several
theoretical results2324 are known for RPTree, but it is not
clear if these apply to ANNOY.

A forest of random trees can be used to improve recall.
We mention that RPTree incurs a storage overhead of
O(DN) compared to k-d tree and FLANN due to storing
the D-dimensional projection vectors, and this cost can be
substantial for in-memory forests. In [69], several techniques
are introduced to reduce this cost to O(D log N), for example
by combining projections across the trees in a forest.

3.3 Graphs

A graph-based index is constructed by overlaying a graph
on top of the vectors in R

D space so that each node vi is
positioned over the vector xi within the space. This induces
distances over the nodes, d(vi , v j) = d(xi , x j), which are
then used to guide vector search along the edges. An example
is shown in Fig. 5.

23 The rate at which RPTree fails to return the true nearest neighbor,
x′, to query q is bounded by the “potential” of the query over S, defined
as 1/(N − 1)

∑N
i=2‖q − x′‖2/‖q − xi‖2. A detailed proof is available

in [46].
24 During search, query q must be projected onto each unit vec-
tor at every level during traversal, leading to a search complexity of
O(D log N). In [102], this is improved to O(D log D + log N) by
using a circular rotation which can be applied in O(D log D) time
and achieves a similar effect as random projections. The trinary pro-
jection (TP) tree introduced in [121] similarly targets expensive O(D)

projections. Instead of projecting onto random or principal vectors, the
splitting strategy partitions onto principal trinary vectors, which are
vectors consisting of only −1, 0, or 1. The principal trinary vectors
can be approximated in O(D) time. The search complexity remains
O(D log N) but with smaller constant factors.

Fig. 5 In this example from [126], a graph is overlayed on top of the
original dataset (a). Search begins from a “seed” vertex and is guided
along the edges until it reaches the nearest node (vector) to the query
(b)

Table 4 Representative graph-based indexes

Type Index Initialization Construction

KNNG KGraph [51] Random KNNG Iterative refine

EFANNA Random trees Iterative refine

MSN FANNG [64] Empty graph Random trial

NSG [56] Approx. KNNG Fixed trial

Vamana [111] Random graph Fixed trial

SW NSW [84] Empty graph One-shot refine

HNSW [85] Empty graph One-shot refine

The main consideration for these indexes is edge selec-
tion, in other words deciding which edges should be included
during graph construction.

Graph-based indexes encapsulate all the partitioning tech-
niques. Many graphs rely on random initialization or random
sampling during construction. The k-nearest neighbor graph
(KNNG) [55, 96] associates each vector with its k nearest
neighbors through an iterative refinement process similar to
k-means and which we consider to be a form of unsupervised
learning.Other graphs, includingmonotonic search networks
(MSNs) [50] and small-world (SW) graphs [84, 85], aim to
be highly navigable, but differ in their construction. The for-
mer tend to rely on search trials that probe the quality of the
graph [56, 64, 111] while the latter use a heuristic procedure
which we refer to as “one-shot refine”. Table 4 shows several
graph indexes.

For data manipulation queries, we note that most of the
indexes in Table 4 assume a static vector collection and so are
not designed to support updates. Meanwhile, even as NSW
[84] and HNSW [85] are constructed incrementally and are
thus able to support dynamic insertions, and while recent
implementations now also offer deletions via tombstoning,25

they still show signs of data-dependency.26 Unfortunately,
there seem to be no methods for rebalancing these indexes,
other than to rebuild them from scratch. There are also other
efforts to design graph indexes that do support updates, such

25 See http://github.com/nmslib/hnswlib.
26 Deteriorating search accuracy has been observed for dynamic col-
lections, even when the updates are mere re-insertions of previous
deletions; see http://arxiv.org/abs/2105.09613

123

http://github.com/nmslib/hnswlib
http://arxiv.org/abs/2105.09613

1602 J. Jie et al.

as [142] which uses restricted neighborhood updates, but
these have yet to be incorporated into VDBMSs.

3.3.1 k-nearest neighbor graphs

In aKNNG, eachnode vi is connected to k nodes representing
the nearest neighbors to xi [55]. For batched queries, q can
be considered as a member of S, and a KNNG built over
S allows exact k-NN search in O(1) time through a simple
look-up.

AKNNG can also be used to answer queries where q /∈ S.
The basic idea is to recursively select node neighbors that
are nearest to q, starting from initial nodes, and add them
into the top-k result set. The search complexity depends on
the number of iterations before the result set converges. The
search can start from multiple initial nodes, and if there are
no more node neighbors to select, it can be restarted from
new initial nodes [119].

A KNNG can be exact or approximated with a technique
which we refer to as “iterative refine”.
Exact An exact KNNG can be constructed by performing a
brute force search N number of times, giving a total com-
plexity of O(DN 2). Unfortunately, there is little hope for
improvement, as it is believed that the complexity is bounded
by N 2−o(1) [132]. An O(N log N) algorithm is given in [116]
but with a constant factor that is O(DD). The algorithm in
[97] achieves an empirical complexity of O(N 2−ε), where
0 < ε < 1. This finding suggests the existence of efficient
practical algorithms, despite the worst-case bounds.
Iterative Refine An approximate KNNG can be obtained
by iteratively refining an initial graph. We give two exam-
ples. The NN-Descent (KGraph) method [51] begins with
a random KNNG and iteratively refines it by examining the
neighbors of the neighbors of each node vi , replacing edges to
vi with edges to these second-order neighbors that are closer.
When the dataset is growth restricted,27 then each iteration
is expected to halve the radius around each node and its far-
thest neighbor. This property leads to fast convergence, with
empirical times on the order of O(N 2−ε) for 0 < ε < 1.
Instead of starting from a random KNNG, EFANNA28 uses
a forest of randomized k-d trees to build the initial KNNG.
Doing so is shown to lead to higher recall and faster con-
struction as it can quickly converge to better local optima.
A similar approach is taken in [120] but where the tree is
constructed via random hyperplanes.

27 A growth restricted dataset is one where the number of neighbors
of each node is bounded by a constant as the radius about the node
expands.
28 http://arxiv.org/abs/1609.07228.

3.3.2 Monotonic search networks

A KNNG is not guaranteed to be connected. Disconnected
components complicates the search procedure for online
queries by requiring restarts to achieve high accuracy [96,
119]. But by adding certain edges so that the graph is con-
nected, it becomes possible to follow a single path beginning
from any initial node and arriving at the nearest neighbor to
q.

A search path v1 . . . vm is monotonic if d(vi ,q) >

d(vi+1,q) for all i from 1 tom−1. AnMSN is a graphwhere
the search path discovered by a “best-first” search, in which
the neighbor of vi that is nearest to q is greedily selected, is
always monotonic. This property implies a monotonic path
for every pair of nodes in the graph and that the graph is
connected.

The search complexity depends on the sum of the out-
degrees over the nodes in the search path. If there are few
total edges in the graph, then the search complexity is likely
to be small. The minimum-edge MSN that guarantees exact
NNS is believed to be the Delaunay triangulation [93]. But
constructing a triangulation requires at least�(N �D/2�) time
[54], impractical for large N and D. As a result, several
approximate methods have been developed, but these nec-
essarily sacrifice the search guarantee.

In the early work by [50], an MSN is constructed in
polynomial time by refining a sub-graph of the Delau-
nay triangulation called the relative neighborhood graph
(RNG) [115]. The RNG itself is not monotone, but it
can be constructed in O(DN 2−o(1) log1−o(1) N) under RD

Euclidean distance [109]. Even so, the N 2−o(1) term makes
this approach impractical for large N .

Instead of repeatedly scanning the nodes, search trials
can be used to probe the quality of the graph. Depending on
the path taken by best-first search, new edges are added so
that a monotonic path exists between source and target. The
algorithm is shown below.

procedure MakeMSN(S)
G ← InitializeGraph(S)
repeat

(s, t) ← ChooseSourceTargetPair(S)

P ← GetSearchPath(G, (s, t))
UpdateOutNeighbors(G, t, P)

for each p ∈ P do
UpdateOutNeighbors(G, p, t)

end for
until Terminate()
return G

end procedure
For InitializeGraph, some indexes beginwith an empty graph
[64], random graph [111], or approximate KNNG [56]. Sim-
ple graphs canbe initializedquickly butmore complexgraphs

123

http://arxiv.org/abs/1609.07228

Survey of vector database management systems 1603

may offer better quality. For ChooseSourceTargetPair, one
way is to select random pairs [64], while another is to desig-
nate a node as the source for all search trials [56, 111]. We
refer to these techniques as random and fixed trials, respec-
tively.
RandomTrial Indexes based on random trials are constructed
over a large number of iterations, each one leading to closer
approximations of an MSN. The construction time is thus
adjustable with respect to the quality of the graph. In the Fast
ANN Graph (FANNG) [64], graph construction terminates
after a fixed number of trials, e.g. 50N . The UpdateOut-
Neighbors routine adds an edge between t and the nearest
node in the search path, p∗ ∈ P , and then prunes out-
neighbors of p∗ based on “occlusion” rules derived from
the triangle inequality so as to limit out-degrees. The empiri-
cal storage and search complexities are reported to be on the
order of O(DN 1−ε).
Fixed Trial In fixed trial construction, all trials are conducted
from a special designated source node, sometimes called the
“navigating” node. This node also serves as the source for
all online queries. The index is constructed by conducting
one trial to each node in a single pass over S. The con-
struction complexity is generally about O(DN 1+ε log N ε)

where the logarithmic term represents the cost of the search
trials. The Navigating Spreading-Out Graph (NSG) index
[56] starts from an approximate KNNG. For UpdateOut-
Neighbors, it uses an edge selection strategy based on lune
membership, similar to [50]. To guarantee that all targets are
reachable from the navigating node, it overlays a spanning
tree to connect any unreachable targets. To speed up construc-
tion, Vamana [111] begins with a random graph instead of
an approximate KNNG, and instead of checking lune mem-
bership, UpdateOutNeighbors uses a simple distance-based
threshold similar to FANNG.

In [111], a disk-resident index called DiskANN is intro-
duced. Like SPANN, it first partitions the vector collection
into overlapping clusters using k-means. Then for each clus-
ter, it constructs a Vamana index over the cluster. Each vector
is compressed using PQ and stored in memory while each
Vamana graph is stored on disk. The compressed vectors are
used to guide the search while neighborhoods are fetched
from disk. To reduce I/O overhead, multiple neighborhoods
of the vectors comprising the search frontier are retrieved at
once in a technique called “beam search”. Full-precision vec-
tors are stored alongside neighborhoods and are also retrieved
in the same I/O operation, allowing them to be cached in
memory and used for final re-ranking.

3.3.3 Small world graphs

A graph is small-world if the length of its characteristic path
grows in O(log N) [128]. A navigable graph is one where
the length of the search path found by the best-first search

Fig. 6 Example HNSW index. Out-degrees in each layer are bounded
by k tomodulate search complexity. Vertical edges allow traversal down
the layers while horizontal edges allow traversal within a layer

algorithm scales logarithmically with N [71]. A graph that
is both navigable and small-world (NSW) thus possesses a
search complexity that is likely to be logarithmic, even in the
worst case.

An NSW graph can be constructed using a procedure
which we call one-shot refine and detailed in [84]. Nodes
are sequentially inserted into the graph, and when a node is
inserted, it is connected to its k nearest neighbors already
in the graph. While NSW offers search paths that scale in
log N , the out-degrees also tend to scale in the logarithm of
N , leading to polylogarithmic search complexity. In [85], a
hierarchical NSW (HNSW) graph is given which uses ran-
domization in order to restore logarithmic search. During
node insertion, the node is assigned to all layers below a
randomly selected maximum layer, chosen from an expo-
nentially decaying distribution so that the size of each layer
grows logarithmically from top to bottom.Within each layer,
the node is connected to its neighbors following the NSW
procedure, but where the out-degrees are bounded. Best-first
search proceeds from the top-most layer. Figure6 shows an
example.

3.4 Discussion

Given the variety of indexes, we first give some recommen-
dations for index selection. Many of these indexes were
historically developed for single-use applications and not
large-scale multi-user VDBMSs over dynamic data collec-
tions, leading to problems for index design.

123

1604 J. Jie et al.

Table 5 Representative search indexes

Structure Indexa Partitioning Residence Complexityb Updatec Error Bound

Constr Space Query

Table E2LSH [47] Space Mem Med. High Med. Y ✓

FALCONN [30] Space Mem Med. High Med. R ✓

*SQ Discrete Mem Med. Low Med. Y ✗

*PQ Clustering Mem Med. Low Med. R ✗

*IVFSQ Clustering Mem Med. Low Med. R ✗

*IVFADC [66] Clustering Mem Med. Low Med. R ✗

SPANN [43] Clustering Disk Med. Med. Med. R ✗

Tree FLANN [92] Space Mem High High Low R ✗

RPTree [45, 46] Space Mem Low High Low R ✓

*ANNOY Space Mem Low High Low R ✗

Graph NN-Descent (KGraph) [51] Proximity Mem Med. Med. Med. N ✗

EFANNA Proximity Mem High Med. Low N ✗

FANNG [64] Proximity Mem High Med. Med. N ✗

NSG [56] Proximity Mem High Med. Low N ✗

Vamana (DiskANN) [111] Proximity Disk Med. Med. Low N ✗

*HNSW [85] Proximity Mem Low Med. Low Y ✗

a An asterisk (*) indicates supported by more than two commercial VDBMSs
b Based on theoretical results reported by authors, empirical results reported by authors, or our own analysiswhenno results are reported.Key for com-
plexity columns, with 0 ≤ ε ≤ 1 and a natural constant, K : Construction. High=worse than O(DN 1+ε), Med.=O(DN 1+ε), Low=O(DN log N);
Size.High=O(DN ·K) or worse,Med.=O((D+K)·N), Low=O(N log D);Query.High=worse than O(DN ε), Med.=O(DN ε), Low=O(D log N)
c Y=data-independent updates; R=updates with rebalancing; N=no updates

Index Selection As Table 5 shows, HNSW offers many
appealing characteristics. It is easy to construct, has reason-
able storage requirements, can be updated, and supports fast
queries. It therefore comes as no surprise that it is supported
by many commercial VDBMSs. The storage cost may still
be a concern for very large vector collections, but there are
ways to address this.29

Even so, there are cases where other indexes may be more
appropriate. For batched queries or workloads where the
queries belong to S, KNNGs may be preferred, as once they
are constructed, they can answer these queries in O(1) time.
KGraph is easy to construct, but EFANNA is more adapt-
able to any online queries. For online workloads, the choice
rests on several factors. If error guarantees are important,
then an LSH-based index or RPTree can be considered. If
memory is limited, then a disk-based index such as SPANN
or DiskANN may be appropriate. If the workload is write-
heavy, then table-based indexes may be preferred, as they
generally can be efficiently updated. Out of these, E2LSH
is data-independent and requires no rebalancing. For read-
heavy workloads, tree or graph indexes may be preferred, as
they generally offer logarithmic search complexity.

29 For example, Weaviate [1] allows constructing HNSW graphs over
vectors that have been compressed with PQ.

Aside from these indexes, there have also been efforts at
mixing structures in order to achieve better search perfor-
mance. For example, the index in [35] and the Navigating
Graph and Tree (NGT) index [14] use a tree to initially par-
tition the vectors and then use a graph index over each of the
leaf nodes.
IndexDesignAmulti-userVDBMSmay require somedegree
of transaction isolation. While isolation guarantees can be
implemented at the system level as we will discuss in Sects. 5
and 6, it may also be possible to design concurrent indexes
at the storage level. Unfortunately, designing such an index
remains an open problem. For example, Faiss implements
many vector indexes but none support concurrent updates.
We are aware of one implementation of HNSW that supports
concurrent reads and writes via local locks [15].

Similarly, many of these indexes were not designed for
dynamic collections in the first place, and there remains a
need for indexes that can be easily updated.

4 Query optimization

A query plan in a VDBMS is typically represented as a
directed acyclic graph of operators used to answer a given
query. There may be multiple possible plans per query, and
the goal of the query optimizer is to select the optimal one,

123

Survey of vector database management systems 1605

typically the latency minimizing plan. For now, query opti-
mization in aVDBMS ismostly limited to predicated queries,
as non-predicated queries can often be answered by a single
index scan, leaving no room for optimization.

The first step is plan enumeration followed by plan selec-
tion. For predicated queries, vector indexes and attribute
filters cannot be easily combined, resulting in the develop-
ment of new hybrid operators.

4.1 Hybrid operators

Predicated queries can be executed by either applying the
predicate filter before vector search, knownas “pre-filtering”;
after the search, known as “post-filtering”; or during search,
known as “single-stage filtering”. If the search is index-
supported, then a mechanism is needed to inform the index
that certain vectors are filtered out. For pre-filtering, block-
first scanworks by “blocking” out vectors in the index before
the scan is conducted [60, 122, 130]. The scan itself proceeds
as normal but over the non-blocked vectors. For single-stage
filtering, visit-first scan works by scanning the index as nor-
mal, but meanwhile checking each visited vector against the
predicate conditions [133].
Block-First ScanBlocking can be done online at the time of a
query, or if predicates are known beforehand, it can be done
offline. For online blocking, the aim is to perform the block-
ing as efficiently as possible. InADBV [130] andMilvus [16,
122], a technique using bitmasks is given. A bitmask is con-
structed using traditional attribute filtering techniques. Then,
during index scan, a vector is quickly checked against the bit-
mask to determine whether it is “blocked”. Blocking can also
be performed offline. In Milvus, S is pre-partitioned along
attributes that are expected to be predicate targets. When a
query arrives, it can then be executed on the relevant partition
using a normal index scan.

For graph-based indexes, blocking can cause the graph to
become disconnected. In Filtered-DiskANN [60] and else-
where [9, 133], disconnections are prevented in the first place
by strategically adding edges based on the attribute category
of adjoining nodes. In [145], each edge of an HNSW index
is labeled with a range window so that vectors which obey a
one or two-sided range intersecting the window can be found
by traversing the edge. These labels are determined offline
by sorting the dataset beforehand and then inserting vectors
into an HNSW in sorted order. The use of sorted insertion
prevents disconnections.
Visit-First Scan For low-selectivity predicates, visit-first scan
can be faster than online blocking because there is no need to
block the vectors beforehand. But if the predicate is highly
selective, then visit-first scan risks frequent backtracking as
the scan struggles to fill the result set. Oneway to avoid back-
tracking is to use a traversal mechanism that incorporates
attribute information. In [60], the filter condition is added to

the best-first search operator. In [133], the distance function
used for edge traversal is augmented with an attribute related
component so that the scan favors nodes that are likely to
pass the filter.30

4.2 Plan enumeration

As query plans tend to consist of a small number of operators,
in many cases predefining the plans is not only feasible but
also efficient, as it saves overhead of enumerating the plans
online. But for systems that aim to support more complex
queries, the plans cannot be predetermined. For extended
VDBMSs based on relational systems, relational algebra can
be used to express these queries, allowing automatic enu-
meration.
Predefined Some systems target specific workloads, thus
focusing on single plans per query, while others predefine
multiple plans. Single plans can be highly efficient as it
removes the overhead of plan selection in addition to enu-
meration, but can be a disadvantage if the predefined plan is
not suited to the particular workload. Non-predicated queries
trivially have a single query plan when only one search
method is available. For example in EuclidesDB [12], each
database instance is configured with one search index which
is used for every search query. This can also be true for pred-
icated queries. For example in Weaviate [1], all predicated
search queries are executed by pre-filtering. But multiple
indexes lead to multiple plans. For example, ADBV sup-
ports brute force scan and table-based index scan over PQ or
VGPQ, allowing a query to be executed using either of these
methods.
Automatic Extended VDBMSs based on relational systems
such as pgvector [7] and PASE [136] can take advantage
of the underlying relational optimizer to perform plan enu-
meration as well as selection.

4.3 Plan selection

Existing VDBMSs perform plan selection either by using
handcrafted rules or by using a cost model.
Rule Based If the number of plans is small, then selection
rules can be used to decide which plan to execute. Figure7
shows two examples, used by Qdrant [9] (Fig. 7a) and Yahoo
Vespa [17] (Fig. 7b). Both depend on selectivity estimation
thresholds.
Cost Based Plan selection can also be performed using a
cost model. In ADBV and Milvus, a linear cost model sums
the component costs of individual operators to yield the cost
of each plan. Operator cost depends on the number of dis-
tance calculations as well as memory and disk retrievals.
For predicated queries, these numbers are estimated from

30 See also http://arxiv.org/abs/2203.13601.

123

http://arxiv.org/abs/2203.13601

1606 J. Jie et al.

Fig. 7 Plan selection rules in a Qdrant and b Vespa

the selectivity of the predicate, but they also depend on the
desired query accuracy, exposed to the user as an adjustable
parameter. The effect of different accuracy levels on operator
cost is determined offline.

4.4 Discussion

So far, query optimization in a VDBMS mainly involves
predicated queries, and we point out several unaddressed
challenges for these queries.
Cost Estimation For pre-filtering, the cost of the scan can
be hard to estimate due to uncertainty around the amount of
blocking. This applies more to tree or graph-based indexes,
as for table-based indexes, the cost of a scan is bounded above
by bucket size. Likewise for visit-first scan, the cost of the
scan depends on the rate of predicate failures which is hard
to know beforehand. On the other hand, post-filtering for a
predicated k-NN query may lead to a result set that contains
fewer than k items. In VDBMSs that use post-filtering, this
is often mitigated by retrieving αk nearest vectors instead of
just the k nearest. But higher α make search more expensive,
and there is no clear way for deciding on the optimal value
which minimizes search cost while guaranteeing k results in
the final result set.
Operator Design In addition, designing efficient and effec-
tive hybrid operators remains challenging. For graph indexes,
block-first scan can lead to disconnected components that
either need to be repaired or that require new search algo-
rithms for handling this situation. Existing offline blocking
techniques are limited to small number of attribute categories.
For visit-first scan, estimating the cost of the scan is chal-
lenging due to unpredictable backtracking, complicating plan
selection.

5 Query execution

For data manipulation, several techniques exist to compen-
sate for indexes that are hard to update. Additionally, many
VDBMSs also take advantage of distributed architectures in

order to scale to larger datasets or greater workloads. Some
that are offered as a cloud service take advantage of disaggre-
gated architectures31 to offer high elasticity. There are also
techniques for taking advantage of hardware acceleration to
reduce query latency.

5.1 Datamanipulation

Some VDBMSs handle insert, update, and delete operations
directly at query time. For example, the latest implementa-
tion of HNSW supports insert and delete operations directly
over the graph. Even so, deletes may disconnect the graph,
requiring an expensive repair operation to reestablish con-
nectivity. This situation can be avoided by “tombstoning”
deleted nodes, in other words marking them non-returnable
instead of physically deleting the node from the graph [15,
77].

Other VDBMSs use a combination of fast and slowwrite-
able structures to delay the slowdown caused by updating an
index. For example,Milvus stores vectors inside an LSM tree
[82, 95]. New vectors are added to an in-memory table which
gets flushed to disk as a new tree segment when either the size
exceeds a threshold or at periodic intervals, and deletions are
handled by inserting tombstone markers which are then rec-
onciledwhen segments aremerged.Users can choose to build
indexes over the segments to speed up search. As another
example, Manu arranges vectors inside a hierarchy of write-
able structures. The first level consists of appendable “slices”
that are indexed by quickly updatable table-based indexes.
New vectors are added into an appropriate slice, and once
the number of full slices reaches a threshold, all the slices are
merged to form a new segment, indexed by a slow-writeable
HNSW. At the same time, to avoid disruptions due to dele-
tions, Manu stores all deletes inside a tombstone bitmap and
reconciles them with the indexed structures once a certain
number of deletes is reached. As another example, Vald uses
the NGT index for searches which does not easily support
inserts. To handle inserts, it stores new vectors inside an in-
memory queue and then periodically rebuilds the index by

31 See [123] for details about these architectures.

123

Survey of vector database management systems 1607

merging from the queue at fixed time intervals. In ADBV, in-
memory HNSW is used as the fast writeable structure while
a global disk-resident table-based index stored inside a dis-
tributed file system serves as the slow writable store. When
the HNSW index on a node becomes too large, it is torn down
and assimiliated into the global index.

5.2 Distributed query processing

For distributed VDBMSs, the main considerations are how
to partition the vectors across the nodes, maintain data con-
sistency, and support distributed search.
Partitioning If the collection contains structured attributes
in addition to vectors, an attribute can be used as the par-
titioning key. For example, ADBV [130] accepts records
that contain structured attributes in addition to vectors, and
the default partitioning strategy is to partition along a user-
specified attribute. For partitioning along vectors, it supports
k-means partitioning. On the other hand, Vald [8] targets
cases where the vectors are incrementally added, and it uses
most-available memory as the partitioning strategy. Other
VDBMSs use consistent or uniform hashing [1, 17, 61].
Consistency A distributed database must necessarily give up
strong data consistency to achieve high availability [59].
Some VDBMSs such as Qdrant [9] offer no consistency
guarantees at all, leaving transaction management up to the
application, while others give up some degree of availability
in order to provide strong consistency or strive for eventual
consistency.

We give some examples below. In Weaviate, each shard is
replicated to provide high availability. When a write occurs,
it is processed on the corresponding shard and replicas. Each
replica contains a number of searchable structures, including
a WAL, an LSM tree for non-vector data, and an HNSW for
vector data, and a write is not acknowledged until the write
is fully incorporated into the correct structures. A quorum-
basedmechanism is used tomaintain consistency [48]. Vespa
offers strong data consistency by conducting searches over
the latest-timestamp replica, but this means that it must wait
for at least one replica to acknowledge all pending writes.
Vearch [15, 77] uses HNSW as its search index and offers
strong consistency by implementing a novel locking mecha-
nism. Manu introduces tunable “delta” consistency based on
time ticks. Each node consumes fixed-interval time ticks, and
a search query can only be executed over a node if the dura-
tion between the last consumed time tick and the time of the
query iswithin a user-defined threshold. Setting the threshold
to zero leads to strong consistency while other values lead to
eventual consistency.
Distributed Search Search queries are typically handled via
scatter–gather. The search criteria are scattered across a set
of searchable structures, including other shards, replicas, and
various per-node structures, before the results are gathered

Fig. 8 Performing table look-up with SIMD

and re-ranked to produce the final result set. For example,
Manu and Vald conduct searches over all shards, and local
search algorithms search the local structures on each shard.
Weaviate conducts searches over replicas under a quorum-
based mechanism while Vespa conducts searches over the
latest-timestamp replica. In contrast, ADBV supports more
targeted searches by allowing vectors to be partitioned along
k-means clusters, similar to a nearest-centroid index. In this
case, only the shards that are likely to contain relevant vectors
need to be searched.

5.3 Hardware acceleration

Vector comparison requires reading full vectors into the pro-
cessor, and this locality makes them amenable to hardware
accelerated processing.
CPU Cache If data is not present in CPU cache, it must be
retrieved from memory, stalling the processor. Milvus [16,
122] minimizes cache misses for batched queries by parti-
tioning the queries into query blocks which are small enough
to fit into CPU cache. The queries are answered a block at a
time, and multiple threads can be used to process the queries.
As each thread references the entire block when performing
a search, the block is safe from eviction.
Single Instruction Multiple Data (SIMD) The original ADC
algorithmperforms a series of table look-ups and summations
(see Example 2). While SIMD instructions can trivially par-
allelize the summations, look-ups require memory retrievals
(in the case of cache misses) and are harder to speed up. In
[6, 31, 32], the SIMD shuffle instruction is exploited to par-
allelize these look-ups within a single SIMD processor. As
shown in Fig. 8, the look-up indices plus the entire look-up
table are stored into the SIMD registers. The shuffle operator
then rearranges the values of the table register so that the i th
entry contains the value at the i th index, lining up the values
for the subsequent additions.

The table is aggressively compressed in order to fit it into a
register. In [32], some improvements are made to allowmore
values to be stored in the register, namely variable-bit cen-
troids and splitting up large tables across multiple registers.

123

1608 J. Jie et al.

Graphical Processing Units (GPUs) A GPU consists of a
large number of processing units in addition to a large device
memory. The threads within a processing unit are grouped
together in “warps”, and each warp has access to a number
of shared 32-bit registers [79]. In [6, 67], an ADC search
algorithm for GPUs is given. Similar to the SIMD algorithm,
the GPU algorithm likewise avoids memory retrievals, this
time from GPU device memory, by performing table look-
ups within the registers via a shuffle operator called “warp
shuffle”. If the running k nearest neighbors are tracked in the
registers, then k cannot be too large.Milvusworks around this
issue by conducting a k-NN over multiple rounds, flushing
intermediate results store in the registers into host memory
after each round.

5.4 Discussion

For distributed VDBMSs, how to effectively partition the
vectors remains challenging. In a relational database, tables
can be partitioned by attribute key, and in this way not all
the partitions need to be searched during a query. But in
a VDBMS, aside from the expensive clustering-based par-
titioning used in ADBV, there is no obvious strategy for
quickly partitioning the vectors other than consistent or uni-
form hashing.

Designing GPU-accelerated indexes and algorithms is
also an ongoing effort. For example, tree and graph-based
indexes are less amenable to GPU-accelerated search due to
issues such as task dependencies, non-contiguous memory
allocations, and task diversity. To address these issues, [144]
proposes a top-down algorithm for constructing a tree-based
index that relies on global sorts in order to parallelize node
partitioning at each level.

6 Current systems

The variety of data management techniques has led to an
equally diverse landscape of commercial VDBMSs. In this
section, we broadly categorize these systems into native
systems, which are designed specifically for vector data
management, and extended systems, which add vector capa-
bilities on top of an existing system. Table 6 lists several
systems. Following these discussions, we close by summa-
rizing the existing systems and then give recommendations
for users.

6.1 Native

Native systems aim to be highly specialized at providing
high-performance vector data management. This is achieved
by limiting the query capabilities, allowing them to simplify
the components such as removing thequeryparser, using sim-

ple storagemodels such as single-table collections, and using
a simple query optimizer over a small number of predefined
plans, or in some cases offering no query optimization. We
divide these systems into two subcategories, those that tar-
getmostly vector workloads [2, 8, 10, 12, 15], where the vast
majority of queries access the vector collection, and those that
target mostly mixed workloads [1, 9, 16, 18, 19, 61], where
queries are also expected to access non-vector collections.
Mostly mixed workloads may consist of traditional attribute
queries or textual keyword queries along with predicated and
non-predicated vector queries.
Mostly Vector Somemostly-vector systems focus exclusively
on non-predicated queries while others offer predicated
queries but supported by a single predefined plan. Mostly-
vector systems often support only a single search index,
typically graph-based, and hence have no need for a query
parser, rewriter, or optimizer, omitting these components in
order to reduce processing overhead. They also typically do
not support exact search.

We give some examples. Vald [8] is a VDBMS aimed at
providing scalable non-predicated vector search. Vald spans
a Kubernetes32 cluster consisting of multiple “agents”. To
increase the performance, the vector collection is sharded
and replicated across the agents and search is conducted
via scatter–gather. An individual Vald agent contains an
NGT graph index built over its local shard. Vearch [15, 77]
is targeted at high-performance image-based search for e-
commerce. As the search does not need to be exact, Vearch
only supports approximate search, and predicated queries
are all executed using fast but potentially inaccurate post-
filtering instead of going through a query optimizer.33 Vearch
adopts a disaggregated architecture with dedicated search
nodes, allowing it to scale read and write capabilities inde-
pendently. Pinecone [2] offers a scalable distributed system
similar to Vald, but as it is offered as a managed cloud-based
service, it can be a more user-friendly option. As shown in
Fig. 9 EuclidesDB [12] is a system for managing embed-
ding models, aimed at allowing users to experiment over
various models and similarity scores. Users bring their own
embedding models and interact via indirect manipulation,
abstracting the underlying models. Chroma [10] is a central-
ized system similar to EuclidesDB. Vexless is an academic
prototype that gives several techniques for addressing the
limitations of a lambda-based serverless cloud architecture,
namely lowmemory budgets, high communication overhead,
and the problem of cold starts [110].
Mostly Mixed Mostly-mixed systems aim to support more
sophisticated queries compared to mostly-vector systems.
In general, they support a greater variety of basic queries,

32 http://kubernetes.io.
33 The latest version uses pre-filtering instead of post-filtering as this
can be more efficient for strong filters.

123

http://kubernetes.io

Survey of vector database management systems 1609

Table 6 A list of current VDBMSs

Name Type Sub-type Vector query Query variant Vector index

Ex Ap Rng Pr Mul Bat Tab Tr Gr Opt

EuclidesDB (2018) [12] Nat Vec ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗

Vearch (2018) [15, 77] Nat Vec ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Pinecone (2019) [2] Nat Vec ✗ ✓ ✗ ✓ ✓ ✗ Proprietary U

Vald (2020) [8] Nat Vec ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗

Chroma (2022) [10] Nat Vec ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ U

Weaviate (2019) [1] Nat Mix ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

Milvus (2021) [16, 122] Nat Mix ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

NucliaDB (2021) [18] Nat Mix ✗ ✓ ✓ ✓ U ✗ ✗ ✗ ✓ ✗

Qdrant (2021) [9] Nat Mix ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Manu (2022) [61] Nat Mix ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Marqo (2022) [19] Nat Mix ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ U

Vespa (2020) [17] Ext NoSQL ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Cosmos DB (2023) Ext NoSQL ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

MongoDB (2023) Ext NoSQL ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

Neo4j (2023) Ext NoSQL ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Redis (2023) Ext NoSQL ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

AnalyticDB-V (2020) [130] Ext Rel ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

PASE+PG (2020) [136] Ext Rel ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

pgvector+PG (2021) [7] Ext Rel ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

SingleStoreDB (2022) [11, 99] Ext Rel ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

ClickHouse (2023) [20] Ext Rel ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

MyScale (2023) [21] Ext Rel ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ P ✓

Dates are estimated from paper publication, earliest Github release, blog post, or other indications. Dates indicate year when vector search capability
first appeared in the product. Abbreviations: Ex. exact k-NN, Ap. ANN, Rng. range, Pr. predicated, Mul. multi-vector, Bat. batched, Tab. table, Tr.
tree, Gr. graph, Opt. query optimizer, Nat. native, Ext. extended, Vec. mostly vector, Rel. relational, U unknown, P proprietary

Fig. 9 EuclidesDB [12] supports querying multiple vector spaces at a
time to assess the impact of different similarity scores and embedding
models

including more support for exact and range queries, in addi-
tion to more query variants. These systems likewise have no
need for query rewriters or parsers, but some make use of an
optimizer. Some systems also have more sophisticated data
and storage models in order to deal with predicated queries
and attribute-only queries that go beyond simple retrieval.

In particular, Milvus [16, 122] is aimed at comprehen-
sive support for vector search queries, and Manu [61] adds
additional features on top of Milvus. All three basic query
types are supported, in addition to the three query variants.
To support these additional capabilities and support different
workload characteristics, Milvus andManu support different
types of search indexes and handle predicated queries via a
cost-based optimizer. Qdrant [9] likewise supports a large
variety of search queries. For predicated queries, it uses a
rule-based optimizer coupled and introduces a proprietary
HNSW index in order to support efficient block-first scan.
NucliaDB [18] and Marqo [19] are targeted at document
search and use vector search to provide semantic retrieval.
A key feature is the support for combining keywords and
vectors through multi-vector search. Non-vector keyword
queries are processed using text specific techniques, resulting
in sparse term-frequency vectors which are then combined
with dense feature vectors through an aggregate score in order
to conductmulti-vector search. Finally,Weaviate targets doc-
ument search over a graph model. This allows Weaviate to
answer non-vector queries, such as retrieving all books writ-

123

1610 J. Jie et al.

ten by a certain author, in addition to similarity queries via
vector search. Weaviate adopts leaderless replicas to scale
out reads and uses a quorum-based mechanism to support
eventually consistent writes.

6.2 Extended

Extended systems inherit all the capabilities of an underlying
data management system and are necessarily more complex
compared to native systems. But these systems are also more
capable.Nearly all the extended systems listed inTable 6 sup-
port all three basic query types and multiple indexes, and all
of them support query optimization. These systems likewise
divide into two subcategories, those where the underlying
system is NoSQL and those where it is relational. The main
challenge for these systems is how to integrate vector search
into the system while still offering high performance.
NoSQL Many traits of a NoSQL system [49], such as
schemaless storage, distributed architecture, and eventual
consistency, are present in native systems, making a NoSQL
extended VDBMS much like a native system.

For example, Vespa [17] is a scalable distributed NoSQL
system designed for large-scale data processing workloads.
Vespa aims at general data processing tasks, and it uses a
flexible SQL-like query language. But like native systems,
the storage model is simple, provided by a document store.
The vector search extension adds a custom HNSW and a
rule-based optimizer for predicated vector search queries.
Cassandra [72] is a popular distributedNoSQL system based
on a wide column store. Vector search capability will be
available in version 5.034 by integrating HNSW into the
storage layer, implementing scatter–gather across replicas,
and extending the Cassandra query language with vector
search operators. The Spark-based Databricks35 platform
is expected to support vector search, including predicated
queries, in an upcoming version.

Aside from Vespa, several other document based NoSQL
databases have now been extended to support vector search,
including MongoDB,36 Cosmos DB,37 and Redis,38 when
coupled with the Redis Stack search extension. Vector search
capability has also been extended to NoSQL systems other
than document stores. For example, Neo4j39 is a property
graph database with experimental vector search capability.
So far, only ANN queries are supported, using HNSW.

34 See Cassandra Enhancement Proposal 30 (CEP-30).
35 http://databricks.com.
36 http://mongodb.com.
37 http://cosmos.azure.com.
38 http://redis.io.
39 http://neo4j.com.

Relational For extended relational systems, their features
mostly come from the inherent capabilities of relational
systems. For example, SQL already is sufficient for express-
ing (c, k)-search queries, and these queries can already be
answered by most relational engines upon adding a user-
defined similarity function. Subsequently, extended rela-
tional systems focusmore on tightly integrating vector search
capability alongside existing components.

The approach taken by SingleStore [11, 99] is to offer only
exact k-NN and range search through its native relational
engine, without any vector search indexes, and to rely on
its scalability via column store replicas and a distributed row
store to support fast reads andwrites.Vector search is handled
by the native relational engine, extended with functions for
calculating dot product and Euclidean distance.

On the other hand, PASE [136] and pgvector [7] take
advantage of the extensibility of PostgreSQL to provide
vector capabilities. PASE extends PostgreSQL with a flat
quantization index and HNSW index in order to support
vector search, and pgvector brings a vector data type,
functions over this data type, andflat andHNSWindex access
methods into PostgreSQL. For both, vector queries are issued
using SQL. If an index is created over a vector column, then
queries are answered using the index, yielding approximate
results. Otherwise, exact brute force scan is used. Plan selec-
tion is performedby the existingPostgreSQLqueryoptimizer
using the generic cost estimator, or by calling index-specific
cost estimators to refine the estimate, if needed. Other fea-
tures such as replication, fault tolerance, access controls, and
concurrency control, are provided by PostgreSQL.

There are also VDBMSs built over other relational
databases. AnalyticDB-V [130] adds vector search capabil-
ity on top of AnalyticDB [138]. This is achieved primarily
by introducing vector indexes, VGPQ and HNSW, and by
augmenting the cost-based optimizer. ClickHouse [20] is a
columnar database aimed at fast analytics coupled with an
asynchronous merge mechanism for fast ingestion. It sup-
ports vector queries using ANNOY and HNSW. Likewise,
MyScale [21] is a cloud service using ClickHouse as the
backend. It adds table-based search indexes including flat
indexes and IVFADC, and a proprietary search index called
“multi-scale tree graph” (MSTG) which is shown to outper-
form both IVFADC and HNSW.

6.3 Libraries and other systems

Vector search engines and libraries are typically embedded
into applications that require vector search, but they lack the
capabilities of a full VDBMS.
Search Engines Apache Lucene [4] is a pluggable search
engine for embedded applications. Latest versions offer vec-
tor search, supported by HNSW. While Lucene itself lacks
features such asmulti-tenancy, distributed search, and admin-

123

http://databricks.com
http://mongodb.com
http://cosmos.azure.com
http://redis.io
http://neo4j.com

Survey of vector database management systems 1611

Fig. 10 High-level characteristics of VDBMSs

istrative features, many of these are provided by search
platforms built on top of Lucene, including Elasticsearch
[5], OpenSearch [22], and Solr [23]. These capabilities could
make Lucene an attractive alternative to mostly-vector native
VDBMSs.40

Libraries There are also libraries that implement specific
indexes. For example, KGraph is an implementation of NN-
Descent.Microsoft Space Partition Tree andGraph (SPTAG)
[24] combines several techniques, including SPANN and
NGT, into one index. Libraries are also available for LSH,
including E2LSH41 and FALCONN.42 Likewise, Meta Faiss
[6] offers a selection of indexes, including HNSW, an
LSH family for Hamming distance, and quantization-based
indexes.
Other Systems Other systems aim at other parts of the
broader pipeline. Similar to relational ETL tools, Feature-
form43 organizes the workflows that transform raw data into
curated datasets used by downstream applications. Feature-
form exposes a vector search endpoint that executes a k-NN
query over a configured provider, such as Pinecone. On the
other hand, Activeloop44 Deep Lake [63] offers tensor oper-
ations directly over a tensor warehouse, making it capable of
performing vector search inside the warehouse.

6.4 Discussion

The designs of these databases cover a spectrum of char-
acteristics involving query processing and vector storage,
manifesting in a range of performance and capabilities, as
shown45 in Fig. 10. Based on this observation, we imagine
that future work will target systems that can offer both high
performance in addition to offering unified data management
capabilities, represented by the arrow. These improvements

40 For a discussion, see http://arxiv.org/abs/2308.14963.
41 http://www.mit.edu/~andoni/E2LSH_gpl.tar.gz.
42 http://github.com/falconn-lib/falconn.
43 http://featureform.com.
44 http://activeloop.ai.
45 The ranking is consistent with empirical observations [34].

may come from new features aimed at supporting new appli-
cations in addition to new techniques, such as more efficient
disk-resident indexes, as discussed in Sect. 8.

For existing systems, we offer a few remarks. Native
mostly-vector systems broadly offer high performance but
are targeted at specific workloads, sometimes even spe-
cific queries, and thus have relatively limited capability.
Meanwhile, native mostly-mixed systems offer more capa-
bilities, notably predicated queries, and some such asMilvus
[16, 122], Qdrant [9], and Manu [61] also perform query
optimization. These, along with extended NoSQL systems,
achieve a comfortable balance between high performance
and search capabilities. On the other hand, extended rela-
tional systems offer the most capabilities but possibly less
performance. But, as has been mentioned elsewhere,46 rela-
tional systems are already major components of industrial
data infrastructures, and being able to conduct vector search
without introducing new systems into the infrastructure is a
compelling advantage.

7 Benchmarks

Comprehensive cross-disciplinary comparisons of vector
search algorithms and systems are surprisingly scarce,
attributed to the wide range of fields from which search
algorithms arise [78]. We point out two notable attempts at
benchmarking these algorithms and systems.

In [78], a large number ofANNalgorithms are uniformally
implemented and evaluated across a range of experimental
conditions. These algorithms include LSH, L2H, methods
based on quantization, tree-based techniques, and graph-
based techniques. The experiments are conducted over 18
datasets, ranging from a few thousand vectors to 10 million
vectors, and with dimensions ranging from 100 to 4,096.
The feature vectors are derived from real-world image, text,
video, and audio collections, as well as synthetically gener-
ated. Algorithms are measured on query latency as well as
the quality of the result sets based on precision, recall, and
two other derivative measures.

In [34], the evaluation is extended to include fullVDBMSs
in addition to isolated algorithms.Whereas [78] aims to avoid
the effects of different implementations, here these differ-
ences are kept in order to more accurately reflect real-world
conditions. The standardized evaluation platform and the lat-
est benchmark results are available online,47 with results for
several VDBMSs.

46 https://arxiv.org/abs/2308.14963.
47 http://ann-benchmarks.com.

123

http://arxiv.org/abs/2308.14963
http://www.mit.edu/~andoni/E2LSH_gpl.tar.gz
http://github.com/falconn-lib/falconn
http://featureform.com
http://activeloop.ai
https://arxiv.org/abs/2308.14963
http://ann-benchmarks.com

1612 J. Jie et al.

8 Challenges and open problems

While much progress has been made on vector data man-
agement, some challenges remain unaddressed. First, we
note that score selection and score design remain chal-
lenging. Second, index design also remains challenging,
particularly around disk-based indexes, efficient updates,
and concurrency. We note an encouraging recent framework
for designing disk-resident graph-based indexes based on
locality-preserving blocks of sub-graphs [125]. Third, oper-
ator design in terms of predicated queries remains an area
where improvements may be possible. Fourth, designing
efficient distributed systems remains challenging due to the
difficulty of effectively partitioning vectors.

Moreover, there remain a number of new applications that
have yet to be extensively studied. For example, e-commerce
and recommender platforms make use of incremental k-NN
search, where k is effectively very large but is retrieved in
small increments so that the results appear to be seamlessly
delivered to the user. So far, it is unclear how to support
this search inside vector indexes. As another example,multi-
vector search is important for applications such as face
recognition. Existing techniques tend to use aggregate scores,
but this can be inefficient as it multiplies the amount of dis-
tance calculations. Meanwhile, generic multi-attribute top-k
techniques are hard to adapt to vector indexes [122]. Finally,
as vector search becomes increasingly mission-critical, data
security and user privacy becomemore important, especially
forVDBMSs that offermanaged cloud services. There is thus
a need for new techniques that can support private and secure
high-dimensional vector search [134], including federated
search [141].

9 Conclusion

In this paper, we surveyed vector database management
systems aimed at fast and accurate vector search, devel-
oped in response to recent popularity of dense retrieval for
applications such as LLMs and e-commerce. We reviewed
considerations for query processing, including similarity
scores, query types, and basic operators. We also reviewed
the design, search, andmaintenance considerations regarding
vector search indexes. We described several techniques for
query optimization and execution, including plan enumer-
ation, plan selection, operators for predicated or “hybrid”
queries, and hardware acceleration. Finally, we discussed
several commercial systems and the main benchmarks for
supporting experimental comparisons.

Acknowledgements This paper was supported by National Key R&D
Program of China (2023YFB4503600), NSF of China (61925205,
62232009, 62102215), Zhongguancun Lab, Huawei, TAL education,

and Beijing National Research Center for Information Science and
Technology (BNRist). Guoliang Li is the corresponding author.

References

1. http://weaviate.io
2. http://pinecone.io
3. http://github.com/spotify/annoy
4. http://lucene.apache.org
5. http://elastic.co
6. http://github.com/facebookresearch/faiss
7. http://github.com/pgvector
8. http://vald.vdaas.org
9. http://qdrant.tech
10. http://trychroma.com
11. http://singlestore.com
12. http://euclidesdb.readthedocs.io
13. http://github.com/flann-lib/flann
14. http://github.com/yahoojapan/NGT
15. http://github.com/vearch
16. http://milvus.io
17. http://vespa.ai
18. http://nuclia.com
19. http://marqo.ai
20. http://clickhouse.com
21. http://myscale.com
22. http://opensearch.org
23. http://solr.apache.org
24. http://github.com/microsoft/SPTAG
25. Abdelkader, A., Arya, S., da Fonseca, G.D., Mount, D.M.:

Approximate nearest neighbor searching with non-Euclidean and
weighted distances. In: SODA, pp. 355–372 (2019)

26. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising
behavior of distance metrics in high dimensional space. In: ICDT
(2001)

27. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Commun.
ACM 51(1), 117–122 (2008)

28. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt,
L.: Practical and optimal LSH for angular distance. In: NeurIPS,
pp. 1225–1233 (2015)

29. Andoni, A., Indyk, P., Razenshteyn, I.: Approximate nearest
neighbor search in high dimensions. In: ICM, pp. 3287–3318
(2018)

30. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for
approximate near neighbors. In: STOC, pp. 793–801 (2015)

31. André, F., Kermarrec, A.M., Le Scouarnec, N.: Accelerated near-
est neighbor search with Quick ADC. In: ICMR (2017)

32. André, F., Kermarrec, A.M., Le Scouarnec, N.: Quicker ADC:
unlocking the hidden potential of product quantization with
SIMD. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1666–1677
(2021)

33. Asai, A., Min, S., Zhong, Z., Chen, D.: Retrieval-based language
models and applications. In: ACL (2023)

34. Aumüller,M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks:
a benchmarking tool for approximate nearest neighbor algorithms.
Inform. Syst. 87, 101374 (2020)

35. Azizi, I., Echihabi, K., Palpanas, T.: ELPIS: graph-based similar-
ity search for scalable data science. Proc. VLDB Endow. 16(6),
1548–1559 (2023)

36. Bang, F.: GPTCache: an open-source semantic cache for LLM
applications enabling faster answers and cost savings. In: NLP-
OSS, pp. 212–218 (2023)

123

http://weaviate.io
http://pinecone.io
http://github.com/spotify/annoy
http://lucene.apache.org
http://elastic.co
http://github.com/facebookresearch/faiss
http://github.com/pgvector
http://vald.vdaas.org
http://qdrant.tech
http://trychroma.com
http://singlestore.com
http://euclidesdb.readthedocs.io
http://github.com/flann-lib/flann
http://github.com/yahoojapan/NGT
http://github.com/vearch
http://milvus.io
http://vespa.ai
http://nuclia.com
http://marqo.ai
http://clickhouse.com
http://myscale.com
http://opensearch.org
http://solr.apache.org
http://github.com/microsoft/SPTAG

Survey of vector database management systems 1613

37. Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18(9), 509–517 (1975)

38. Berg,M., Cheong, O., Kreveld,M., Overmars,M.: Computational
Geometry: Algorithms and Applications, 3rd edn. Springer-
Verlag, Berlin (2008)

39. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is
“nearest neighbor” meaningful? In: ICDT (1999)

40. Chang, W.C., Yu, F.X., Chang, Y.W., Yang, Y., Kumar, S.: Pre-
training tasks for embedding-based large-scale retrieval. In: ICLR
(2020)

41. Chen, H., Ryu, J., Vinyard, M.E., Lerer, A., Pinello, L.: SIMBA:
single-cell embedding along with features. Nat. Methods 21,
1003–1013 (2024)

42. Chen, L., Gao, Y., Song, X., Li, Z., Zhu, Y., Miao, X., Jensen,
C.S.: Indexing metric spaces for exact similarity search. ACM
Comput. Surv. 55(6), 1–39 (2022)

43. Chen, Q., Zhao, B., Wang, H., Li, M., Liu, C., Li, Z., Yang, M.,
Wang, J., Yang, M., Wang, J.: SPANN: highly-efficient billion-
scale approximate nearest neighbor search. In: NeurIPS (2021)

44. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access
method for similarity search in metric spaces. In: Proc. VLDB
Endow., pp. 426–435 (1997)

45. Dasgupta, S., Freund,Y.: Randomprojection trees and lowdimen-
sional manifolds. In: STOC, pp. 537–546 (2008)

46. Dasgupta, S., Sinha,K.:Randomized partition trees for exact near-
est neighbor search. In: COLT, pp. 317–337 (2013)

47. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-
sensitive hashing scheme based on p-stable distributions. In: SCG,
pp. 253–262 (2004)

48. Davidson, S.B., Garcia-Molina, H., Skeen, D.: Consistency in a
partitioned network: a survey. ACM Comput. Surv. 17(3), 341–
370 (1985)

49. Davoudian, A., Chen, L., Liu, M.: A survey on NoSQL stores.
ACM Comput. Surv. 51(2), 1–43 (2018)

50. Dearholt, D., Gonzales, N., Kurup, G.: Monotonic search net-
works for computer vision databases. In: ACSSC, pp. 548–553
(1988)

51. Dong,W., Charikar,M., Li, K.: Efficient k-nearest neighbor graph
construction for generic similarity measures. In: WWW (2011)

52. Echihabi, K., Zoumpatianos, K., Palpanas, T.: New trends in high-
Dvector similarity search:AI-driven, progressive, and distributed.
Proc. VLDB Endow. 14(12), 3198–3201 (2021)

53. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.:
Return of the Lernaean Hydra: experimental evaluation of data
series approximate similarity search. Proc. VLDB Endow. 13(3),
403–420 (2019)

54. Edelsbrunner, H., Shah, N.R.: Incremental topological flipping
works for regular triangulations. Algorithmica 15, 223–241
(1996)

55. Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor
graphs. Discrete Comput. Geom. 17, 263–282 (1997)

56. Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest
neighbor search with the navigating spreading-out graph. Proc.
VLDB Endow. 12(5), 461–474 (2019)

57. Gao, J., Long, C.: RaBitQ: quantizing high-dimensional vectors
with a theoretical error bound for approximate nearest neighbor
search. Proc. ACM Manag. Data 2(3), 1–27 (2024)

58. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization for
approximate nearest neighbor search. In: CVPR, pp. 2946–2953
(2013)

59. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT
News 33(2), 51–59 (2002)

60. Gollapudi, S., Karia, N., Sivashankar, V., Krishnaswamy, R., Beg-
wani, N., Raz, S., Lin,Y., Zhang,Y.,Mahapatro, N., Srinivasan, P.,
Singh, A., Simhadri, H.V.: Filtered-DiskANN: graph algorithms

for approximate nearest neighbor search with filters. In: WWW
(2023)

61. Guo, R., Luan, X., Xiang, L., Yan, X., Yi, X., Luo, J., Cheng,
Q., Xu, W., Luo, J., Liu, F., Cao, Z., Qiao, Y., Wang, T., Tang,
B., Xie, C.: Manu: a cloud native vector database management
system. Proc. VLDB Endow. 15(12), 3548–3561 (2022)

62. Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F.,
Kumar, S.: Accelerating large-scale inference with anisotropic
vector quantization. In: ICML (2020)

63. Hambardzumyan, S., Tuli, A., Ghukasyan, L., Rahman, F.,
Topchyan, H., Isayan, D., McQuade, M., Harutyunyan, M.,
Hakobyan, T., Stranic, I., Buniatyan, D.: Deep Lake: a lakehouse
for deep learning. In: CIDR (2023)

64. Harwood, B., Drummond, T.: FANNG: fast approximate nearest
neighbour graphs. In: CVPR (2016)

65. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards
removing the curse of dimensionality. In: STOC, pp. 604–613
(1998)

66. Jégou, H., Douze, M., Schmid, C.: Product quantization for near-
est neighbor search. IEEETrans. PatternAnal.Mach. Intell. 33(1),
117–128 (2011)

67. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search
with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2021)

68. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd
edn. Prentice-Hall, Hoboken (2009)

69. Keivani,O., Sinha,K., Ram, P.: Improvedmaximum inner product
search with better theoretical guarantee using randomized parti-
tion trees. Mach. Learn. 107, 1069–1094 (2018)

70. Kim, Y.: Applications and future of dense retrieval in industry. In:
SIGIR, pp. 3373–3374 (2022)

71. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845
(2000)

72. Lakshman, A., Malik, P.: Cassandra: a decentralized structured
storage system. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

73. Lee, D., Wong, C.: Worst-case analysis for region and partial
region searches in multidimensional binary search trees and bal-
anced quad trees. Acta Inform. 9, 23–29 (1977)

74. Leskovec, J., Rajaraman, A., Ullman, J.: Mining of Massive
Datasets, 3rd edn.CambridgeUniversity Press, Cambridge (2014)

75. Li, F.: Modernization of databases in the cloud era: building
databases that run like Legos. Proc. VLDB Endow. 16(12), 4140–
4151 (2023)

76. Li,H.,Ai,Q., Zhan, J.,Mao, J., Liu,Y., Liu, Z., Cao, Z.: Construct-
ing tree-based index for efficient and effective dense retrieval. In:
SIGIR (2023)

77. Li, J., Liu, H., Gui, C., Chen, J., Ni, Z., Wang, N., Chen, Y.: The
design and implementation of a real time visual search system on
JD e-commerce platform. In: Middleware, pp. 9–16 (2018)

78. Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.:
Approximate nearest neighbor search on high dimensional data—
experiments, analyses, and improvement. IEEE Trans. Knowl.
Data Eng. 32(8), 1475–1488 (2020)

79. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA
Tesla: a unified graphics and computing architecture. IEEEMicro
28(2), 39–55 (2008)

80. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator the-
orem. SIAM J. Comput. 9(3), 615–627 (1980)

81. Liu, T., Moore, A.W., Gray, A., Yang, K.: An investigation of
practical approximate nearest neighbor algorithms. In: NeurIPS,
pp. 825–832 (2004)

82. Luo, C., Carey, M.J.: LSM-Based storage techniques: a survey.
VLDB J. 29(1), 393–418 (2019)

83. Lv,Q., Josephson,W.,Wang,Z.,Charikar,M., Li,K.:Multi- probe
LSH: efficient indexing for high-dimensional similarity search. In:
Proc. VLDB Endow. pp. 950–961 (2007)

123

1614 J. Jie et al.

84. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approx-
imate nearest neighbor algorithm based on navigable small world
graphs. Inform. Syst. 45, 61–68 (2014)

85. Malkov, Y., Yashunin, D.A.: Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world
graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836
(2020)

86. Matsui, Y., Uchida, Y., Jégou, H., Satoh, S.: A survey of product
quantization. ITE Trans. Media Technol. Appl. 6(1), 2–10 (2018)

87. Meiser, S.: Point location in arrangements of hyperplanes. Inform.
Comput. 106(2), 286–303 (1993)

88. Meng, J.,Wang, H., Xu, J., Ogihara,M.: ONe index for all kernels
(ONIAK): a zero re-indexing LSH solution to ANNS-ALT (After
Linear Transformation). Proc. VLDB Endow. 15(13), 3937–3949
(2022)

89. Mirkes, E.M., Allohibi, J., Gorban, A.: Fractional norms and
quasinorms do not help to overcome the curse of dimensional-
ity. Entropy 22(10), 1105 (2020)

90. Mitra, B., Craswell, N.: An introduction to neural information
retrieval. Found. Trends Inf. Retr. 13(1), 1–126 (2018)

91. Moll, O., Favela, M., Madden, S., Gadepally, V., Cafarella, M.:
SeeSaw: interactive ad-hoc search over image databases. Proc.
ACM Manag. Data 1(4), 1–26 (2023)

92. Muja, M., Lowe., D.G.: FLANN: fast library for approximate
nearest neighbors. In: VISAPP (2009)

93. Navarro, G.: Searching in metric spaces by spatial approximation.
VLDB J. 11(1), 28–46 (2002)

94. Norouzi, M., Fleet, D.J.: Cartesian k-means. In: CVPR (2013)
95. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured

merge-tree (LSM-tree). Acta Inform. 33, 351–385 (1996)
96. Paredes, R., Chávez, E.: Using the k-nearest neighbor graph for

proximity searching in metric spaces. In: SPIRE, pp. 127–138
(2005)

97. Paredes, R., Chávez, E., Figueroa, K., Navarro, G.: Practical con-
struction of k-nearest neighbor graphs in metric spaces. In: WEA
(2006)

98. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P.,
Shyu, M.L., Chen, S.C., Iyengar, S.S.: A survey on deep learning:
algorithms, techniques, and applications. ACM Comput. Surv.
51(5), 1–36 (2018)

99. Prout, A.,Wang, S.P., Victor, J., Sun, Z., Li, Y., Chen, J., Bergeron,
E., Hanson, E., Walzer, R., Gomes, R., Shamgunov, N.: Cloud-
native transactions and analytics in SingleStore. In: SIGMOD, pp.
2340–2352 (2022)

100. Qin, J.,Wang,W.,Xiao,C., Zhang,Y.: Similarity query processing
for high-dimensional data. Proc. VLDB Endow. 13(12), 3437–
3440 (2020)

101. Qin, J., Wang, W., Xiao, C., Zhang, Y., Wang, Y.: High-
dimensional similarity query processing for data science. In:
KDD, pp. 4062–4063 (2021)

102. Ram, P., Sinha, K.: Revisiting kd-tree for nearest neighbor search.
In: KDD, pp. 1378–1388 (2019)

103. Rigaux, P., Scholl,M.,Voisard,A.: SpatialDatabases:WithAppli-
cation to GIS. Morgan Kaufmann Publishers Inc., Burlington
(2001)

104. Rubinstein, A.: Hardness of approximate nearest neighbor search.
In: STOC, pp. 1260–1268 (2018)

105. Salakhutdinov, R.R., Hinton, G.E.: Learning a nonlinear embed-
ding by preserving class neighbourhood structure. In: AISTATS
(2007)

106. Sellis, T., Roussopoulos, N., Faloutsos, C.: Multidimensional
access methods: trees have grown everywhere. Proc. VLDB
Endow., pp. 13–14 (1997)

107. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image
descriptor matching. In: CVPR (2008)

108. Sivic, Z.: Video Google: a text retrieval approach to object match-
ing in videos. In: ICCV, pp. 1470–1477 (2003)

109. Su, T.H., Chang, R.C.: On constructing the relative neighborhood
graphs in Euclidean k-dimensional spaces. Computing 46, 121–
130 (1991)

110. Su, Y., Sun, Y., Zhang, M., Wang, J.: Vexless: a serverless vec-
tor data management system using cloud functions. Proc. ACM
Manag. Data 2(3), 1–26 (2024)

111. Subramanya, S.J., Devvrit, Kadekodi, R., Krishnaswamy, R.,
Simhadri, H.: DiskANN: Fast accurate billion-point nearest
neighbor search on a single node. In: NeurIPS (2019)

112. Tagliabue, J., Greco, C.: (Vector) Space is not the final frontier:
product search as program synthesis. In: SIGIR (2023)

113. Taipalus, T.: Vector database management systems: fundamental
concepts, use-cases, and current challenges. Cognitive Syst. Res.
85, 101216 (2024)

114. Teflioudi, C., Gemulla, R.: Exact and approximate maximum
inner product search with LEMP. ACM Trans. Database Syst.
42(1), 1–49 (2016)

115. Toussaint, G.T.: The relative neighbourhood graph of a finite pla-
nar set. Pattern Recognit. 12(4), 261–268 (1980)

116. Vaidya, P.M.: An O(n log n) algorithm for the all-nearest-
neighbors problem. Discrete Comput. Geom. 4, 101–115 (1989)

117. Vempala, S.S.: Randomly-oriented k-d trees adapt to intrinsic
dimension. In: LIPIcs (2012)

118. Wang, F., Sun, J.: Survey on distance metric learning and dimen-
sionality reduction in data mining. Data Min. Knowl. Disc. 29,
534–564 (2015)

119. Wang, J., Li, S.: Query-driven iterated neighborhood graph search
for large scale indexing. In: MM, pp. 179–188 (2012)

120. Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., Li, S.: Scalable
k-NN graph construction for visual descriptors. In: CVPR, pp.
1106–1113 (2012)

121. Wang, J., Wang, N., Jia, Y., Li, J., Zeng, G., Zha, H., Hua, X.S.:
Trinary-projection trees for approximate nearest neighbor search.
IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 388–403 (2014)

122. Wang, J., Yi, X., Guo, R., Jin, H., Xu, P., Li, S., Wang, X., Guo,
X., Li, C., Xu, X., Yu, K., Yuan, Y., Zou, Y., Long, J., Cai, Y., Li,
Z., Zhang, Z., Mo, Y., Gu, J., Jiang, R., Wei, Y., Xie, C.: Milvus:
A purpose-built vector data management system. In: SIGMOD,
pp. 2614–2627 (2021)

123. Wang, J., Zhang, Q.: Disaggregated database systems. In: SIG-
MOD, pp. 37–44 (2023)

124. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on
learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. 40(4),
769–790 (2018)

125. Wang, M., Xu, W., Yi, X., Wu, S., Peng, Z., Ke, X., Gao, Y., Xu,
X., Guo, R., Xie, C.: Starling: an I/O-efficient disk-resident graph
index framework for high-dimensional vector similarity search on
data segment. Proc. ACM Manag. Data 2(1), 1–27 (2024)

126. Wang, M., Xu, X., Yue, Q., Wang, Y.: A comprehensive survey
and experimental comparison of graph-based approximate nearest
neighbor search. Proc. VLDB Endow. 14(11), 1964–1978 (2021)

127. Wang, R., Deng, D.: DeltaPQ: lossless product quantization code
compression for high dimensional similarity search. Proc. VLDB
Endow. 13(13), 3603–3616 (2020)

128. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’
networks. Nature 393, 440–442 (1998)

129. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis
and performance study for similarity-search methods in high-
dimensional spaces. Proc. VLDB Endow. pp. 194–205 (1998)

130. Wei, C., Wu, B., Wang, S., Lou, R., Zhan, C., Li, F., Cai, Y.:
AnalyticDB-V: a hybrid analytical engine towards query fusion
for structured and unstructured data. Proc. VLDB Endow. 13(12),
3152–3165 (2020)

123

Survey of vector database management systems 1615

131. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NeurIPS,
pp. 1753–1760 (2008)

132. Williams, R.: On the difference between closest, furthest, and
orthogonal pairs: Nearly-linear vs barely-subquadratic complex-
ity. In: SODA, pp. 1207–1215 (2018)

133. Wu,W., He, J., Qiao, Y., Fu, G., Liu, L., Yu, J.: HQANN: Efficient
and robust similarity search for hybrid queries with structured and
unstructured constraints. In: CIKM (2022)

134. Xue, W., Li, H., Peng, Y., Cui, J., Shi, Y.: Secure k nearest
neighbors query for high-dimensional vectors in outsourced envi-
ronments. IEEE Trans. Big Data 4(4), 586–599 (2018)

135. Yandex, A.B., Lempitsky, V.: Efficient indexing of billion-scale
datasets of deep descriptors. In: CVPR, pp. 2055–2063 (2016)

136. Yang,W., Li, T., Fang, G.,Wei, H.: PASE: PostgreSQLultra-high-
dimensional approximate nearest neighbor search extension. In:
SIGMOD, pp. 2241–2253 (2020)

137. Yianilos, P.N.:Data structures and algorithms for nearest neighbor
search in general metric spaces. In: SODA, pp. 311–321 (1993)

138. Zhan, C., Su, M., Wei, C., Peng, X., Lin, L., Wang, S., Chen, Z.,
Li, F., Pan, Y., Zheng, F., Chai, C.: AnalyticDB: real-time OLAP
database system at Alibaba Cloud. Proc. VLDB Endow. 12(12),
2059–2070 (2019)

139. Zhang, H., Cao, L., Yan, Y., Madden, S., Rundensteiner, E.A.:
Continuously adaptive similarity search. In: SIGMOD, pp. 2601–
2616 (2020)

140. Zhang,W., Ji, J., Zhu, J., Li, J., Xu,H., Zhang, B.: BitHash: an effi-
cient bitwise locality sensitive hashing method with applications.
Knowl. Based Syst. 97, 40–47 (2016)

141. Zhang, X., Wang, Q., Xu, C., Peng, Y., Xu, J.: FedKNN: secure
federated k-nearest neighbor search. Proc. ACM Manag. Data
2(1), 1–26 (2024)

142. Zhao,W.L.,Wang, H., Ngo, C.W.: Approximate k-NN graph con-
struction: a generic online approach. IEEE Trans. Multimed. 24,
1909–1921 (2022)

143. Zhu,Y., Chen, L., Gao,Y., Jensen, C.S.: Pivot selection algorithms
inmetric spaces: a survey and experimental study. VLDB J. 31(1),
23–47 (2022)

144. Zhu, Y., Ma, R., Zheng, B., Ke, X., Chen, L., Gao, Y.: GTS: GPU-
based tree index for fast similarity search. Proc. ACM Manag.
Data 2(3), 1–27 (2024)

145. Zuo, C., Qiao, M., Zhou, W., Li, F., Deng, D.: SeRF: segment
graph for range-filtering approximate nearest neighbor search.
Proc. ACM Manag. Data 2(1), 1–26 (2024)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

	Survey of vector database management systems
	Abstract
	1 Introduction
	2 Query processing
	2.1 Query definition
	2.1.1 Similarity scores
	2.1.2 Query types
	2.1.3 Query interfaces

	2.2 Operators
	2.3 Search algorithms
	2.4 Discussion

	3 Indexing
	3.1 Tables
	3.1.1 Locality sensitive hashing
	3.1.2 Learning to hash
	3.1.3 Quantization

	3.2 Trees
	3.2.1 Non-random trees
	3.2.2 Random trees

	3.3 Graphs
	3.3.1 k-nearest neighbor graphs
	3.3.2 Monotonic search networks
	3.3.3 Small world graphs

	3.4 Discussion

	4 Query optimization
	4.1 Hybrid operators
	4.2 Plan enumeration
	4.3 Plan selection
	4.4 Discussion

	5 Query execution
	5.1 Data manipulation
	5.2 Distributed query processing
	5.3 Hardware acceleration
	5.4 Discussion

	6 Current systems
	6.1 Native
	6.2 Extended
	6.3 Libraries and other systems
	6.4 Discussion

	7 Benchmarks
	8 Challenges and open problems
	9 Conclusion
	Acknowledgements
	References

